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Figure S1. AAC induces cardiac hypertrophy and interstitial fibrosis in the heart.
(A) The echocardiographic analysis of fraction shortening (FS) in sham- or AAC-
treated mice with presentative M-model images by two months post surgery. Mean
± SD. N = 12. (B) HE staining on cardiac longitudinal section at the end of 2nd
month after AAC. (C-D) Masson staining on cardiac sections at the 2nd month after
AAC surgeries and quantification of the relative fibrotic area. N = 8 hearts. Scale bar,
200 μm. (E) RT-qPCR analysis of cardiac remodeling and fibrotic genes in hearts
subjected to AAC. N = 3 hearts. Scale bar, 50 μm. In statistical analysis, student’s t-
test was applied.*P < 0.05, **P < 0.01, ***P < 0.001.
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Figure S2. AAC induces the downregulation of mitochondrial genes associated with YAP1
activation. (A) GSEA analysis of RNA-seq data for hearts treated by AAC for 2 months. (B-C)
Comparative GSEA analysis of RNA-seq data for hearts treated by AAC for 1, 2 and 3 months.
NES, normalized enrichment score. (D) Immunofluorescence staining for activated YAP (aYAP)
of and quantification of aYAP+ non-cardiomyocytes in cardiac tissue sections. (E) FACS sorting
results for GFP+ cardiomyocytes by the two month after AAV applied to AAC and sham mice.Then
the sorted cardiomyocytes were used to perform immunoblotting by WES. Mean ± SD. In
statistical analysis, student’s t-test was applied. **P < 0.01.

Figure S2

0

10

20

30

40

Sham
AAC

Sham
AAC

YAP

p-YAP

aYAP1

GFP

GapDH

aY
A
P
1
po

si
tiv
e

in
no

n-
ca
rd
io
m
yo
cy
te
s
(%

) **

0 10 102 103 104 105
0

10

102

103

104

105 GFP+ CMs
0.1%

Negative Control

SSC-A

G
FP

0 10 102 103 104 105
0

10

102

103

104

105 GFP+ CMs
65.1%

Sham+AAV-cTNT-GFP

SSC-A

G
FP

0 10 102 103 104 105
0

10

102

103

104

105 GFP+ CMs
68.2%

AAC+AAV-cTNT-GFP

SSC-A

G
FP



0 10 102 103 104 105
0

10

102

103

104

105

GFP+ CMs
25.5%

SSC-A

AAC-Yap1F/F-AAV-Cre-GFP
G

FP

0 10 102 103 104 105
0

10

102

103

104

105

GFP+ CMs
24.8%

AAC-Yap1F/F-AAV-GFP

SSC-A

G
FP

%
G

FP
+

C
M

s

0

10

20

30

40

AAC-Yap1F/F-AAV-Cre-GFP
AAC-Yap1F/F-AAV-GFP

0.867

A

B

0

40

80

0

20

40

FS
(%

)

LV
EF

(%
)

AAC-Yap1f/f-AAV-Cre-GFP
AAC-Yap1f/f-AAV-GFP

C

0.304 0.107

aYAP1

DRP1

MFN1

GAPDH

AAC-Yap1 F/F-

AAV-Cre-GFP

AAC-Yap1 F/F-

AAV-GFP

Figure S3

Figure S3. Depletion of YAP1 helps to maintain cardiac morphology. (A)
Immunoblotting for activated YAP1 (aYAP1), DRP1 and MFN1 in cardiac tissue. (B)
FACS sorting results for GFP+ cardiomyocytes by the one month after AAV applied
to AAC mice. (C) Echocardiographic measurement of LVEF and FS in AAC-treated
Yap1F/F mice. Mean ± SD. N = 4 hearts per group. In statistical analysis, student’s t-
test was applied. Non-significant P values in parenthesis.
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Figure S4. YAP1 activation induced HFpEF and failed to trigger proliferation in 1 month.
(A) Immunoblotting demonstrated the YAP1 activation in vivo and DRP1 and MFN1 were
inhibited. Tamoxifen was injected intraperitoneally to induce Yap1 overexpression specifically
in cardiomyocytes. (B) The echocardiographic analysis of LVEF and FS in Yap1-
overexpression and control mice. Mean ± SD. N = 9. (C) RT-qPCR analysis of cardiac
remodeling and fibrotic genes in hearts by YAP1-overexpression. N = 3 hearts. (D) Masson
staining on cardiac sections at the one month after YAP activation and quantification of the
relative fibrotic area. N = 4 hearts. Scale bar, 200 μm. (E) Immunostaining for ki67 and pH3 in
cardiac tissue sections. Scale bar, 50 μm. In statistical analysis, student’s t-test was applied.*P
< 0.05, **P < 0.01, ****P < 0.0001. Non-significant P values in parenthesis.
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Figure S5. Transcription changes after cardiomyocyte specific YAP1 activation. (A) GSEA
demonstrated the activation of YAP1 conserved signature by one month. (B) Venn diagram shows
the overlap of differential expressed genes on 5 days and 1 month post YAP1 activation with the
TEAD1 motif identified genes according to ATAC-seq. (C) The diagram shows the top 10 enriched
GO terms of differentiated expressed genes of Yap1GOF cardiomyocytes both identified of short
term (5 days) and long term (1 month) with TEAD1 motif identification. (D) The heatmap of
mitochondrial inner membrane related genes based on differentiated expressed genes of RNA-
seq, indicating similar profile among AAC and YAP1 activation. (E) GO terms enriched among
differentiated expressed genes between 5 days and 1 month upon YAP activation of Yap1Myh6-GOF

hearts. N = 3 per groups.
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Figure S6. Mfn2 reduced after YAP1 activation. Mfn2 were measured by quantitative PCR (A)
and immunostaining (B). Mfn2 had markedly decreased expression upon YAP activation both in
heart tissues and cultured NMVMs. Scale bar, 50 μm. N = 3 biological replicates in each group.
Mean ± SD. Student’s t-test was applied. *P < 0.05. **P < 0.01. Non-significant P values in
parenthesis.
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Figure S8. Vgll4 inhibition activates YAP1 and causes mitochondrial hyperfragmentation.
(A) Elevated a-YAP+ cardiomyocytes after inhibition of Vgll4. (B) Quantitative analysis of a-YAP+
cardiomyocytes between control and siVGLL4 cardiomyocytes (N = 5 biologically independent
samples and positive ratio of aYAP1 measured in 10 fields/slice). (C) MitoTracker staining of
cardiomyocytes after Vgll4 siRNA knock-down and control CMs. (D) Quantitative assessments of
mitochondrial morphology, presenting a hyper-fragment change post Vgll4 inhibition. Bar 50 μm;
Student’s t-test applied. *P < 0.05. **P < 0.01. ***P < 0.001.
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Figure S9.Dnm1l and Mfn1 were regulated by TEAD1 complex. (A) The putative binding sites
located in the promoter of Dnm1l and Mfn1 and the experimental design of luciferase reporter.
293T cells were co-transfected of Dnm1l/Mfn1-WT or Dnm1l/Mfn1-MUT and Tead1 or control
vectors. The luciferase activity was analyzed. N = 6 biological replicates in each group. Student’s
t-test applied. *P < 0.05. **P < 0.01. ***P < 0.001.
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Figure 10. Dnm1l andMfn1 double inhibition causes cardiomyocytes hypertrophy. (A) RNAi
has been used to inhibit the expression of Dnm1l and Mfn1 at the same time in NMVMs. qPCR
analysis the mRNA fold change after siRNA infected. (B) Leading edge analysis based on GSEA
of RNA-seq on Dnm1l and Mfn1 inhibited CMs, indicating the absence of enrichments of YAP
signaling. (C) ACTN2 staining and projected cell area in NMVMs upon Dnm1l and Mfn1 RNAi
silencing. N = 3 biological replicates in each group. Scale bar, 50 μm. In statistical analysis,
student’s t-test was applied. ****P < 0.0001. Non-significant P values in parenthesis.
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Figure 12. Dnm1l and Mfn1 addback rescue hypertrophy of cardiomyocytes induced by
YAP1 activation. (A) Immunoblotting for YAP, FRP1 and MFN1 after AAV derived DRP1 and
MFN1 addback treatment in vivo. (B) Violin plots showed the reduced cardiomyocyte cross-
section area in co-infected cardiomyocytes on AAC myocardial sections. (C) Relative expression
of Yap1, Dnm1l and Mfn1 in YAP1-overexpressing NMVMs upon MFN1 and DRP1. N = 4
biological replicates in each group. (D) GFP imaging and projected cell area in NMVMs upon
MFN1 and DRP1 addback. GFP was a surrogate marker for NMVMs that were transduced with
AdV that expressed MFN1 and DRP1. N = 3 biological replicates in each group. Scale bar, 50 μm.
In statistical analysis, student’s t-test was applied. *P < 0.05. **P < 0.01. ***P < 0.001. Non-
significant P values in parenthesis.
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Figure S14. Verteporfin restore AAC-induced damages in vivo. (A) The
echocardiographic analysis of LVEF and FS in AAC, Verteprofin treated and
sham mice. Mean ± SD. N = 6. (B) Masson staining on cardiac sections at the
one month after Verteprofin administration and quantification of the relative
fibrotic area. N = 4 hearts. Scale bar, 200 μm. (C) RT-qPCR analysis of cardiac
remodeling and fibrotic genes in AAC hearts subjected to Verteprofin. N = 3
hearts. (D) GSEA analysis of RNA-seq data for hearts between AAC and
AAV+VP. (E) PCA analysis among AAC, AAC+VP and Sham groups. (F) Sample
correlation among AAC, AAC+VP and Sham groups. In statistical analysis,
student’s t-test was applied. *P < 0.05. **P < 0.01. ***P < 0.001. VP, Verteporfin.
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Figure S15

Figure S15. Verteporfin attenuates AAC induced mitochondrial impairment. (A) Scatter plots show
the GO term enrichment profile to RNA-seq of AAC and AAC+VP hearts, indicating the rescue of
mitochondrial and myocardial function. (B) Scatter plots show the KEGG term enrichment profile to
RNA-seq of AAC and AAC+VP hearts, indicating the rescue of mitochondrial function and inhibition of
fibrosis. VP, Verteporfin.


