ERK inactivation expands cancer stem cell population in NSCLC via promoting Slug-mediated epithelial-to-mesenchymal transition

Shurui Cai, et al

Supplementary Table

Table S1: Sequence of primers used in qRT-PCR

Primers	Sequence Forward (5'-3')	Sequence Reverse (5'-3')
SNAI2	AGATGCATATTCGGACCCAC	CCTCATGTTTGTGCAGGAGA
SNAI1	CCTCAAGATGCACATCCGAAG	ACATGGCCTTGTAGCAGCCA
ZEB1	GGCAGAGAATGAGGGAGAAG	CTTCAGACACTTGCTCACTACTC
ZEB2	CCTCTGTAGATGGTCCAGAAGA	AATTGCGGTCTGGATCGTGG
Twist1	CTGCCCTCGGACAAGCTGAG	CTAGTGGGACGCGGACATGG
Twist2	CGCTACAGCAAGAAATCGAGC	GCTGAGCTTGTCAGAGGGG
E-Cadherin	TGCCCAGAAAATGAAAAAGG	GTGTATGTGGCAATGCGTTC
N-Cadherin	CATCAAGCCTGTGGGAATCC	AATGAAGTCCCCAATGTCTCCAG
Nanog	GTCCCAAAGGCAAACAACCC	TTGACCGGGACCTTGTCTTC
SPDEF	TCTGGAAGTCAGCCTCGACC	GGGCTTGAGTAGCAACTCCTT
Vimentin	TTCCAAACTTTTCCTCCCTGAACC	TCAAGGTCATCGTGATGCTGAG
Fibronectin	CCAGTCCTACAACCAGTATTCTC	CTTCTCTGTCAGCCTGTACATC
OCT4	TCGCAAGCCCTCATTTCACC	CGAGAAGGCGAAATCCGAAG
Sox9	GAGCCGGATCTGAAGAGGGA	GCTTGACGTGTGGCTTGTTC

Antibodies	Sources	Identifier	Dilution
Rabbit monoclonal Anti-Slug	Cell Signaling Technology	9585S	1:100 WB
Mouse monoclonal Anti-Slug	Santa Cruz Biotechnology	SC-166476	1:100 WB
Rabbit polyclonal Anti-pRSK	Cell Signaling Technology	9344S	1:1000 WB
Rabbit monoclonal Anti-RSK1	Cell Signaling Technology	8408S	1:1000 WB
Rabbit monoclonal Anti-ERK1/2	Cell Signaling Technology	4695S	1:1000 WB
Rabbit monoclonal Anti-pERK1/2 (Thr202/Tyr204)	Cell Signaling Technology	4370S	1:1000 WB
Rabbit monoclonal Anti-E-Cadherin	Cell Signaling Technology	3195S	1:1000 WB
Rabbit monoclonal Anti-Vimentin	Cell Signaling Technology	5741S	1:1000 WB 1:100 IF, IHC
Mouse monoclonal Anti-GAPDH	Santa Cruz Biotechnology	SC-365062	1:5000 WB
Mouse monoclonal Anti-Tubulin	Cell Signaling Technology	3873S	1:5000 WB
Rabbit polyclonal Anti-SPDEF	Proteintech	11467-1-AP	1:1000 WB
Rabbit monoclonal Anti-STAT3	Cell Signaling Technology	4904S	1:1000 WB
Rabbit monoclonal Anti-pSTAT3(Y705)	Cell Signaling Technology	9145S	1:1000 WB
Mouse monoclonal Anti-N-Cadherin- APC	Miltenyi Biotec	130-116-171	FACS
Mouse monoclonal Anti-E-Cadherin- APC	Miltenyi Biotec	130-099-723	FACS
Monoclonal REA Control-APC	Miltenyi Biotec	130-113-446	FACS
Biotinylated horse-anti-rabbit IgG (H+L)	Vector Laboratories	BA-1100	1:200 IHC
Rabbit E-Cadherin Recombinant Monoclonal Antibody	BETHYL Laboratories	#A700-088	1:100 IF, IHC
Goat anti-Rabbit IgG (H+L) Cross- Adsorbed Secondary Antibody, Alexa Fluor 594	Invitrogen	#A-11012	1:200 IF
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Invitrogen	#A-11029	1:200 IF
Goat Anti-Rabbit IgG Antibody, HRP- conjugate	Sigma	#12-348	1:5000 WB
Goat Anti-Mouse IgG Antibody, HRP conjugate	Sigma	#12-349	1:5000 WB

Table S2: Antibodies used in immunoblotting, immunofluorescence, and FACS.

Supplementary Figures

methylene blue staining assay. The IC50 for BVD and SCH in A549 and HCC827 cells were calculated using the GraphPad. (**C**) A549 and HCC827 cells were treated with BVD or SCH at 2.5 μ M for 2 days. Immunoblotting was conducted to determine pRSK to represent the inhibition of ERK. Meanwhile, pERK1/2, ERK1/2, RSK, and GAPDH were also determined to serve as control.

cells to determine the tumorigenic potential. Images of the xenografts are shown.

Figure S6. BVD exhibits equivalent growth inhibitory effect on ALDH⁻ and ALDH⁺ cells. ALDH⁻ and ALDH⁺ cells were sorted from A549 and HCC827 cells using the ALDEFULUOR-based FACS assay. Cells were treated with 2.5 μ M BVD for 5 days. Immunoblotting was conducted to determine the expression level of pRSK to reflect the inhibition of the ERK signaling (**A**). Cells were treated with BVD at different doses for 7 days, the methylene blue staining assay was conducted to determine the cell viability (**B**). N = 5, bar: SD. Cells were treated with 2.5 μ M BVD for 2 days, The Annexin V/PI staining combined with flow cytometry was conducted to determine cell death (**C**). N = 3, bar: SD.

Α

A549_B1 A549_B2 A549_B3 A549_C1 A549_C1 A549_C2 A549_C2 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A549_C3 A540_B	
	CDH2 CDH11 ITGA5 ITGB8 SDc1 S100A4 ACTA2 Vim CTNNB1 COL1A1 COL3A1 FN1 LAMA5 Snai1 Snai2 Zeb1 TRIM28 Twist1 FOXC2 GSC CDH1 TJP1 COL4A1 LAMP1

EMT-TF	Log2 FC (BVD vs DMSO)	P value
SNAI1	1.628932	1.29E-18
SNAI2	4.259227	2.59E-10
ZEB1	1.369674	6.10E-37
ZEB2	1.985991	9.97E-35
TWIST1	-0.53306	0.133703
TWIST2	-1.38661	1.11E-19

С

D Downregulated TFs in BVD-treated cells

в

TF	Log2 FC (BVD vs DMSO)	P value
EGR1	-11.0603	1.27E-61
FOS	-10.7178	5.22E-56
SPDEF	-7.46042	1.54E-78
ETV4	-7.26499	6.93E-179
HMGA2	-6.63968	5.28E-27
NKX1-2	-6.46358	3.24E-07
ETV5	-6.11704	4.93E-100
HLF	-5.48587	3.92E-12
ТВХ4	-5.2417	5.47E-06
ETV1	-5.00834	2.01E-11

Upregulated TFs in BVD-treated cells

TF	Log2 FC (BVD vs DMSO)	P value
ZFP57	7.318974	1.08E-08
BHLHE41	6.814186	5.33E-15
MAF	6.48613	9.74E-37
ZBED2	6.277593	1.33E-12
FOXS1	5.786521	4.48E-28
MAFB	5.594134	1.09E-17
CSDC2	5.353736	4.87E-16
RUNX2	4.621314	1.43E-28
тох	4.299712	0.030979
SNAI2	4.259227	2.59E-10

Figure S7. BVD treatment induces EMT in A549 cells. (A) Morphology change in A549 cells after BVD treatment. A549 cells were treated with either BVD at 2.5 µM or DMSO for 5 days, cell morphology was observed under microscope. (B-D) RNA-seq analysis shows changes in EMT-related gene expression in A549 cells after BVD treatment. A549 cells were treated with either BVD at 2.5 µM or DMSO for 5 days, RNA was isolated and subjected to RNA-seq analysis. Heat map of the individual gene expression changes of a panel of EMT biomarkers in BVD-treated compared to DMSO treated groups was plotted (B). EMT-TFs that differentially expressed in BVD-treated compared to DMSO-treated cells were listed (C). Top 10 downregulated TFs and top 10 upregulated TFs in BVD-treated compared to DMSO-treated cells were listed (D).

Figure S8. ERKi treatment triggers EMT in NSCLC cells. (A-B) ERKi increases the mRNA level of mesenchymal markers in NSCLC cell lines. A549 (**A**) and HCC827 (**B**) cells were treated with BVD or SCH at 2.5 μ M for 5 days, qRT-PCR was conducted to examine the mRNA level of various mesenchymal markers. (**C**) BVD treatment increases expression of the mesenchymal markers primary NSCLC cells. Primary tumor cells isolated from a NSCLC PDX (PDX72) were treated with BVD at 2.5 μ M for 5 days, qRT-PCR was conducted to examine the mRNA level of 5 days, qRT-PCR was conducted to examine the mRNA level of E-Cadherin and Vimentin. (**D-E)** BVD treatment increases the E-Cad⁻ cell population and the N-Cad⁺ cell population in A549 cells. A549 cells were treated with BVD at 2.5 μ M for 5 days, E-Cad⁻ and N-Cad⁺ cells were determined using Flow cytometry. (**F-I**) BVD treatment increases the cell migration ability. A549 cells were treated with BVD at 2.5 μ M for 6 days (**H-I**), the cell migration ability was determined using the transwell cell migration assay. N = 3, bar: SD, *: P < 0.05; **: P < 0.01.

