circHIPKS3 prevents cardiac senescence by acting as a scaffold to recruit ubiquitin ligase
to degrade HUR
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Figure S1 Profile of circRNA expression in young and middle-aged mouse hearts. (A)
RNA-seq analyses of circRNA from young and middle-aged hearts. Reads distribution of
circRNA in genome. The circRNAs identified from exonic, intronic, and unknown are shown
in “Blue”, “Orange” and “Brown”, respectively. (B) Venn diagram of circRNAs expression in
young and middle-aged groups. (C) The quantity of circRNAs derived from different
chromosomes. The circRNAs identified in young and middle-aged samples are shown in
“pink” and “yellow”, respectively. (D) Read number of circRNA-seq analyses. (E) The
number of circRNAs in young and middle-aged hearts detected by circRNA-seq. (F) The

flow chart of RNase R treatment performed in Figure 1C.
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Figure S2 Generation of cardiomyocyte-specific circHIPK3 knockout mice. (A)
Construction strategy for circHIPK3 knockout (KO) mice. (B-C) Genetic identification of
Flox mice by DNA sequencing. (D) Schematic illustration of the breeding strategy to

generate KO mice.
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Figure S3 Deletion of circHIPK3 inhibits cardiac function. (A) Cardiac function analyzed

by echocardiography for 8-week-old circHIPK3 knockout (KO) mice. n = 5. (B) gRT-PCR

analysis of circHIPK3 expression. n = 5. (C) Telomere length of the hearts from control and

KO mice was determined by telomere length assay. n = 4. (D-E) gRT-PCR analysis of cardiac

p16 and p21 mRNAs in control and circHIPK3 KO mice. n = 4. (F) Western blot analysis of

cardiac p16 and p21 proteins in control and circHIPK3 KO mice. n = 4. Data were analyzed

by two-tailed Student’s t test.
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Figure S4 Generation of inducible cardiomyocyte-specific circHIPK3 knockout mice. (A)

Schematic illustration of the breeding strategy to generate inducible cardiomyocyte-specific

circHIPK3 knockout (CKO) mice. (B) Schematic illustration of the location of primers in

genotype identification. F and R primers were designed to prove the correct insertion of loxP

site. (C) The primer sequence for genotype identification. (D) Agarose electrophoresis of

PCR product of a-MHC-Cre mouse genotype identification. (E) Agarose electrophoresis of

PCR product of circHIPK3MFlox moyse genotype identification. (F) circHIPK3 level in the

hearts of Cre mice (aMHCMeCeMe™Wt mjce with tamoxifen treatment) and CKO mice. n = 5.

(G) Cardiac function of Cre and CKO mice. Data were analyzed by two-tailed Student’s t test.

n = 5-6.
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Figure S5 circHIPK3 level and telomere length in isolated primary cardiomyocytes.
(A-B) gRT-PCR analysis of circHIPK3 expression and telomere length in isolated primary

cardiomyocytes from control or CKO mice 10 days after tamoxifen injection. n = 5.
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Figure S6 Deletion of circHIPK3 promotes myocardial hypertrophy. (A-B) The
expressions of hypertrophy marker ANP and BNP were analyzed by gRT-PCR. n = 4. (C)
Heart/body weight of CKO and control mice. n = 6. (D) Running distance of CKO mice. n =

6. Data were analyzed by two-tailed Student’s t test.
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Figure S7 Cardiac function was reduced in the inducible cardiomyocyte-specific
circHIPK3 knockout mice after tamoxifen induction. (A) Cardiac function was analyzed
by echocardiography for control and circHIPK3 CKO mice 3 months after tamoxifen
injection. n = 17 for Control, n =5 for CKO. (B) Survival curve of circHIPK3 CKO mice
after tamoxifen injection. n = 17 for Control, n = 18 for CKO. (C) Schematics showing that
8-week-old mice were subjected to intraperitoneal injection of tamoxifen at day 1 and 3. At
day 7, the mice were infected with a lentivirus infection harboring circHIPK3 via
intramyocardial injection. By day 14, the mice were used for subsequent experiment. (D)
Cardiac function analyzed by echocardiography for LV-NC mice and LV-circHIPK3 mice. n

= 5. Data were analyzed by two-tailed Student’s t test.



Interaction probabilities between circHIPK3 and HuR (human)
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Figure S8 Prediction of interaction between circHIPK3 and HuR or B-TrCP. (A)
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Prediction of binding propensities for circHIPK3 and HuR in human by Circinteractome. (B)

The interaction score for circHIPK3 and HuR in mouse was predicted by RP1Seq. (C)

BLAST alignment showing the conservation between human and mouse. (D) The interaction

network of HUR protein was analyzed by the STRING database. (E) Gene ontology (GO)



analysis of PPI network associated with HUR. (F) The interaction score for circHIPK3 and

B-TrCP in mouse was predicted by RPISeq.



/N80 <30
S
« | 60 UMSC Exo kDa €
£ 8 201
O Q.
o a
. E
0 RN - =
10° 10' 102 10° 10° o Y ) !
5 0 50 100 150
CD63 size (nm)

Figure S9 Characterization of exosomes. (A) Flow cytometry analysis of exosomal surface
marker CD63. (B) The exosomal marker CD9 in UMSC cells and exosomes were analyzed
by Western blot. (C) Particle size distribution analysis using nanosight tracking analysis. n =

4.
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Figure S10 Exosome improved cardiac function in KO mice. PBS or exosome was
injected via the tail vein (100 pg) into KO mice three times a week. After four weeks, cardiac

function of KO mice was analyzed. n = 5. Data were analyzed by two-tailed Student’s t test.



Table S1. The primers used in the RT-PCR assay

Name Forward primer (5°-3%) Reverse primer (5°-3°)

Mouse GAPDH AAATGGTGAAGGTCGGTGTG TGAAGGGGTCGTTGATGG
Mouse HuR GGATGCAACCGACATGTTCAA AGCGCAGTCTACTTCGGTTT
Mouse p16 CGCAGGTTICITGGTCACTGT TGTTCACGAAAGCCAGAGCG
Mouse p21 CCTGGTGATGTCCGACCTG CCATGAGCGCATCGCAATC
Mouse circHIPK3 GGATCGGCCAGTCATGTATC ACCGCTTGGCTCTACTTTGA

Rat GAPDH CAACGGGAAACCCATCACCAT AGATGATGACCCTTTTGGCCCC
Rat HuR CTGCTAGGAGGTTTGGAGGC CGGGGACATTGACACCAGAA
Rat p16 GATAGACTAGCCAGGGCAGC GAGCTGCCACTTTGACGTTIG
Rat p21 GGGATGCATCTATCTTGTGATATGT AGACGACGGCATACTTTGCT
Rat circHIPK3 GGATCGGCCAGTCATGTATC ACCGCTTGGCTCTACTTTGA
Mouse 3684 ACTGGTCTAGGACCCGAGAAG TCAATGGTGCCTCTGGAGATT

Mouse telomere

CGGTTTGTTITGGGTTITGGGTTTIGGGTTT

GGGTTTGGGTT

GGCTTGCCTTACCCTTACCCTTACCC
TTACCCTTACCCT

Table S2. Sequences of gRNAs

gRNA1 CTATCTTAGCATGAAACTAGTGG CCACTAGTTTCATGCTAAGATAG
gRNA2 TCITGGAGCGTITTCAGTGCTTGG CCAAGCACTCAAACGCTCCAAGA
gRNA3 CGAGACCGAGCCCTATIGIGTGG CCACACAATAGGGCICGGTICTCG

Table S3. RNA pulldown probes for circHIPK3

Probe Sequence (5°-3°)
5bio-ATACCTGTAGTAGCGAGATT
5bio-CCATACCTGTAGTAGCGAGA

circHIPK3 5bio-AGGCCATACCTGTAGTAGCG

5bio-TGAGGCCATACCTGTAGTAG

5bio-TGTGAGGCCATACCTGTAGT




