Supplemental Material

Enhancer reprogramming promotes the activation of cancer-associated fibroblasts and breast cancer metastasis

Qian Li, Xuejiao Lv, Chunyong Han, Yu Kong, Zhongye Dai, Dawei Huo, Ting Li,

Dapeng Li, Wei Li, Xing Wang, Qian Zhao, Jie Ming, Wen Yang, Yang Chen,

Xudong Wu^*

This file includes:

Figures S1-S9

Tables S1- S2

Figure S1. Transcriptional deregulation in metastasis associated CAFs. (A) Clinical pathologic information of breast cancer patients whose NFs and CAFs are used in our study. ER, estrogen receptor; PR, progesterone receptor; HER2, human epithelial growth fator receptor 2; LN, lymph node metastasis. (B-G) Using RNA-seq data in seven pairs of NFs and CAFs, heatmaps show log₂ transformed fold change (CAFs/paired NFs) in mRNA levels of individual genes in designated gene sets. (H) Unsupervised hierarchical clustering of the expression profiles of CAF-signature genes in each designated sample. (I) Kaplan-Meier survival curves for correlation between mRNA expression levels of indicated genes and overall survival of breast cancer patients in the TCGA RNA-seq dataset. *P* values were determined by log-rank test.

and CAFs. (A) Genomic distribution of peaks with H3K27ac enrichment in six pairs of NFs and CAFs. (B) Genomic distribution of peaks with decreased H3K27ac enrichment. (C-D) PCA plot for TOP 2,000 promoter regions (C) and non-promoter regions (D) with most increased H3K27ac enrichment. (E) Highly enriched KEGG pathways of nearest genes of TOP 2,000 increased non-promoter regions are shown.

С

В

CAF-activated enhancers

Figure S3. CAF-activated enhancers in CAFs versus NFs. (A) Heatmap shows H3K27ac enrichment by log_2 (CAFs/paired NFs) on the CAF-activated enhancers. (B) Average profiles of H3K27ac and H3K4me1 CUT&Tag-seq signals across a genomic window of \pm 5,000 bp surrounding the center of CAF-activated enhancers. (C) Boxplots to compare the Log₂ transformed mRNA expression levels of CAF-activated enhancers nearest genes in NFs and CAFs. The NFs and CAFs were isolated from Patient 1-7 (P1-P7) respectively. *P* values were determined by one-sided paired *t* test.

С

Figure S4. CAF-repressed enhancers in primary CAFs. (A) Heatmaps of H3K27ac and H3K4me1 in six pairs of NFs and paired CAFs across regions of \pm 5,000 bp surrounding the center of CAF-repressed enhancers. (B) PCA plot of CAF-repressed enhancers for H3K27ac CUT&Tag-seq signals in each sample. (C) Boxplots to compare the Log₂ transformed mRNA expression levels of CAF-repressed enhancers nearest genes in NFs and CAFs. The NFs and CAFs were isolated from Patient 1-7 (P1-P7) respectively. *P* values were determined by one-sided paired *t* test. *N.S.*, non-significant.

Figure S5. Increased H3K27ac enrichment at CAF-activated enhancers in CAFs compared with NFs. Representative genomic snapshots to compare the H3K27ac CUT&Tag-seq signals of two histone modifications at designated CAF-activated enhancers. The subtracted signals (CAFs-paired NFs) are shown for H3K27ac while the H3K4me1 signals are directly shown in CAFs.

Figure S6. Total protein levels of JUN in breast cancer stroma. (A) Motif analysis of regions of \pm 300 bp surrounding CAF-activated enhancers center using HOMER software. The data is shown in the order of -log *P* value. (B) *JUN* mRNA levels are compared in NFs and CAFs, according to the RNA-seq data. *P* value was determined by one-sided Wilcoxon signed rank exact test. *N.S.*, non-significant. (C) JUN (green) and DAPI (blue) staining of NFs and paired CAFs. Scale bars, 100 µm. (D) Stroma immunostaining scores of JUN in para-cancerous tissues and paired tumor tissues of indicated samples are shown as line plot. *P* values were determined by one-sided paired

Figure S7

Α

Figure S7. Phosphorylated JUN drives enhancer activation and gene expression. (A) GSEA for the indicated signatures based on the RNA-seq data of MRC5 overexpressing JUN WT and control. (B) Normalized read coverages of H3K27ac, JUN and p-JUN ChIP-seq signals at JUN-activated enhancers are shown as boxplots. *P* value was determined by two-sided paired *t* test. ***, P < 0.001. (C) Tracks of RNA-seq signals of designated genes in designated groups of cells. (D) Venn diagram showing the overlap between primary CAF-activated enhancers associated genes and JUN-activated enhancers associated genes. (E) ChIP-qPCR analysis of H3K27ac, JUN and p-JUN enrichment at the activated enhancers associated with *VEGFC* and *IL1B*. Data are presented as mean \pm SD of three independent biological replicates. *P* value was determined by two-sided unpaired *t* test. *, P < 0.05; **, P < 0.01; ***, P < 0.001. *N.S.*, non-significant.

Figure S8

Α

Figure S8. Phosphorylated JUN is required for maintenance of the activated enhancers. (A) GSEA for the indicated signatures based on the RNA-seq data of iCAFs and iCAFs+JNKi. (B) Normalized read coverages of H3K27ac, JUN and p-JUN ChIP-seq signals at JUN-activated enhancers are shown as boxplots. *P* value was determined by two-sided paired *t* test. ***, *P* < 0.001. (C) ChIP-qPCR analysis of H3K27ac, JUN and p-JUN enrichment at the active enhancers associated with *VEGFC* and *IL1B*. Data are presented as mean \pm SD of three independent biological replicates. *P* values were determined by two-sided unpaired *t* test. *, *P* < 0.005; **, *P* < 0.01; ***, *P* < 0.001.

Figure S9. FSP1 is extensively expressed in CAF-like cells inside the tumors.

Immunostaining of FSP-1 in allografted tumors. Fibroblasts are labeled using red arrows. Scale bars, $50 \ \mu m$.

Patient	Gender	Age	Pathological type	Stage	LN	ER	PR	HER2	Ki67	Tumor size
P1	female	65	invasive ductal carcinoma	Π	8/21	+	+	negative	10%	$1.7 \text{ cm} \times 1.5 \text{ cm} \times 1.1 \text{ cm}$
P2	female	54	invasive ductal carcinoma	Π	1/15	+	+	positive	30%	$1.5 \text{ cm} \times 1 \text{ cm} \times 1 \text{ cm}$
P3	female	44	invasive ductal carcinoma	П	13/19	+	-	positive	30%	$1.5 \text{ cm} \times 1.5 \text{ cm} \times 1 \text{ cm}$
P4	female	63	invasive ductal carcinoma	Π	5/17	+	-	negative	5%	$2 \text{ cm} \times 1.5 \text{ cm} \times 1.2 \text{ cm}$
P5	female	40	invasive ductal carcinoma	Ш	4/21	-	-	negative	60%	$6 \text{ cm} \times 5 \text{ cm} \times 2 \text{ cm}$
P6	female	44	invasive ductal carcinoma	Ш	1/16	+++	+++	positive	30%	$2 \text{ cm} \times 1.5 \text{ cm} \times 1.1 \text{ cm}$
P7	female	65	invasive ductal carcinoma	Ι	1/18	+	+	positive	10%	$1.8 \text{ cm} \times 1 \text{ cm} \times 1 \text{ cm}$
P8	female	46	invasive ductal carcinoma	III	1/32	_	-	negative	15%	$3 \text{ cm} \times 2.5 \text{ cm} \times 1.5 \text{ cm}$

 Table S1. Clinical features of patients involved in this study.

	-	<u> </u>		
Sample	Total reads	Overall alignment rate	Unique aligned reads	Unique alignment rate
P1_NFs_H3K27ac	22643810	88.00%	16330735	72.12%
P1_NFs_H3K4me1	20761984	92.39%	16225920	78.15%
P1_CAFs_H3K27ac	20467107	93.51%	15674005	76.58%
P1_CAFs_H3K4me1	34688571	93.69%	25216460	72.69%
P2_NFs_H3K27ac	23145607	93.15%	17616486	76.11%
P2_NFs_H3K4me1	18961157	95.78%	15207156	80.20%
P2_CAFs_H3K27ac	19761418	90.46%	14411438	72.93%
P2_CAFs_H3K4me1	23394666	95.23%	18560383	79.34%
P3_NFs_H3K27ac	20357350	93.08%	15084971	74.10%
P3_NFs_H3K4me1	22847906	95.38%	18272793	79.98%
P3_CAFs_H3K27ac	20653417	97.37%	16030644	77.62%
P3_CAFs_H3K4me1	23057999	94.78%	18030640	78.20%
P4_NFs_H3K27ac	19371281	96.15%	14475316	74.73%
P4_NFs_H3K4me1	25604433	94.50%	20054609	78.32%
P4_CAFs_H3K27ac	23963310	95.57%	18005737	75.14%
P4_CAFs_H3K4me1	24816689	94.05%	19431091	78.30%
P5_NFs_H3K27ac	22888257	55.39%	8299480	36.26%
P5_NFs_H3K4me1	32699042	57.60%	15042898	46.00%
P5_CAFs_H3K27ac	28769583	53.35%	9882750	34.35%
P5_CAFs_H3K4me1	30779098	60.26%	14479107	47.04%
P8_NFs_H3K27ac	32841930	43.71%	9449082	28.77%
P8_NFs_H3K4me1	12198827	60.62%	5768923	47.29%
P8_CAFs_H3K27ac	27287888	46.81%	9166586	33.59%
P8_CAFs_H3K4me1	13777194	61.56%	7004668	50.84%

Table S2 Alignment summary of CUT&Tag sequencing data.