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Figure S1. The workflow in this study.
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Figure S2. Expression of 24 m°A regulators between tumor tissues and
corresponding normal tissues (n = 44) in TCGA dataset. Boxplot comparing the
expression distribution of METTL3, METTLI4, WTAP, VIRMA, ZCCHC4, FTO,
ALKBHS5, YTHDCI1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPC, HNRNPD,
RBM15, RBM27, ZC3H7B, ZC3H13, TRA24, YWHAG, CAPRINI, PCIF1, GNL3 and
MSI2 between tumor and corresponding normal tissues. The expression value between
tumor and normal tissues were compared through the Wilcoxon test. ns denotes no

significance, * denotes P < 0.05, ** denotes P < 0.01, *** denotes P < 0.001 and ****



denotes P < 0.0001.
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Figure S3. Cox proportional hazard regression of GEO dataset and LASSO

regression of TCGA dataset about 10 mC®A-associated prognostic pseudogenes. (A)

Forest plot showing the hazard ratios (HR), and 95% confidence intervals (CI) calculated

by univariate Cox proportional hazard regression of the 10 m°A-associated prognostic

pseudogenes in the GEO dataset. (B) The plot of LASSO coefficient profiles of 10

mP®A-associated prognostic pseudogenes in the TCGA dataset. (C) The plot of ten-time

cross-validation for tuning parameter selection

in the LASSO model

mP®A-associated prognostic pseudogenes in the TCGA dataset.
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Figure S4. Boxplot comparing the expression levels of the 10 m°®A-associated
pseudogenes in HNSCC patients with different HPV status and histologic grades in
the TCGA dataset. (A) Boxplot comparing the expression levels of PDIA3P1, LDHAP4,
LDHAP7, EEFIAIP6, EEFIAIPI1, SDHAPI, SDHAP3, DDXI2P, CLUHP3, and
RRN3P3 in HNSCC patients with between HPV positive and HPV negative. (B) Boxplot
comparing the expression levels of PDIA3PI, LDHAP4, LDHAP7, EEFIAIPG,
EEFI1AIPI11, SDHAPI, SDHAP3, DDX12P, CLUHP3, and RRN3P3 in HNSCC patients

across the different histologic grades.
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Figure SS5. Boxplot comparing the expression levels of the 10 m°®A-associated
pseudogenes in HNSCC patients with different pathology TNM stages in the TCGA
dataset. (A) Boxplot comparing the expression levels of PDIA3P1, LDHAP4, LDHAP?7,
EEFIAIP6, EEF1AIP11, SDHAPI, SDHAP3, DDXI12P, CLUHP3, and RRN3P3 in

HNSCC patients with different pathology T stage. (B) Boxplot comparing the expression



levels of PDIA3P1, LDHAP4, LDHAP7, EEFIAIP6, EEFIAIPII1, SDHAPI, SDHAP3,
DDXI12P, CLUHP3, and RRN3P3 in HNSCC patients with different pathology N stage.
(C) Boxplot comparing the expression levels of PDIA3PI, LDHAP4, LDHAP?7,
EEF1A1IP6, EEFIAIPII, SDHAPI, SDHAP3, DDXI12P, CLUHP3, and RRN3P3 in

HNSCC patients with different pathology M stages.
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Figure S6. Kaplan-Meier curves show the association between the expression levels
of m°A regulators and m°®A-associated pseudogenes and overall survival in patients
with HNSCC from the GEO dataset. (A) Kaplan-Meier curves of association between
the expression levels of m°A regulators and overall survival in patients with HNSCC
from the GEO dataset. (B) Kaplan-Meier curves of association between the expression
levels of oncogene pseudogenes and overall survival in patients with HNSCC from the
GEO dataset. (C) Kaplan-Meier curves of association between the expression levels of
tumor-suppressor pseudogenes and overall survival in patients with HNSCC from the

GEO dataset.
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Figure S7. Expressions of 10 mC®A-associated pseudogenes are significantly
associated with survival outcomes of HNSCC patients from the TCGA dataset. (A)
Nomogram for predicting the 1-year, 3-year, and 5-year prognosis of HNSCC patients
from the TCGA dataset. The nomogram was applied by summing the points identified on
the points scale for each variable. According to the total points on the bottom scales, the
nomogram provides the probability of the 1-year, 3-year, and 5-year prognosis for an
individual patient. (B) Calibration curves of the nomogram for predicting the 1-year,
3-year, and 5-year prognosis of HNSCC patients from the TCGA dataset, respectively.

The X-axis represents the nomogram-predicted probability of progression, and the Y-axis



represents the actual probability estimated with the Kaplan-Meier method. The light blue,
orange, and dark blue line represents the ideal correlation between the

nomogram-predicted and actual probability of 1-year, 3-year, and 5-year, respectively.
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Figure S8. Comparisons of the expressions of integrin ITGA family genes, integrin
ITGB family genes, and kinase genes between low-risk and high-risk subtypes. (A)
Boxplot contrasting the expressions of GZMA, PRFI1, CYTHI, CYTH2, CYTH3, and
CYTH4 between low-risk and high-risk subtypes. (B) Boxplot comparing the expressions
of ITGA family genes between low-risk and high-risk subtypes. (C) Boxplot comparing
the expressions of ITGB family genes between low-risk and high-risk subtypes. The
P-value of comparisons between the two subtypes was calculated through the Wilcoxon

test. Purple represents P-value < 0.05.
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Figure S9. The expression pattern of m®A-associated prognostic pseudogenes was
significantly correlated with an antitumor immune response between the P1 and P2
subgroups. (A) Boxplot revealing comparisons of expression levels of oncogenes
(PDIA3P1, LDHAP4, LDHAP7, EEFIAIP6, EEF1AIPI11) and tumor-suppressor genes
(SDHAPI1, SDHAP3, DDXI12P, CLUHP3, RRN3P3) between P1 and P2 subgroups. (B)
Boxplot showing comparisons of cell composition fraction of B cells, CD8+ T cells,
CD4+ T cells, helper T cells, regulatory T cells, activated natural killer (NK) cells, MO
macrophages, M1 macrophages, M2 macrophages, monocytes, mast cells, and activated

dendritic cells between P1 and P2 subgroups. (C) Boxplot displaying comparisons of
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expressions of PD-1, PD-L1, PD-L2, LAG3, TIGIT, and CTLA4 between P1 and P2
subgroups. (D) Boxplot manifesting comparisons of expressions of HLA-A, HLA-B,
HLA-C, HLA-E, TAPI1, and B2M between P1 and P2 subgroups. (E) Boxplot comparing
the expressions of CCLS5, CXCL9, CD24, CD27, STATI, and IRF3 between P1 and P2
subgroups. (F) Boxplot comparing the expressions of kinase genes (AKTI, FOXMI,
E2F2, MECP2, HOXAI, and HOXA10) between P1 and P2 subgroups. (G) Boxplot
contrasting the expressions of GZMA, PRFI, CYTHI, CYTH2, CYTH3, and CYTH4
between P1 and P2 subgroups. (H) Boxplot comparing the expressions of ITGA family
genes between P1 and P2 subgroups. (I) Boxplot comparing the expressions of ITGB
family genes between P1 and P2 subgroups. The P-value of comparisons between the two

subgroups was calculated through the Wilcoxon test. Purple represents P-value < 0.05.
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Figure S10. Functional enrichment analysis of differentially expressed genes

between P1 and P2 subgroups. (A) Functional enrichment analysis of up-regulated

genes in the P1 subgroup compared with P2 by using GO in terms of biological process

signaling pathway. (B) Functional enrichment analysis of down-regulated genes in the P1

subgroup compared with P2 by using GO in terms of biological process signaling

pathway. The GO and pathway terms are displayed on the x-axis and are significantly

enriched at —logl0 (P-value). (C) Gene set enrichment analysis (GSEA) revealed that

up-regulated genes in the P1 subgroup were enriched for hallmarks of malignant tumors.
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genes via miRNAs. (A-F) Sankey plots showing pseudogenes together with binding
miRNAs and target genes with | r | > 0.3 and P < 0.05 were used to construct the
pseudogene-miRNA-target gene regulatory networks by subtypes of oncogene
pseudogene LDHAP7 (A), EEFIAIP6 (B), EEFIAIPII (C), and tumor-suppressor
pseudogene DDXI2P (D), SDHAPI (E), SDHAP3 (F). The column on the left
represented pseudogenes, which are located at the cores of the networks. The column in
the middle and the column on the right stand for binding miRNAs and target genes,

respectively.
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Figure S12. Identification of candidate agents with higher drug sensitivity in
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high-risk score patients with HNSCC. (A) Venn diagram for summarizing included
compounds from CTRP and PRISM datasets. (B) Schematic outlining the strategy to
identify candidate agents with higher drug sensitivity in high-risk score patients with

HNSCC.
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