Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors

-Supplementary Figures and Table

Shuting Cao^a, Yu-Wen Hung^{a, #}, Yi-Chang Wang^{a, #}, Yiyin Chung^{a, #}, Yue Qi ^{a, #}, Ching Ouyang^b, Xiancai Zhong^c, Weidong Hu^c, Alaysia Coblentz^a, Ellie Maghami^d, Zuoming Sun^{c, e}, H. Helen Lin^a, and David K. Ann^{a, e, *}

^aDepartment of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA

^bDepartment of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA

^cDepartment of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA

^dDivision of Head and Neck Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA

^eIrell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA

[#]Contribute equally

*To whom all correspondence should be addressed: David K. Ann, Ph.D. Beckman Research Institute City of Hope Comprehensive Cancer Center Duarte, CA 91010-3000 Tel: 626-218-6586 E-Mail: dann@coh.org Α

 KRAS^{G12V};Atg5*/*
 KRAS^{G12V};Atg5//

В

С

Endogenous tumor

Figure S1. Characterization or primary salivary carcinoma cells isolated from different hosts.

Primary tumor cells were isolated from tamoxifen-induced malignant salivary tumors. (**A**) Cell morphology of *KRAS*^{G12V};*Atg5*^{+/+} and *KRAS*^{G12V};*Atg5*^{Δ/Δ} malignant salivary tumor cells grown at low (top panels) and high (bottom panels) confluency. Enlarged images are also shown (inserts). (**B**) Representative western blots, in which total lysates from *KRAS*^{G12V};*Atg5*^{+/+} and *KRAS*^{G12V};*Atg5*^{Δ/Δ} malignant salivary tumor cells were stained with indicated antibodies. Two each of independent primary salivary tumor cells were isolated from tumor-bearing ATG5-wild type and ATG5-knockout mice, respectively, are shown. (**C**) Malignant salivary tumor cells *KRAS*^{G12V};*Atg5*^{+/+} (+/+) and *KRAS*^{G12V};*Atg5*^{Δ/Δ} (Δ/Δ) were orthotopically implanted into SMG of wild type (*wt*) and *Atg5*^{flox/flox} (*f/f*) host mice. Tumor weights were measured on Day 25 post-implantation. n \geq 4. n.s., not significant; ****: *p* < 0.0001; Student's *t*-test, 2-tailed, unpaired. (**D**) Comparison between H&E stain of tumor sections of endogenous tamoxifen-induced salivary tumors and orthotopically implanted tumors. Scale bar; 100 µm.

(**A**, **B**) Representative flow cytometry showing CD11b⁺CD49b⁺NK1.1⁺ NK cells (**A**), and CD11b⁺F4/80⁻Ly6B⁺ neutrophils (**B**) isolated from live splenocytes of Day 25 tumor-bearing $Atg5^{+/+}$ and $Atg5^{flox/flox}$ mice. (**C**, **E**) Flow cytometry analyses showing the percentage of NK cells (CD11b⁺CD49b⁺NK1.1⁺) in alive SMG cells and splenocytes from Day 14 (**C**) and Day 25 (**E**) tumor-bearing $Atg5^{+/+}$ and $Atg5^{flox/flox}$ mice. (**D**, **F**) Flow cytometry analyses showing the percentage of neutrophils (CD11b⁺F4/80⁻Ly6B⁺) in alive SMG cells and splenocytes from Day 14 (**C**) and Day 14 (**D**) and Day 25 (**F**) tumor-bearing $Atg5^{+/+}$ and $Atg5^{flox/flox}$ mice. Day 14 tumor-bearing mice: $Atg5^{+/+}$: n = 9; $Atg5^{flox/flox}$: n = 5. Day 25 tumor-bearing mice: $Atg5^{+/+}$: n = 18; $Atg5^{flox/flox}$: n = 15. Data are shown as mean ± SD; ***: p < 0.001; Student's *t*-test, 2-tailed, unpaired.

Figure S3. Flow cytometry analysis of IFN- γ -producing cells in SMGs and spleens of tumor-bearing mice.

Representative flow cytometry showing IFN- γ -producing cells in single cell suspensions of the alive SMG cells (**A**) and splenocytes (**B**) of tumor-bearing *Atg5^{+/+}* and *Atg5^{flox/flox}* mice following PMA/ionomycin/Golgiplug stimulation for 4h (Stimulated) or unstimulated control (Unstimulated).

Figure S4. Glutamine promotes IFN- γ^{+} production by CD4⁺ T cells from *Atg5*^{flox/flox} mice. CD4⁺ T cells were isolated from splenocytes of naïve *Atg5*^{+/+} and *Atg5*^{flox/flox} mice and cultured in glutamine-free Treg polarization medium for 3 days. Afterwards, cells were cultured in fresh Treg polarization medium supplemented with glutamine (2 mM) for the indicated time periods (0, 4, 24 and 48 h), and then stimulated with PMA/ionomycin/ Golgiplug for 4 h. Percentages of IFN- γ -positive CD4⁺ cells were determined by flow cytometry analyses (n = 3). Data are presented in bar graph shown as Mean ± SEM. *p* value was calculated by *t* test (unpaired, two tailed). *: *p* < 0.05.

Α Tumor Endpoint: implantation Sample collection anti-CD8 Ab anti-CD8 Ab anti-CD8 Ab anti-CD8 Ab ł -1 0 7 15 20 1 Time (days) в Spleen Spleen SMG SMG ** n.s. n.s. n.s. 25 15 25 80 Atg5+/+ + IgG Atg5^{flox/flox} + IgG 20· 20 60· Atg5flox/flox + anti-CD8 10 % CD8⁺ % CD4⁺ 15· 15 % CD8 5 40 10 10 % 5 20 С Endpoint: Tumor implantation Sample collection anti-CD25 Ab anti-CD25 Ab anti-CD25 anti-CD25 Ab Ab 3 -1 0 10 17 24 Time (days) D Ε n.s. n.s. % CD25⁺ (of live CD4⁺ T cells) 4000 2.5 SMG tumor volume (mm3) 2.0 3000 1.5 2000 1.0 1000 0.5 0 0.0 IgG anti-CD25

(A) Diagram showing time schedule when $Atg5^{+/+}$ and $Atg5^{flox/flox}$ mice were inoculated with MST cells orthotopically and received an anti-CD8 or IgG antibody (0.2 mg/mouse; i.p.), as indicated. Tumors and spleens were collected at Day 20. (B) Flow cytometric analysis of CD8⁺

IgG anti-CD25

and CD4⁺ T cell subsets. Local administration of clone 2.43 reduced population of CD8⁺ T cells in spleen and SMG of $Atg5^{flox/flox}$ mice at 5 days after the last treatment. All graphs were CD8⁺- and CD4⁺-gated. Percentages of CD8⁺ and CD4⁺ cells in spleen (*left 2 panels*) and tumor-bearing SMG (*right 2 panels*) are shown. Data are presented in bar graph shown as Mean ± SEM. *p* value was calculated by Welch's *t* test, one tailed, unpaired. $Atg5^{+/+} + lgG$: n = 8; $Atg5^{flox/flox} + lgG$: n = 7; $Atg5^{flox/flox} + anti-CD8$: n = 10; *: *p* < 0.05; **: *p* < 0.01; *n.s.*, not significant. (**C**) Diagram showing time schedule when $Atg5^{+/+}$ mice were inoculated with MST cells orthotopically and received an anti-CD25 or IgG antibody (0.25 mg/mouse; *i.p.*), as indicated. Tumors were harvested at Day 24. (**D**) The depletion of CD25⁺ T cells by clone PC-61.5.3 had a very modest effect on reducing SMG tumor burden. (**E**) Local administration of clone PC-61.5.3 has limited effect on the population of CD25⁺ T cells at 7 days after the last treatment in SMG of $Atg5^{+/+}$ mice. Graphs were CD25⁺-gated. Percentage of CD25⁺ (of live CD4⁺ T cells) in tumor-bearing SMG is shown. Data are presented in bar graph shown as Mean ± SEM. *p* value was calculated by Welch's *t* test, one tailed, unpaired. $Atg5^{+/+} + lgG$: n = 7; $Atg5^{+/+}$ T cells in tumor-bearing SMG is shown. Data are presented in bar graph shown as Mean ± SEM. *p* value was calculated by Welch's *t* test, one tailed, unpaired. $Atg5^{+/+} + lgG$: n = 7; $Atg5^{+/+} + anti-CD25$: n = 6; *n.s.*, not significant.

Figure S6. High glutamine diet reduces MST tumor burden with increased CD8⁺ T cell infiltration.

Gross view (*left*) and enlarged view (*middle*) of H&E-stained tumor sections from two mouse cohorts, each fed with either a control (Ctrl) diet or high glutamine diet, respectively. Areas of residual salivary gland, *enclosed by a yellow dashed line,* can be seen in tumor from mice on a high glutamine diet. IHC staining with an anti-CD8 antibody shows increased tumor-infiltrating CD8 T cells (*purple in color, right*) in tumors from *Atg5*^{+/+} mice fed with high-glutamine diet.

Gene	Forward primer	Reverse primer
Cdkn1a	5'- AGG AGC AAA GTG TGC CGT TG -3'	5'- CGA AGT CAA AGT TCC ACC GTT C -3'
Ccr4	5'- GGA AGG TAT CAA GGC ATT TGG G -3'	5'- GTA CAC GTC CGT CAT GGA CTT -3'
Ctla4	5'- TTT TGT AGC CCT GCT CAC TCT -3'	5'- CTG AAG GTT GGG TCA CCT GTA -3'
Foxp3	5'- ACC ATT GGT TTA CTC GCA TGT -3'	5'- TCC ACT CGC ACA AAG CAC TT -3'
Gapdh	5'- CCC CTT CAT TGA CCT CAA CTA -3'	5'- CTC CTG GAA GAT GGT GAT GG -3'
lfng	5'- CTT GAA CCC TGT CGT ATG CTG G -3'	5'- TTG GTG CAG GAA TCA GTC CAG G -3'
ll1a	5'- TGT TGC TGA AGG AGT TGC CAG -3'	5'- CCC GAC TTT GTT CTT TGG TGG -3'
ll1b	5'- TGG ACC TTC CAG GAT GAG GAC A -3'	5'- GTT CAT CTC GGA GCC TGT AGT G -3'
ll2ra	5'- CGG GCA GAA CTG TGT CTG TA -3'	5'- GTT GCT GCT CCA GGA GTT TC -3'
116	5'- TAC CAC TTC ACA AGT CGG AGG C -3'	5'- CTG CAA GTG CAT CAT CGT TGT TC -3'
Nrp1	5'- GAC AAA TGT GGC GGG ACC ATA -3'	5'- TGG ATT AGC CAT TCA CAC TTC TC -3'
Tnf	5'- GGT GCC TAT GTC TCA GCC TCT T -3'	5'- GCC ATA GAA CTG ATG AGA GGG AG -3'
Tnfrsf18	5'- GCC ATG CTG TAT GGA GTC TCG -3'	5'- CCA CTT CCG TTC TGA ACC TTG -3'
Rps18	5'- TTC CAG CAC ATT TTG CGA GTA -3'	5'- CAC GCC CTT AAT GGC AGT GAT -3'

Table S1: Primer sets for RT-PCR analyses.