SUPPLEMENTARY MATERIAL

A sporadic Alzheimer's blood-brain barrier model for developing ultrasound-mediated delivery of Aducanumab and anti-Tau antibodies

Wasielewska et al.

SUPPLEMENTAL FIGURES

Figure S1. Characterization of iBECs generated from individual iPSC lines. Immunofluorescence images of occludin (green), claudin-5 (magenta) and ZO-1 (green) in

iBECs generated from *APOE3* and *APOE4* induced pluripotent stem cells (iPSCs) used in this study. Hoechst counterstain, scale bar = $100 \mu m$.

Figure S2. Differential expression analysis of FUS^{+MB} treated iBEC vs untreated iBECs at 1 h and 24 h for *APOE3* **and** *APOE4* **genotypes.** Mean-difference (MD) plots showing log-fold-change versus average log expression values (log2 counts per million, CPM). Upper panel: FUS^{+MB} treated *APOE3* iBECs at 1 h vs untreated (UT) *APOE3* iBECs at 1 h and FUS^{+MB} treated *APOE3* iBECs at 24 h vs UT *APOE3* iBECs at 24 h. Lower panel: FUS^{+MB} treated *APOE4* iBECs at 1 h and FUS^{+MB} treated *APOE4* iBECs at 1 h vs UT *APOE4* iBECs at 1 h and FUS^{+MB} treated *APOE4* iBECs at 24 h.

GO Biological Processes

Figure S3. Dotplot of top gene ontology (GO) terms from sub ontology Biological Process enriched from comparison of UT *APOE4* iBECs at 1 h vs *APOE3* iBECs at 1 h. The top 20 GO processes according to *P*-value plotted in order of gene ratio. The size of the dots represents the number of genes associated with the GO term and the color of the dots represent the *P*-adjusted values. The differentially expressed genes (FDR < 0.05) were used for analysis.

APOE41h

FUSTNB

APOE3 vs APOE4 TEER 1 h

FUS

5

1.5

0.0

1.5

1.0

0.5

0.0

APOE3FUSHNE

APOEAFUSHNE

TEER (fold change to UT)

TEER (fold change to UT) 0

Ε

APOE4 24 h

FUSTMB

APOE3 vs APOE4 5 kDa dextran 1 h

*

FUS

5

1.5

1.0

0.5

0.0

5 kDa dextran permeability (fluorescence fold change)

3

2

APOEA FUSHING

APOE3 FUSHING

(fold change to UT)

TEER

APOE3 24 h

APOE4 24 h

APOE3 24 h

F

Aducanumab vs RNF5 delivery efficiency

7

Figure S4. Optimization of the Ø 3.0 µm pore Transwell model and characterization of the effects of FUS^{only} and FUS^{+MB} on iBECs. (A) Passive permeability (clearance volume) of 5 kDa and 150 kDa dextran in collagen IV and fibronectin coated (no iBEC containing) Ø 0.4 μ m and Ø 3.0 μ m pore Transwell inserts. (B) Immunofluorescence of ZO-1 (green) in each individual APOE3 and APOE4 iBEC line seeded on Ø 3.0 µm pore Transwell inserts (Hoechst counterstain, scale bar = $100 \mu m$). (C) Trans-endothelial electrical resistance (TEER, fold change to untreated (UT)) in APOE3 and APOE4 iBECs in UT, FUS^{only} and FUS^{+MB} conditions at 1 h and 24 h following treatment (N = 2 biological replicates and a minimum of n = 3independent replicates per line). (**D**) 5 kDa dextran permeability (fluorescence fold change to UT) in APOE3 and APOE4 iBECs in UT, FUS^{only} and FUS^{+MB} conditions at 1 h and 24 h following treatment (N = 2 biological replicates and a minimum of n = 3 independent replicates per line). (E) Comparison of TEER and 5 kDa dextran permeability following FUS^{+MB} between APOE3 and APOE4 iBECs (permeability shown as relative values to UT at 1 h). (F) Comparison of Aducanumab-analogue and RNF5 delivery efficiency following FUS^{+MB} in APOE3 and APOE4 iBECs (permeability shown as relative values to UT at 24 h). Error bars = SEM. * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001 and **** *P* < 0.0001 by one-way ANOVA for graphs with three groups and by Unpaired t-test with Welch's correction for graphs with two groups.

Α

В

UT 1 h

UT 24 h

FUS+MB 24 h

Figure S5. Neural progenitor cell generation and FUS^{+MB} treatment of iAstrocytes. (A)
Immunofluorescence of nestin (green) and SOX2 (magenta) in neural progenitor cells (NPCs)
generated from *APOE3* and *APOE4* induced pluripotent stem cells (iPSCs) used in this study.
(B) Immunofluorescence of *APOE3* and *APOE4* iAstrocytes generated from individual iPSC

lines in untreated (UT) and focused ultrasound + microbubble (FUS^{+MB}) conditions 1 h and 24 h following treatment stained with AQP4 (red) and GFAP (cyan) (Hoechst counterstain, scale $bar = 100 \ \mu m$).

Figure S6. Effect of FUS^{+MB} on iAstrocyte gene expression. Relative gene expression (fold change) of (A) astrocyte marker *S100B* and (B) inflammatory cytokine *CCL2* in UT and FUS^{+MB} treated *APOE3* and *APOE4* iAstrocytes 1 h and 24 h after treatment, error bars = SEM. (C) Comparison of relative gene expression (fold change) of inflammatory markers between

an isogenic *iAPOE3* and *APOE4* iAstrocyte pair at 1 h and 24 h after FUS^{+MB} treatment, error bars = SD. * P < 0.05 by Unpaired t-test with Welch's correction.

Aducanumab vs RNF5 delivery efficiency

Figure S7. Comparison of Aducanumab-analogue and RNF5 delivery efficiency following FUS^{+MB} in *APOE3* **and** *APOE4* **co-cultures.** Aducanumab and RNF5 delivery efficiency following FUS^{+MB} in *APOE3* and *APOE4* iBEC and iAstrocyte co-cultures (permeability shown as relative values to UT at 24 h).

Figure S8. iBEC barrier formation on LunaGelTM. Greyscale images of Hoechst staining (left panel) and ZO-1 staining (right panel) in iBECs seeded on LunaGelTM (scale bar = 100μ m).

Figure S9. Characterization of microbubbles used in the study. Representative size and distribution profiles of in-house prepared gas-filled microbubbles measured with a Coulter counter. The average diameter of microbubbles used in the study was $1.24 \pm 0.31 \mu m$, with a concentration of $7.47 \pm 6.06 \times 10^9$ MBs/ml (n = 6 MB vials analysed).

SUPPLEMENTAL TABLES

Table S1. Results from differential expression analysis of UT APOE4 iBECs compared to

UT *APOE3* **iBECs at 1 h.** Genes sorted by *P*-value. Differentially expressed genes (DEGs) defined by FDR < 0.05.

Table can be found in .xlsx format

Table S2. Results from gene ontology (GO) enrichment analysis of sub ontology BiologicalProcess from comparison of UT APOE4 iBECs at 1 h vs APOE3 iBECs at 1 h.

Table can be found in .xlsx format

Table S3. Primer sequences used in the study.

Target gene	Forward primer sequence	Reverse primer sequence	
Ve-cadherin (CDH5)	AGGCAAGATCAAGTCAA	GAGTCTCCAGGTTTTCGC	
	GCGT	CA	
Claudin-5 (CLDN5)	GATTGAGAGGTCTGGGA	ATCCCATGGCAAACAGA	
	AGCC	GAGG	
Occludin (OCLN)	GAAGCAAGTGAAGGGAT	ACAACTTGGCATCAGCC	
	CTGC	TTCT	
Zonula occludens-1 (<i>TJP-1</i>)	ACAGCTACAGGAAAATG	ACTGGTTCAGGATCAGG	
	ACCGA	ACG	
SOX18	TCAGCAAGATGCTGGGC	GCGGCCGGTACTTGTAG	
	AAAG	TTG	
Interleukin-6 (IL-6)	TGCAATAACCACCCCTG	TGCGCAGAATGAGATGA	
	ACC	GTTG	
Interleukin-8 (IL-8)	AGACAGCAGAGCACACA	ATGGTTCCTTCCGGTGGT	
	AGC		
Interleukin-1 β (<i>IL-β</i>)	AATCTGTACCTGTCCTGC	TGGGTAATTTTTGGGATC	
	GTGTT	TACACTCT	
C-C motif chemokine ligand	GCTCATAGCAGCCACCTT	GGACACTTGCTGCTGGT	
2 (CCL2)	CATTC	GATTC	
Glial fibrillary acidic protein	GAGGTTGAGAGGGACAA	GTGGCTTCATCTGCTTCC	
(GFAP)	TCTGG	TGTC	
Aquaporin-4 (AQP-4)	GTAGTCACCATGGTTCAT	TGGAACACAGCTGGCAA	
	GGAAAT	AGA	
S100 calcium-binding	TTCTGGAAGGGAGGGAG	CTCCTGCTCTTTGATTTC	
protein β (S100 β)	ACA	CTCT	
185	TTCGAGGCCCTGTAATTG	GCAGCAACTTTAATATA	
	GA	CGCTATTGG	

Primary antibodies	Species	Source	Identifier
ZO-1	mouse	Invitrogen	Cat# 339100
occludin	rabbit	Invitrogen	Cat# 711500
claudin-5	mouse	Invitrogen	Cat# 352500
aquaporin-4	mouse	Abcam	Cat# ab9512
GFAP	rabbit	Agilent/ Dako	Cat# Z0334
nestin	mouse	Abcam	Cat# ab22035
SOX2	rat	Invitrogen	Cat# 14981182
Secondary antibodies	Species	Source	Identifier
anti-mouse Alexa Fluor 488	goat	Invitrogen	Cat# A11029
anti-mouse Alexa Fluor 594	goat	Invitrogen	Cat# A11032
anti-mouse Alexa Fluor 647	goat	Invitrogen	Cat# A32728
anti-rabbit Alexa Fluor 488	goat	Invitrogen	Cat# A11034
anti-rat Alexa Fluor 647	goat	Invitrogen	Cat# A21247

Table S4. Antibodies used in the study.