Supplementary Methods

Quality control of scRNA-seq data

Ambient RNA contamination was estimated and cleaned using the function autoEstCont and adjustCounts
of the soupX R package (version 1.5.2) with default parameters [1]. Potential doublets in the corrected
expression matrix were detected and removed using the scDblFinder R package (version 1.4.0) with default

configuration [2].

Whole-genome sequencing

For whole-genome sequencing (WGS), genomic DNA was obtained from cancer tissue samples using the
QIAmp DNA Mini Kit (QIAGEN Inc., MD, US). The sheared DNA was repaired and 3’ dA-tailed using the
NEBNext Ultra II End Repair/dA-Tailing Module unit and then ligated to paired-end (PE) adaptors using
the NEBNext Ultra II Ligation Module unit. After purification by AMPure XP beads, the DNA fragments
were amplified by PCR for 6-8 cycles. Finally, the libraries were sequenced with an Illumina HiSeq X10
instrument, thus generating 2 x 150-bp PE reads. The quality of short DNA reads was controlled by
Trimmomatic. The good-quality PE reads were aligned with the human reference genome hgl9
(http://genome.ucsc.edu/) using the BWA-MEM tool. The reads mapped with the reference at the same
coordinates were removed using Picard.

CNV calling

Clean WGS data were used for CNV calling based on the varbin algorithm [3]. Briefly, the genome was
divided into 50,000 equally mappable bins of variable lengths. Next, reads mapped to the genomic bins were
counted. The counts were then normalized by the mean, corrected for GC content and segmented to produce
CNV calls. R package ichorCNA (version 0.3.2) was used to validate the obtained CNV pattern [4]. The
CNV profiles were visualized in the Integrative Genomics Viewer (IGV, version 2.8.13) [5].

Expression signature analysis

To evaluate the degree to which individual cells expressed a certain predefined expression gene set, we used
the AddModuleScore function in Seurat with default settings to calculate the signature scores. The naive,
cytotoxicity, and exhaustion scores were measured based on well-defined naive markers (CCR7, TCF7,

LEFI, and SELL), cytotoxicity-associated genes (PRF'I, IFNG, GNLY, NKG7, GZMB, GZMA, GZMH,



KLRKI1, KLRBI, KLRDI, CTSW, and CST7), and exhausted markers (LAG3, TIGIT, PDCDI, CTLA4,
HAVCR2, and TOX). For bulk RNA-seq data, the signature scores were evaluated using ssGSEA function of
the GSVA R package.

Analysis of public RNA-seq datasets

Three RNA-seq datasets were included for external validation (Supplementary Figure S7): (i) the bladder

urothelial carcinoma (BLCA) dataset from The Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga)

[6], (i1) a Japanese cohort consisting of 158 individuals diagnosed with UTUC form the European Genome
Phenome Archive under the accession number EGADO00001007667 [7], (iii) a metastatic UC cohort
(IMvigor210) consisting of 348 patients received PD-L1 blockade with atezolizumab [8]. The TCGA
expression data for BLCA were downloaded with TCGAbiolinks R package (version 2.18.0) [9] and curated
clinical outcome endpoints were obtained from a previous study [10]. The IMvigor210CoreBiologies
package was used to extract clinical information and gene expression profile for the IMvigor210 cohort.

To obtain a Macro-C3 gene expression signature for projection into bulk RNA-seq, we adopted a previously
published selection method [11]. Briefly, genes significantly upregulated in Macro-C3 relative to other
myeloid cells (with false discovery rate < 0.05, log2(fold-change) > 0.25) were selected and restricted to
myeloid-specific genes. Myeloid-specific genes were defined as the genes expressed in <5% of epithelial
cells, lymphoid cells, endothelial cells, or fibroblasts.

To validate the profile of T lymphocyte and macrophage populations observed in our study, we performed
single-cell deconvolution with public datasets based on Transcript Per Million (TPM) values. Briefly, the
BASE47 gene set was used to classify basal and luminal subtypes in these datasets [12]. And the function
ReferenceBasedDecomposition of the R package BisqueRNA (version 1.0.5) was employed to evaluate the
relative abundance of each cell type in NMI, luminal and basal samples, respectively [13].

In survival analysis, samples with incomplete clinical data were removed. All events were considered
regardless of radiological or pharmaceutical treatment received. For the Japanese UTUC cohort, a patient
with bilateral tumors was excluded. Kaplan-Meier survival analyses were performed using the survival
(version 3.2.7) and survminer (0.4.9) R packages where the estimated abundance was categorized into a
“high” or “low” group using the median or quartiles as cutoffs. The univariate Cox proportional hazard

regression was performed using the coxph function of the R package survival and the result was visualized



in forest plots using the R package forestmodel (version 0.6.2).

Immunohistochemistry and Immunofluorescence staining assays

Formalin-fixed, paraffin-embedded tissue samples, were cut into 5 pm sections and adhered on the glass
slides heated at 70°C for 1h in Peking University First Hospital. Then, the paraffin-embedded slides were
deparaffinized in xylene, and then rehydrated in 100%, 95%, 70% alcohol in sequence. Subsequently, the
slides were processed further for either immunohistochemistry (IHC) or multiplex immunohistochemistry
(mIHC) staining assays.

Immunohistochemistry staining assays were conducted to determine the distribution and expression of
SPINK1 and CD8 using Rabbit Hypersensitive Two-step Detection Kit (ZSGB-Bio, China; Cat. no.
PV-9001) and Mouse Hypersensitive Two-step Detection Kit (ZSGB-Bio, China; Cat. no. PV-9002),
respectively, according to the manufacturer’s instructions. In brief, the slides were subjected to the blockade
of endogenous peroxidase activity for 10 min, and antigen retrieval of Citric acid solution with microwave
for 15 min. After a pre-incubation with blocking buffer at room temperature for 10 min, the slides were
incubated 1h at 37°C and 30 min at room temperature with primary antibodies, and then incubated with the
secondary antibody (HRP polymer, anti-mouse/rabbit 1gG) at room temperature for 20 min, followed by
DAB colored, hematoxylin counterstained and microscopy. Primary antibodies included anti-SPINKI
(rabbit; Abcam; Cat. no. ab207302; 1:1000) and anti-CD8 (mouse; Proteintech; Cat. no. 66868-1-Ig;
1:5000).

To confirm the spatial contact of CD8" CXCR3" and CD68" CXCL10" cells, multiplex immunofluorescence
staining was performed using Opal 7-color Manual THC Kit (PerkinElmer; Cat. no. NEL811001KT)
according to the manufacturer’s instructions. In brief, the slides were subjected to the blockade of
endogenous peroxidase activity for 10 min, and antigen retrieval of Citric acid solution with microwave for
20 min. After a pre-incubation with blocking buffer at room temperature for 10 min, the slides were
incubated 1h at room temperature with primary antibodies (anti-CXCR3, anti-CDS, anti-CD68), but
incubated overnight at 4°C with primary antibody (anti-CXCL10), and then incubated with the secondary
antibody (HRP polymer, anti-mouse/rabbit IgG) at room temperature for 20 min. Subsequently, fluorophore
(tyramide signal amplification or TSA plus working solution) was applied to the slides at room temperature

for 10 min, followed by heat-treatment with microwave as before. The primary antibodies were applied



sequentially, followed by incubation with the secondary antibody and TSA treatment. Nuclei were stained
with DAPI after all the antigens had been labelled. Multispectral images for each stained slide were captured
using the Mantra System (PerkinElmer, USA). Primary antibodies included anti-CD8 (mouse; Proteintech;
Cat. no. 66868-1-Ig; 1:5000), anti-CXCR3 (rabbit; Abcam; Cat. no. ab288437; 1:1000), anti-CD68 (rabbit;
Abcam; Cat. no. ab213363; 1:5000), anti-CXCLI10 (rabbit; Proteintech; Cat. no. 10937-1-AP; 1:500).

HALO software (Indica Labs, https:/indicalab.com/halo/) was wused to plot representative

immunofluorescence images. We randomly extracted 16 and 20 fields of view from the luminal (P9) and
basal (P4) multiplex immunofluorescence images, respectively, with the luminal having a lower number of
fields of view due to the smaller tumor area, and calculated the average distance between the two types of

cells using HALO software.

Supplementary Figures
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Related to Figure 1

Identification of cell clusters and lineages in the scRNA-seq dataset.

Figure S1.

ds that were
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(A) Violin plots and UMAP indicating number of genes and the percent mitochondr

detected for 74,573 post-QC droplets.



(B) Dot plot showing the expression of the top 3 most specific marker genes for each cluster. Colors indicate
scaled mean expression of a gene. Size of circles shows percentage of cells expressing the gene.

(C) UMAP of 22 sub-clusters.

(D) UMAP expression plot of canonical cell type markers used to identify major cell lineages.

(E) Percentages of major cell types for NMI and MI UTUC samples. The tumor thrombus (P4TT) was
excluded in the analysis.

(F) Decomposed percentages of major cell types for NMI and MI samples in Japanese UTUC cohort.

In (E) and (F) error bars represent mean + standard error of the mean. P values were produced with #-test.
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Figure S2. Characterization of tumor-derived epithelial cells. Related to Figure 2

(A) Heatmap showing inferred CNVs for individual epithelial cells (rows) from one UTUC sample (P1).



Immune cells and stromal cells were used as references (top). Colors represent the log2(CNV ratio). Red:
amplifications; blue: deletions.

(B) Heatmap summarizing inferred CNVs for individual epithelial cells (rows) of UTUC samples. Colors
represent the log2(CNV ratio). Red: amplifications; blue: deletions.

(C) WGS derived CNV shown in IGV. Chromosomes are labeled from 1 to 22 (top). Each row represents
one sample. Colors represent the copy number. Red: amplifications; blue: deletions.

(D) Clustering analysis of UTUC samples based on the average expression levels of BASE47 genes in
epithelial cells. The dendrogram tree is cut into two groups to reflect the classification efficacy of BASE47.
(E) Violin plots showing the expression of ANXAS5 and SPINKI in tumor-derived epithelial cells of UTUC
samples.

(F) Forest plots showing hazard ratios associated with luminal score, basal score and clinical information in

univariate Cox proportional hazard models for OS in the TCGA BLCA cohort.
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Figure S3. Myeloid cells in UTUC. Related to Figure 3

(A) Dot plot of selected gene sets in myeloid sub-clusters. Colors indicate scaled mean expression of a gene.
Size of circles shows percentage of cells expressing the gene.

(B) UMAP expression plot of cell type markers used to identify myeloid cell subtypes.

(C) Relative percentages of myeloid subclusters among the NMI, luminal, and basal subtypes. P3 was

excluded for <100 myeloid cells. Relative percentages are defined as proportions of subclusters in myeloid

populations. Error bars represent mean + standard error of the mean. P values were produced with #-test.
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Figure S4. T and NK cells in UTUC. Related to Figure 4

(A) UMAP expression plot of cell type markers used to identify T/NK subtypes.

(B) Heatmap of scaled normalized expression for subcluster-defining genes as determined by the “MAST”
method.

(C) Development trajectory of CD4" and CD8" T cells constructed by diffusion map, colored by subcluster,
diffusion pseudotime and the expression of cell-type-relevant genes.

(D) Heatmap displaying enrichment scores of selected GO BP terms in CD8" cells that are arranged along
the pseudotime trajectory. Colors represent GSVA enrichment scores that were smoothed with
locally-weighted polynomial regression and interpolated at evenly distributed diffusion pseudotime.

(E) Relative percentages of T/NK subclusters among the NMI, luminal, and basal subtypes. The tumor
thrombus (P4TT) was excluded in the analysis. P10 was excluded for <100 T/NK cells. Relative percentages
are defined as proportions of subclusters in T/NK populations. Error bars represent mean + standard error of

the mean. P values were produced with #-test.
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Figure S5. Cell—cell interactions between the lymphoid and myeloid compartments. Related to Figure 5

(A) Dot plot showing the correlation between the expression of CXCL in macrophages and the proportion of

cell-types. Colors indicate Pearson correlation values (r). Size of circles shows the statistical significance.

(B and C) Scatterplot showing the correlation between the expression of CXCL in macrophages and the

proportion of CD8" T cells (B) and the relative abundance of CD8-C1 (C) in the scRNA-seq dataset. The

tumor thrombus (P4TT) was excluded in the analysis. Relative ratio of CD8-C1 is defined as the proportion



of CD8-CI in T/NK populations. Pearson coefficient (R) and associated P value are reported.

(D) Bar plots showing the relative abundance of CDS8-C1, proportion of macrophages, and CXCLI0
expression for the three subtypes in the TCGA-BLCA (top) and Japanese UTUC (bottom) cohorts. Relative
ratio of CD8-C1 is defined as the proportion of CD8-C1 in T/NK populations. The error bars represent mean
+ standard error of the mean. P values were produced with #-test.

(E) Box plots showing the average distance between the CD68-expressing macrophages (CXCL10") and

CD8-expressing CD8" T cells (CXCR3™) in the basal (P4) and luminal (P9) subtype.
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Figure S6. Associations among UTUC subtypes, immune phenotypes, and the response to PD-L1 blockade.
(A) THC staining of CDS indicating the status of CD8" T cell infiltration (brown) in luminal (P2) and NMI
(P3) UTUC samples. Scale bars correspond to 1mm, 500 um and 100 um in the large and small panels,
respectively.

(B) Scatter plot showing ICI response rate decreased when patients with higher log(basal/luminal) scores
were considered in the IMvigor210 cohort.

(C) Heatmap showing the strength of the indicated interactions in the TCGA BLCA, Japanese UTUC and
IMvigor210 cohorts. The selected interactions are receptor-ligand pairs expressed by macrophages and
CD8" T cells and are most positively associated with the percentage of CD8-C1 cells (exhausted CD8" T
cells) in the T/NK population of the scRNA dataset. Colors represent average gene expression levels of
ligand-receptor pairs that were smoothed with locally-weighted polynomial regression and interpolated at
evenly distributed log(basal/luminal) score.

(D) Heatmaps indicating the scaled expression of selected genes from different categories in the TCGA

BLCA and Japanese UTUC cohorts. The samples were ordered by log(basal/luminal) score.
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Figure S7. Clustering analysis of RNA-seq data from public datasets.

(A-C) The clustering was based on the scaled expression of the BASE47 gene set (rows, K = 2). Three
public RNA-seq datasets were used: TCGA-BLCA (n = 404), Japanese UTUC (n = 158), and the
IMvigor210 cohort (n = 348). Subtype classification and available clinical information as well as molecular

features for each sample are indicated in heatmap annotations.
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