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Supplementary information
Figure legends
Supplementary Figure 1: Body weight and food intake of mice during the experiment.
(A) Weight change of mice of each group. (B) Changes in the food intake of mice in each
group (n = 7).

Supplementary Figure 2：Plasma IL-6 and TNF-ɑ levels after two months of drug
administration. (n = 7, IL-6: interleukin-6; TNF-ɑ: tumor necrosis factor-ɑ).

Supplementary Figure 3：Plasma ALT, AST and creatinine levels after two months of
drug administration. (n = 7, *: compared to the model group, *P < 0.05, ALT: alanine
transaminase, AST: aspartate aminotransferase).

Supplementary Figure 4：OPLS-DAmodel showing the group separation between the
model group and the medication group. (A) OPLS-DA model of model group vs HU-L
group. (B) OPLS-DA model of model group vs HU-M group. (C) OPLS-DA model of
model group vs HU-H group. (D) OPLS-DA model of model group vs D+HU group (n = 5,
OPLS-DA: orthogonal partial least squares-discriminant analysis).

Supplementary Figure 5: LDLR and Srebp2 levels in mouse livers. (A) Hepatic LDLR
levels among each group (n = 7, *: compared to the model group, *P < 0.05, ns: not
significant). (B) Hepatic LDLR levels among each group (n = 7, *: compared to the model
group, *P < 0.05, LDLR: low density lipoprotein receptor, SREBP2: Sterol-regulatory element
binding proteins 2).

Table legend
Supplementary Table 1: Differential bacteria associated with lipid metabolism and
atherosclerotic diseases
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Table 1 Differential bacteria associated with lipid metabolism and atherosclerotic diseases

Organism
Qualititative
outcome Diseases/Traits Method First author Year of publication Type Host

Lactobacillus Elevated Coronary artery disease 16S rRNA sequencing Liu Z[1] 2019 Faeces Human
Elevated Coronary artery disease 16S rRNA sequencing Zhu Q[2] 2018 Faeces Human

Prevotella Elevated Coronary artery disease 16S rDNA pyrosequencing Toya T[3] 2020 Faeces Human
Lachnospiraceae Reduced Coronary artery disease 16S rRNA sequencing Zhu Q[2] 2018 Faeces Human

Reduced Coronary artery disease 16S rRNA sequencing Liu H[4] 2019 Faeces Human
Bacteroides Reduced Atherosclerosis 16S rRNA sequencing Jie Z[5] 2017 Faeces Human

Elevated Coronary artery disease 16S rRNA sequencing Liu Z[1] 2019 Faeces Human
Reduced Coronary artery disease 16S rRNA sequencing Liu Z[1] 2019 Faeces Human
Reduced Coronary artery disease TRFLP Emoto T[6] 2017 Faeces Human
Reduced Hyperlipidemia 16S rRNA sequencing Gargari G[7] 2018 Faeces Human

Blautia Reduced Coronary artery disease 16S rRNA sequencing Zheng Y-Y[8] 2020 Faeces Human
Akkermansia Elevated Coronary artery disease 16S rRNA sequencing Zheng Y-Y[8] 2020 Faeces Human

Elevated Ischemic stroke 16S rRNA sequencing Tan C[9] 2020 Faeces Human
Reduced Hyperlipidemia 16S rRNA sequencing Gargari G[7] 2018 Faeces Human

Roseburia Reduced Coronary artery disease 16S rRNA sequencing Zhu Q[2] 2018 Faeces Human
Reduced Atherosclerosis Shotgun sequencing Karlsson F[10] 2012 Faeces Human
Reduced Hyperlipidemia 16S rRNA sequencing Gargari G[7] 2018 Faeces Human

Odoribacter Elevated Coronary artery disease 16S rRNA sequencing Zheng Y-Y[8] 2020 Faeces Human
Desulfovibrio Elevated Coronary artery disease 16S rRNA sequencing Zheng Y-Y[8] 2020 Faeces Human
Parabacteroides Elevated Coronary artery disease 16S rRNA sequencing Liu Z[1] 2019 Faeces Human

Elevated Coronary artery disease MiSeq sequencing Kehrmann J[11] 2019 Faeces Human

https://disbiome.ugent.be/organism/55
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Reduced Coronary artery disease 16S rRNA sequencing Zhang Y[12] 2019 Faeces Human
Lactococcus Elevated Coronary artery disease 16S rRNA sequencing Zhu Q[2] 2018 Faeces Human
Ruminococcus Elevated Coronary artery disease 16S rDNA pyrosequencing Toya T[3] 2020 Faeces Human

Elevated Atherosclerosis 16S rRNA sequencing Jie Z[5] 2017 Faeces Human
Streptococcus Reduced Coronary artery disease 16S rRNA sequencing Liu Z[1] 2019 Faeces Human

Elevated Coronary artery disease 16S rRNA sequencing Liu H[4] 2020 Faeces Human
Elevated Atherosclerosis 16S rRNA sequencing Jie Z[5] 2017 Faeces Human

Enterococcus Elevated Coronary artery disease 16S rRNA sequencing Zhu Q[2] 2018 Faeces Human
Elevated Coronary artery disease 16S rRNA sequencing Liu Z[1] 2019 Faeces Human
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