Supplementary Figures and legends

Figure S1. IncSNHG5 is closely related to angiogenesis and metastasis

(A) Validation of the aberrantly enhanced lncRNAs in the microarray. Ten of the

upregulated lncRNAs were randomly selected and confirmed using qRT–PCR in paired CAFs and NFs. (B) The overexpression efficiency of lncSNHG5 in NFs was verified using Q-PCR. (C) Volcano plot displaying differential gene expression between lncSNHG5-overexpressing NFs (NFs/lncSNHG5) and control NFs (NFs/NC). (D) The heatmap shows the top 50 dysregulated genes. (E) Gene ontology (GO) enrichment analysis enriched in upregulated genes. (F) Gene set enrichment analysis (GSEA) of lncSNHG5 showing angiogenesis and cell migration as significantly enriched in TCGA data. (G) The upregulated genes were used in KEGG pathway enrichment analysis. The data are presented as the mean \pm SD (ns: no significance, *P<0.05, **P<0.01, ***P<0.001).

Figure S2. Overexpression of lncSNHG5 in breast NFs induces angiogenesis and vascular leakiness

(A) qRT–PCR was used to evaluate the knockdown efficiencies of lncSNHG5 in CAFs. (B, C) After treatment with CM from lncSNHG5-overexpressing NFs and control NFs, tube formation (B) or spheroid sprouting ability (C) of HUVECs was assessed by tube formation or three-dimensional sprouting assays (scale bar, 100 μ m). (D, E) After treatment with CM from the indicated cells, HUVEC monolayers were constructed. Then, the permeability of HUVECs was assessed using a transwell assay based on the invasive GFP⁺ MDA-MB-231 and Hs578T cells (D) (scale bar, 200 μ m), and rhodamine-dextran crossed across the endothelial cell monolayer (E). (F, G) The mRNA (F) and protein (G) levels of ZO-1 and Occludin in HUVECs treated with CM from lncSNHG5-overexpression NFs and control NFs were determined using qRT–PCR and WB. The data are presented as the mean \pm SD (**P < 0.01, ***P < 0.001).

Figure S3. LncSNHG5 promotes angiogenesis and endothelial permeability by regulating ZNF281 in CAFs

(A) qRT–PCR and WB were used to test the levels of ZNF281 in lncSNHG5overexpressing NFs and control NFs. (B) Validation of ZNF281 expression in 3 immortalized CAFs using qRT–PCR and WB. (C) GSEA of ZNF281 in biological processes using TCGA data. (D) ZNF281 knockdown efficiency in CAFs was measured by qRT–PCR and WB. (E) Validation of ZNF281 overexpression in NFs using qRT–PCR and WB. (F, G) Effect of CM derived from NF/Ctrl and NF/ZNF281 on tube formation (F) and sprouting spheroid (G) functions of HUVECs (scale bar, 100 μ m). (H, I) HUVECs were cultured with CM derived from the indicated NFs to form monolayers, and then the permeability of HUVECs was assessed either by transwell assay using GFP-labeled MDA-MB-231 and Hs578T cells (H) or by rhodamine-dextran fluorescence detection (I) (Scale bar, 100 μ m). (J) qRT–PCR and WB were used to measure ZO-1 and Occludin mRNA and protein levels in HUVECs cocultured with CM from ZNF281-overexpressing NFs and control NFs. The data are presented as the mean ± SD (ns: no significance, *P < 0.05, **P < 0.01, ***P < 0.001).

Figure S4. IncSNHG5 binding with the m6A reader IGF2BP2 enhances ZNF281 mRNA stability

(A, B) Luciferase reporter assays showed that lncSNHG5 knockdown in CAFs or ectopic lncSNHG5 overexpression in NFs had less impact on the promoter activity of

ZNF281. (C) Deletion mappings of IGF2BP2 were analyzed by western blotting. (D) WB was used to analyze IGF2BP2 protein levels in CAFs with or without sh lncSNHG5. (E) Knockdown efficiency for IGF2BP2 in CAFs was evaluated using qRT–PCR and WB. (F-H) The indicated engineered CAF cell lysates were incubated with antisense or sense biotinylated lncSNHG5 DNA probes, and an RNA pull-down assay was performed. The lncSNHG5 (F), IGF2BP2 protein (G), or ZNF281 mRNA (H) in the pull-down precipitates were detected using qRT-PCR and WB. (I, J) The mRNA (I) and protein (J) expression levels of ZNF281 in each group were validated using qRT–PCR and WB. Data are shown as the mean \pm SD (ns: no significance, **P<0.01, ***P<0.001).

Figure S5. ZNF281 regulates CCL2 and CCL5 expression in CAFs

(A) Heatmap of the top 30 upregulated and downregulated cytokines in primary NFs and CAFs. (B-C) The levels of CCL2, CCL5, SPP1 and VEGFA were evaluated using qRT–PCR (B) and WB (C) in NFs with ectopic ZNF281 and control NFs. (D-F) ELISA

was used to determine the levels of secreted CCL2 (D), CCL5 (E) and VEGFA (F) proteins in the supernatant from ZNF281-overexpressing NFs and control NFs. (G) The levels of CCL2 and CCL5 in 30 pairs of CAFs and NFs were evaluated using qRT–PCR. (H) The secreted CCL2 and CCL5 levels in supernatant derived from 30 pairs of NFs and CAFs were examined using ELISA. Data represent the mean \pm SD (ns: no significance, **P < 0.01, ***P < 0.001).

Figure S6. Validation of CCL2 and CCL5 knockdown in CAFs or overexpression in NFs

(A) Western blotting was used to determine phosphorylated or total p38, STAT3, AKT and VEGFR2 protein levels in HUVECs incubated with CM from lncSNHG5 or ZNF281-knockdown CAFs or in lncSNHG5-knockdown CAFs with ectopic ZNF281. (B) Knockdown efficiencies of CCL2 and CCL5 in CAFs were verified using qRT– PCR and WB. (C) Validation of ectopic CCL2 and CCL5 expression in NFs using qRT– PCR and WB. (D, E) ELISA was performed to detect the secreted CCL2 and CCL5 in the above cells. (F, G) qRT–PCR was used to determine ZO-1 and Occludin levels in HUVECs treated with CM from the above groups. Data represent the mean \pm SD (ns: no significance, *P < 0.05, **P < 0.01, ***P < 0.001).

Figure S7. Breast CAF-derived CCL2 and CCL5 activate P38 MAPK signaling in endothelial cells

(A) Representative tubule formation images of HUVECs incubated with CM derived from CCL2- and CCL5-overexpressing NFs or CM from CCL2- and CCL5-knockdown CAFs. (B) Representative tube formation images of HUVECs treated with rCCL2, rCCL5, rCCL2 and rCCL5, or rCCL2 and rCCL5 combined with axitinib, RS102895, maraviroc or cenicriviroc. (C) Representative images of tube formation after SB203580 treatment with rCCL2 and rCCL5 in HUVECs. The quantification of tube formation is shown. (D) Effects of SB203580 combined with rCCL2 and rCCL5 on HUVEC monolayer permeability. (E) qRT–PCR and WB were used to analyze the levels of ZO-1 and Occludin in HUVECs treated with SB203580 and rCCL2 and rCCL5. Scale bar, 100 μ m. Data represent the mean \pm SD (**P < 0.01, ***P < 0.001).

Figure S8. The lncSNHG5-ZNF281-CCL2/CCL5 signaling axis promotes BC metastasis

(A, B) Serum CCL2 and CCL5 levels in mice inoculated with NFs/Ctrl, CAFs/shNC, CAFs/shlncSNHG5, CAFs/shZNF281, CAFs/shlncSNHG5/ZNF281, CAFs/RS102895, CAFs/Maraviroc or CAFs/Cenicriviroc were analyzed by ELISA at 6 weeks after injection. (C, D) Expression levels of CCL2 (left panel) or CCL5 (right panel) in breast tumors with or without distant metastases using the TCGA dataset. (E, F) Kaplan–Meier survival analysis of relapse-free survival based on CCL2 (E) or CCL5 (F) expression using the GSE25066 dataset. Data are shown as the mean \pm SD (ns: no significance, *P < 0.05, **P < 0.01, ***P < 0.001.

_	Iubh	e sit the sequences of shift (its
Gene names		Sequence
_	shNC	TTCTCCGAACGTGTCACGT
	sh lncSNHG5#1	CGTTCTGAGTGTGGACGAG
	sh lncSNHG5#2	GATGCAAAGATACACGAAA
	shZNF281#1	GCCATGTAGTACAAGAGTAAA
	shZNF281#1	GACAATGTTTAGCAATCAA
	shIGF2BP2#1	AGTGAAGCTGGAAGCGCATAT
	shIGF2BP2#2	TTCCCGCATCATCACTCTTAT
	shCCL2#1	CCCAGTCACCTGCTGTTATAA
	shCCL2#2	GCTGTGATCTTCAAGACCATT
	shCCL5#1	CCACATCAAGGAGTATTTCTA
	shCCL5#2	GGAGAGTCCTTGAACCTGA

Table S1. The sequences of shRNAs

Fragment	Sequence		
Full-length	FW	CTTTTACGTCGGCCTTC	
	REV	TTAGTGGATTTTCCATTTAAT	
1-170	FW	CTTTTACGTCGGCCTTC	
	REV	GTTAAAAGTGTCAGGT	
171-340	FW	AGTGAACAGCGTTCTGAGT	
	REV	AACCTCGTGGCACTAGC	
341-507	FW	TACTTGACTGTTGTGTGAAA	
	REV	TTAGTGGATTTTCCATTTAAT	

 Table S2.1
 Primers used for pcDNA3.1-lncSNHG5 construction

Table S2

 Table S2.2
 Primers used for pcDNA3.1-ZNF281 construction

Fragment	Sequence			
Full-length	FW	AGTACACGGGAGGCTTTTAA		
	REV	TTGTGATTAACAGGACT		
5'UTR	FW	AGTACACGGGAGGCTTTTAA		
	REV	ACCCCGGAGGAGGCCTG		
CDS	FW	ATGAAAATCGGCAGTGGGTT		
	REV	TTACCTGTAACTCTGGCTGGTG		
3'UTR	FW	GGTCCCAAAAGTGGCCAG		
	REV	TTGTGATTAACAGGACT		

Table S2.3	Primers used for	pcDNA3.1-IGF2BP2	construction

Fragment	Sequence		
Full-length	FW	ATGATGAACAAGCTTTACAT	
	REV	TCACTTGCTGCGCTGTGAGG	
RRM1/2	FW	ATGATGAACAAGCTTTACAT	
	REV	TCTGGCCTGAGAAGTGCCCC	
KH1/2	FW	CAGATTGATTTCCCGCTGCG	
	REV	CACGGACAGTCCTGTTGAAA	
KH3/4	FW	CTATCTCCACCAGCAGGGCC	
	REV	CTTGCTGCGCTGTGAGGCGAC	

Table S3

The sequences of primers used for qK1-PCK			
Gene names Sequence			
FW	5'-CTGAAGATGCAAAGATACACGAA-3'		
REV	5'-TTCACTGGCTACTCGTCCACA-3'		
FW	5'-ACACGGTTTCCAATTTGTCAG-3'		
REV	5'-TAACAGATTGGCCGAAACCAC-3'		
FW	5'-CAGACACAGAAACCGCCGTTG-3'		
REV	5'-TTCTCAAACTGATGCCCGCTT-3'		
FW	5'-TCAGCCAGATGCAATCAATGCC-3'		
REV	5'-GCTTCTTTGGGACACTTGCT-3'		
FW	5'-TTTCCTGTATGACTCCCGGCTGA-3'		
REV	5'-AGTTGATGTACTCCCGAACCC-3'		
FW	5'-GAGCTTCCTACAGCACAAC-3'		
REV	5'-GATTTCTTGCGCTTTCGTT-3'		
FW	5'-AAGGATGTTTATCGTCGCATT-3'		
REV	5'-ACAAGGTATCCACAACACGGAA-3'		
FW	5'-ATGTCATCCAGGCCTCTTGAA-3'		
REV	5'-ATACTGATCCACGTAGAGTCC-3'		
FW	5'-TGACGTGGACATCCGCAAAG-3'		
REV	5'-CTGGAAGGTGGACAGCGAGG-3'		
	FW REV FW REV FW REV FW REV FW REV FW REV FW REV FW REV FW REV		

The sequences of primers used for qRT-PCR

Table S4

Table	S4.1	Primers for in vitro transcription		
Gene names		Sequence		
lncSNHG5	F:	(T7)CTTTTACGTCGGCCTTCGCGAGCGTCTGGG		
(sense)	R:	TTAGTGGATTTTCCATTTAATGCTCCCCAT		
lncSNHG5	F:	TTAGTGGATTTTCCATTTAATGCTCCCCAT		
(antisense)	R:	(T7)CTTTTACGTCGGCCTTCGCGAGCGTCTGGG		

 Table S4.2 Primers for antisense oligomer affinity pull-down assays

Gene names	Sequence	
lncSNHG5 sense oligo DNA	5' (biotin-) ACGTTAGACACAGCCTCCGTG	
lncSNHG5 antisense oligo DNA	5' (biotin-) TGCCGAAGAGCTTCTTCTGGTT	

Table S5

Gene names	Sequence		
CCL2-1	F: GCAGAGGACTGAGACAAACAC		
	R: CTTGTTCTGCCTGAATCTCAC		
CCL2-2	F: GCACAACTGAGGAATGAAGT		
	R: CTGGTTATGGCAGCTATTCTC		
CCL5	F: AGGTAAAACTAAGGATGTCAGC		
	R: CTCCGGAAATTCGAGTCTCT		

Table S5.1Primers for CHIP assays

Table 5.2Primers for gene-specific m6A assays

Gene names	Sequence		
ZNF281	F: CTTAATCTTAAATACGCTGAGT R: AAAATCATACAGCTTAAGAGA		

Variables	Expression	of IncSNHG5	Chi-square	p-value
	Low(n=46)	High(n=46)	_	_
Age				
< 50	21	19	0.177	0.674
≥50	25	27		
Tumor size				
$\leq 2 \text{ cm}$	20	13	2.810	0.246
2-5 cm	23	27		
> 5 cm	3	6		
Lymph node metastasis				
Yes	17	34	12.720	0.0004***
no	29	12		
Distant metastasis				
Yes	1	16	16.240	< 0.0001****
no	45	30		
TNM Stage				
I/II	32	18	8.587	0.0034**
III/IV	14	28		

Table S6. Correlation between the expression of lncSNHG5 and clinicopathological features in breast cancer (n=92)

 $\frac{14}{p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001}$