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Abstract 

Therapeutic strategies for advanced head and neck squamous carcinoma (HNSCC) consist of multimodal 
treatment, including Epidermal Growth Factor Receptor (EGFR) inhibition, immune-checkpoint 
inhibition, and radio (chemo) therapy. Although over 90% of HNSCC tumors overexpress EGFR, 
attempts to replace cytotoxic treatments with anti-EGFR agents have failed due to alternative signaling 
pathways and inter-tumor heterogeneity. 
Methods: Using protein expression data obtained from hundreds of HNSCC tissues and cell lines we 
compute individualized signaling signatures using an information-theoretic approach. The approach maps 
each HNSCC malignancy according to the protein-protein network reorganization in every tumor. We 
show that each patient-specific signaling signature (PaSSS) includes several distinct altered signaling 
subnetworks. Based on the resolved PaSSSs we design personalized drug combinations. 
Results: We show that simultaneous targeting of central hub proteins from each altered subnetwork is 
essential to selectively enhance the response of HNSCC tumors to anti-EGFR therapy and inhibit tumor 
growth. Furthermore, we demonstrate that the PaSSS-based drug combinations lead to induced 
expression of T cell markers and IFN-γ secretion, pointing to higher efficiency of the immune response. 
Conclusion: The PaSSS-based approach advances our understanding of how individualized therapies 
should be tailored to HNSCC tumors. 

Key words: precision medicine; targeted therapy; head and neck squamous cell carcinoma; information-theoretic approach; 
patient-specific signaling signatures 

Introduction 
Head and neck squamous cell carcinoma 

(HNSCC) is the sixth most common cancer 
worldwide [1]. HNSCC patients demonstrate poor 
outcomes, with a 5-year overall survival rate of 
40-50% [2,3]. 

As in many other types of cancer, also in 
HNSCC, selective Epidermal Growth Factor Receptor 
(EGFR) inhibitors (gefitinib and erlotinib) and EGFR 
antibodies (cetuximab) have demonstrated significant 
antitumor activity in vitro and in vivo [4]. Cetuximab, a 

monoclonal antibody against EGFR, was approved for 
the treatment of primary and recurrent HNSCC, and 
is commonly administered to patients in conjunction 
with radiotherapy (RT) [2]. However, it became 
shortly evident that the majority of patients do not 
respond to single-agent checkpoint blockade [5]. 
Resistance to anti-EGFR monotherapy can arise due to 
different regulatory mechanisms that operate at the 
level of EGFR and its ligands, alternative parallel 
signaling pathways in the cells as well as the 
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cross-talk between EGFR expressing cells and the 
tumor microenvironment [6]. Recently, a new class of 
targeted immunotherapy - PD-1 inhibitors 
(nivolumab or pembrolizumab) were approved for 
the treatment of recurrent and metastatic, cisplatin- 
resistant HNSCC [5]. It has been shown that blocking 
EGFR might also affect the mechanisms of resistance 
to immunotherapy [7], suggesting that the 
coordinated interruption of cooperative survival 
signaling pathways [8–10] in HNSCC [8,11,12] is 
necessary for optimal therapeutic results. However 
the promise for effective and selective drug 
combinations has been hindered by intensive inter- 
tumor heterogeneity of HNSCC [13,14]. Therefore, 
novel approaches that will enable the design of 
individualized anti-cancer drug cocktails are vitally 
needed. 

We suggest to improve the anti-HNSCC 
therapeutic strategies by resolving the individualized 
altered signaling structures in head and neck cancers. 
We implement an approach based on surprisal 
analysis (SA), a thermodynamic-based information- 
theoretic method [10,15–17], to identify a patient- 
specific set of altered signaling subnetworks, named 
unbalanced processes, in each cancer tissue [10,16]. 
Based on those subnetworks [10] we assign a 
personalized treatment, comprising a combination of 
selective, anti-cancer targeted inhibitors. The 
approach was applied recently to melanoma and 
triple negative breast cancer (TNBC) tissues, showing 
promising results in-vivo [18,19]. Using a dataset of 
over 1000 tumor tissues, including 203 HNSCC, we 
demonstrate that each tumor harbor a patient-specific 
set of 2-4 distinct unbalanced processes. Some of the 
processes did not include EGFR, therefore other 
central proteins are selected as central drug targets. 
We suggest that all processes found should be 
targeted simultaneously in order to reduce the total 
signaling flux within the cells. We experimentally 
validate the approach by demonstrating that the 
individualized anti-HNSCC targeted therapy, not 
only selectively inhibits tumor growth but also 
enhances the immune response of human Peripheral 
Blood Mononuclear Cells (PBMC) co-cultured-with 
tumor cells. 

Results 
EGFR expression variability in EGFR 
expressing cancers 

To study proteomic alterations in head and neck 
cancers we obtained a proteomic dataset comprising 
203 human HNSCC tumors from the TCGA database 
(The Cancer Genome Atlas) (Table S1). The tumors 
were profiled using RPPA approach [20]. We included 

in the dataset tumors from 4 additional types of 
human cancer: glioblastoma (GBM; n = 203), lung 
adenocarcinoma (LUAD; n = 234), lung squamous cell 
carcinoma (LUSC; n = 192), and skin cutaneous 
melanoma (SKCM; n = 206) (1038 tumors total; Table 
S1). The addition of these tumor types served two 
purposes: (1) Enlarging the dataset allows identifying 
patient-specific altered signaling signatures with 
increased resolution, and (2) GBM, LUAD and LUSC 
are EGFR-overexpressing cancers, while SKCM 
tumors generally less express EGFR [21,22]. 
Therefore, the analysis of these tumor types in 
conjunction with HNSCC may add important insights 
into the molecular processes underlying these tumors, 
particularly the EGFR-related processes. 

We first examined the EGFR expression pattern 
in the 1038 tumors (Figure S1A). EGFR was 
overexpressed primarily in GBM and HNSCC, and to 
a lesser extent in LUAD and LUSC tumors (Figure 
S1A). SKCM tumors demonstrated only a slight 
variation in EGFR expression, and generally do not 
overexpress the receptor (Figure S1A). Looking at the 
expression levels of pY (1068) EGFR, the picture is 
more pronounced: GBM, HNSCC, LUAD and LUSC 
exhibit high levels of pY (1068) EGFR, while SKCM 
demonstrates less activity as reflected by pY (1068) 
EGFR levels (Figure S1B). 

The analysis shown in Figure S1 corresponds to 
the previous findings stating that GBM, HNSCC, 
LUAD and LUSC are EGFR-expressing cancers, while 
SKCM less [21,22]. When planning effective 
anti-cancer treatment regimens, however, such 
analyses do not provide accurate and patient-specific 
information. For example, 14 of the 203 HNSCC 
patients (6.9%) expressed EGFR levels that equal to 
the median value in the dataset or less (Figure S1C). 
105 of them (51.7%) demonstrated EGFR expression 
levels of less than 1.5-fold of the median (Figure S1C). 
8 of the 203 GBM patients (3.9%) were found to 
express EGFR levels that match the median value or 
less (Figure S1C). 40 of them (19.7%) express EGFR 
levels that equal 1.5-fold of the median value or less 
(Figure S1C). All these patients may benefit less from 
the anti-EGFR monotherapy, and may demand other 
modes of therapy. To predict which therapy, or 
combination of therapies, should elicit a favorable 
response in every tumor, it is essential to decipher the 
structure of the patient-specific altered signature [18]. 

Calculation of patient-specific altered signaling 
signatures (PaSSS) in each tumor 

Next, we examined HNSCC tumors by utilizing 
the SA-based approach [10,16,18,23], to study the 
patient-specific signaling signatures and explore 
additional therapeutic modalities for HNSCC (Figure 
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1). Briefly, using protein expression data (Figure 1A) 
the analysis identifies the signaling signature in each 
malignancy that may consist of several altered 
subnetworks, called unbalanced processes [10] 
(Figure 1B). Unbalanced processes are groups of 
proteins that display coordinated aberrations in 
expression levels and are thus presumed to have 
deviated from their balanced levels due to a common 
perturbation on the system [15] (Figure 1B, Materials 
and Methods). Each process is assigned an amplitude 
(weight) reflecting the importance or extent of activity 
of the process in each patient. Only processes with 
significant amplitudes, those that exceed error limits 
[16] are assembled into patient-specific sets of 

processes [10,18] (Figure 1B). These personalized sets 
of unbalanced processes are transformed 
schematically into patient-specific barcodes (Figure 
1B, right panel). Deciphering the complete set of 
unbalanced processes (namely, the patient-specific 
altered signaling signature, PaSSS) in every patient, 
along with the central targets representing each 
process, enables the prediction of effective targeted 
therapies, many of which already exist in clinics 
(Figure 1C, [10]). We hypothesize that it is essential to 
target at least one key protein from every unbalanced 
process to collapse the entire altered signaling flux 
[18,19] and inhibit the growth of the HNSCC tumors. 

 
 

 
Figure 1. An overview of the thermodynamic-based approach for calculation of patient-specific signaling signatures. (A) Each cancer tissue is profiled for functional oncogenic 
proteins using, for example, Reverse Phase Protein Array (RPPA) approach. (B) Protein expression levels from each tissue are used as an input for surprisal analysis (SA). SA identifies active 
unbalanced processes in the population of cancer patients, which are utilized further to compute an altered, patient-specific signaling signature (PaSSS) in every sample, encompassing the 
individualized set of unbalanced molecular processes (i.e. groups of proteins that undergo deviations from their balanced expression levels in a correlated, function-related manner; see main 
text and Methods). (C) Based on the information obtained from each PaSSS, the response of the patient-specific protein networks to various conditions, including drug treatments, can be 
predicted. Consequently, combination therapies that should elicit an effective response in every tumor can be rationally designed. We hypothesize that at least one central hub protein from 
every unbalanced process should be targeted in order to efficiently collapse the entire imbalance in the specific tumor. This figure was created using BioRender.com. 
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The PaSSS-based analysis of 1038 tumors 
revealed that 19 unbalanced processes repeat 
themselves throughout the dataset (Figure S2A). A 
rigorous error analysis was performed to find the 
accurate number of the processes characterizing this 
dataset and their protein composition ([16] and Figure 
S3). We found that every tumor is characterized by a 
specific subset of these 19 processes, typically 2-4 
processes in each barcode (Table S2). 

Although pEGFR was found to participate in 9 
different processes (Figure S2A) characterizing the 
EGFR overexpressing cancers, the analysis revealed 
additional ten processes in which pEGFR was not 
found to participate. Moreover, pEGFR+ processes 
demonstrate marked differences. For example, in 
unbalanced process 2 pY (1068) EGFR is correlated 
with pY (1248) HER2 and VEGFR2, and 
anti-correlated with pS (473) Akt, whereas in 
unbalanced process 5 pY (1068) EGFR is correlated 
with GAPDH and anti-correlated with HER2. Thus, 
measuring the overall changes in expression levels of 
several biomarkers, without accurate mapping within 
the altered subnetworks, may overlook their 
relationships with other proteins in the altered 
network and therefore the essential information 
regarding the rational design of therapy 
combinations. We suggest that only the knowledge on 
the individualized structures of altered signaling can 
provide the relevant information for the effective 
design of anti-HNSCC treatments. 

PaSSS analysis divides 1038 tumors into 261 
cancer subgroups 

To compare the patients in the dataset to one 
another, we grouped the patients with identical 
barcodes into subgroups. We found 261 unique 
barcodes, reflecting patient-specific signaling 
signatures, that repeated themselves in the 1038 
tumors tested (Table S3). Note that two tumors 
harboring the same barcode carry similar aberrations 
in the molecular processes and are therefore expected 
to respond to the same combination of drugs. 
Therefore, 261 distinct barcodes imply that the 1038 
tumors can be divided into 261 subgroups of tumors. 
Interestingly, only 19 of the barcodes (indexed 1-19 in 
Table S3) each represent more than 10 tumors (~1% of 
the dataset). The remaining 242 barcodes (indexed 
20-261 in Table S3) each characterize very small 
groups of tumors, each encompassing less than 10 
tumors. Furthermore, 173 of the barcodes (Table S3) 
each characterize only a single tumor. 

Significantly, the groups of tumors with identical 
barcodes did not necessarily contain tumors of the 
similar type: patients harboring tumors of the same 
type were found to be characterized by various 

barcodes, and vice versa – a certain barcode could 
characterize patients bearing tumors from various 
origins (Table S3). This finding underscores the 
importance of analyzing tumor data in an unbiased 
manner that depends only on the specific molecular 
aberrations that emerged in each tumor. 

To demonstrate this, we selected 3 HNSCC 
patients: patient 267, patient 292 and patient 309. 
These patients all demonstrate upregulation of 
HNSCC-associated protein biomarkers (relative to the 
median expression levels of each protein): caveolin 1 
[24], EGFR [25], pY (1068) EGFR [25], pY(416)Src [26], 
cMet [25], and Snail [27] (Figure 2A). According to 
this list of protein biomarkers, these tumors may be 
defined as similar for the purposes of diagnostics and 
treatment. However, PaSSS analysis revealed that 
these patients harbor different signaling signatures, 
and they were therefore assigned different barcodes 
(Figure 2B). In all 3 patients, pEGFR was highly 
induced, a finding that is likely to lead clinicians to 
suggest EGFR inhibitor (e.g. cetuximab/erlotinib) as a 
treatment modality for all 3 patients. PaSSS analysis 
reveals different results: for example, PaSSS in patient 
309 included 4 unbalanced processes, 2 of them (#1, 2) 
included induced pEGFR while other 2 processes 
(#10, 11) had induced cMet as a central target (Figure 
2B,C). Thus EGFR inhibition is not expected to reduce 
the entire signaling flux in this patient. Cancer 
resistance may emanate from untargeted 
subnetworks. Thus combined treatment for this 
patient should include EGFR/HER2 and cMet 
inhibitors (Figure 2D). Similarly, patient 267 will 
require at least 2 different drugs (anti-EGFR and anti 
cMET) to reduce the signaling flux (Figure 2B-D). 
pSrc inhibition from the process 1 can be suggested as 
an additional treatment (for example, to enhance the 
efficacy of anti-EGFR/HER2 therapy in patient 292, 
with exceptionally high expression levels of pEGFR). 

On the other hand, there are barcodes that may 
characterize several types of tumors. For example, 
barcode 2 (Table S3), the second most significant 
barcode, was found to characterize 99 of the 1038 
patients (9.5%; Figure 2E). These 99 patients harbored 
3 types of tumors: HNSCC (23 patients), LUAD (33 
patients), and LUSC (43 patients) (Figure 2E, Table 
S3). These 99 patients harbor identical tumors in 
terms of the altered molecular processes they possess 
and should therefore be treated in a similar manner. 
Table S4 lists suggested combined treatments for 
each patient based on PaSSS and available, FDA- 
approved anti-cancer drugs [28]. In general, once 
PaSSS is determined, a clinician can select the specific 
drug targets based on practical considerations, such as 
inhibitor availability, drug costs, toxicity and drug 
interactions in the combined treatment. Moreover in 
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certain cases more than one drug may be required in 
order to inhibit a highly active process within a 
certain PaSSS [18]. 

In general, each cancer type was characterized 
by multiple barcodes and demonstrated relatively 
high levels of heterogeneity (Figure 2F). For example, 
the 203 HNSCC patients contain 61 subgroups of 
distinct tumors (Figure 2F), with the largest subgroup 
harboring 24 patients (11.8% of the HNSCC patients; 

Table S3); the 234 LUAD patients were divided into 
79 subgroups (Figure 2F), with the largest subgroup 
containing 38 patients (16.2% of the LUAD patients; 
Table S3). Figure 2F presents this information for 
GBM, LUSC and SKCM as well. The list of patient- 
specific barcodes can be found in Table S2. 

Tissues from the same HNSCC anatomical 
regions may harbor different barcodes 

 

 
Figure 2. Different patients with similar biomarker expression levels may harbor biologically distinct tumors. (A) Three HNSCC patients were selected to demonstrate this 
point: patient 267, patient 292 and patient 309. The expression levels of 6 HNSCC-related protein biomarkers were examined, showing that in all three patients these biomarkers were 
upregulated relative to their median values. The dashed line in the graph marks the x = 1 level. (B) However, PaSSS analysis revealed that these patients have different barcodes as they harbor 
different sets of unbalanced processes. (C) Zoom in images of the unbalanced processes 1,2,3,7,9,10 and 11, which characterize patients 267, 292 and 309, and the participation of the 6 
HNSCC-related biomarkers in those processes, are presented. To determine the direction of change in every protein (i.e. upregulation or downregulation due to the process) the amplitudes 
of the processes in these patients were considered. Note that in other patients the directions of change may be opposite. See Methods for more details. The complete set of unbalanced 
processes is presented in Figure S2. (D) Drug combination prediction for patients 267, 292 and 309 based on their unbalanced processes. (E) 99 patients out of 1038 were found to harbor 
barcode 2, in which processes 1 and 2 are active. These 99 patients encompass 23 HNSCC patients, 33 LUAD patients, and 43 LUSC patients. (F) The graph represents the uniquely 
characterized tumors along with the total number of patients in each cancer type; e.g. 61 barcodes, representing different altered signaling signatures, were identified in 203 HNSCC patients. 
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The dataset included 116 HNSCC samples, for 
which tumor location was recorded, from 4 different 
regions: oral cavity, oropharynx, larynx, and 
hypopharynx. We asked whether samples obtained 
from the same anatomical region demonstrated a 
certain similarity in terms of barcodes. 79 of the 
HNSCC patients harbored tumors in the oral cavity. 
These patients were characterized by 32 distinct 
barcodes. 31 of the HNSCC patients harbored tumors 
in the larynx and were characterized by 20 barcodes. 5 
of the HNSCC patients harbored tumors in the 
oropharynx and they all had unique characterization 
(Table S5). Interestingly, barcodes 1-3 repeated 
themselves in at least 10 patients and could be found 
in 3 out of 4 anatomical regions. For example, barcode 
#1 harbored processes 2 and 5; and was found in 17 
patients: 12 patients with cancer in the oral cavity, 4 
patients in the larynx, and 1 patient with cancer in the 
hypopharynx. Several more barcodes could be found 
in at least two anatomical regions (e.g. barcodes #4,5 
and 7), whereas others, barcodes #17-43, were unique 
and could be found only in 1 single patient. This data 
indicates that on the one hand different regions can be 
treated with similar combinations, but on the other we 
need to be cautious in assigning drugs to patients 
with the tumors from the same region, because they 
might have completely different signatures (see for 
example barcodes 17-43). 

PaSSS analysis enables the prediction of drug 
combinations for HNSCC in vitro 

To validate the approach experimentally, we 
moved to analyze a proteomic data set obtained from 
known ATCC cell lines [20], which can be grown 
easily and manipulated in the laboratory. Using the 
PaSSS-based analysis we have analyzed a dataset 
comprising 41 HNSCC cell lines profiled for ~237 
functional proteins using RPPA measurements. To 
enhance the accuracy of the analysis we added 2 
additional types of human cancer: lung cancer (n = 93) 
and uterus cancer (n = 28) (Table S6) to receive a final 
dataset including 162 cell lines. Drug combinations 
were assigned for each cell line as described above. 

Surprisal analysis revealed that 20 unbalanced 
processes were requested to characterize 162 cell lines 
(Figure S4A-C). Each cell line was assigned an 
individualized set comprised of 2-5 processes (Table 
S7). pY (1068) EGFR was found active in 8 different 
processes (Figure S4A). 

To choose a drug combination for each cell line, 
we have computationally assigned a barcode to each 
cell line, in the same manner as described above. We 
found 104 unique barcodes that repeated themselves 
in the population of 162 cell lines tested (Table S8), 
indicating that those 162 malignancies can be divided 

into 104 subgroups of tumors. Interestingly, only 3 of 
the barcodes (indexed 1-3 in Table S8) each 
represented more than 5 malignancies. The remaining 
16 barcodes (indexed 4-19 in Table S8) each 
characterized very small groups of malignancies, each 
containing less than 5 tumors. Furthermore, 85 of the 
barcodes (indexed 20-104 in Table S8) each 
characterize only a single cell line. 

Although RPPA protein lists and cancer types, 
included in the patient-derived and cell line datasets, 
were different we could find similarities between 
these two datasets. For example, unbalanced process 3 
from the cell line dataset (Figure S4) was comparable 
to the unbalanced process 2 from the patient-derived 
data set (Figure S2). For instance E-cadherin, pEGFR, 
pHER2 and EPPK1 were co-expressed and 
anti-correlated with PKCα (Figures S2, S4). pEGFR 
appeared as a central target in multiple processes: in 
patient-derived dataset (Figure S2) it was found in 9 
different processes and in the cell line dataset it was 
found in 8 processes (Figure S4). Another example 
includes pS6, which appeared as a hub protein as 
well. It was involved in 6 processes in the tissue 
derived dataset and in 7 processes in the cell line 
dataset. Moreover, only in 3 processes pEGFR and pS6 
were co-expressed. In others, they appeared 
independently. 

Experimental validation of PaSSS therapies 
As a next step we selected two, EGFR expressing, 

oral tongue squamous cell carcinoma (OSCC) cell 
lines: Cal27 and SCC25 (Methods) from the cell line 
dataset in order to demonstrate experimentally the 
efficiency of the predicted drug combinations. 
Barcodes for those cell lines were calculated as 
described above and in Methods and can be found in 
Table S7. pS6 and EGFR proteins were identified as 
the main protein drug targets in SCC25 (Figure 3A, 
B), which were co-expressed in the process 1, but 
appeared as independent targets in two other SCC25 
processes, processes 2 and 5, similarly to the tissue 
derived dataset. Thus, we suggested that both targets 
should be inhibited in order to reduce the unbalanced 
signature of SCC25 (Figure 3A, B). Based on this 
PaSSS, erlotinib (anti-EGFR) should be combined with 
LY2584702 (LY, anti-S6/S6K), to kill SCC25 cells 
efficiently and collapse the entire signaling network. 

Whereas each drug alone, for example 35 µM LY 
(Figure 3C) and 0.1 µM of erlotinib (Figure 3D), killed 
around 40-60% of the cells, the predicted combination 
(*) brought about ~80% of cell death (Figure 3E). 5µM 
TOFA (Acetyl-CoA carboxylase (ACC) inhibitor), 
which was added to erlotinib, was significantly less 
effective than LY (Figure 3E), and did not increase the 
rate of cell death when was added to the combination 
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of erlotinib and LY. ACC indeed was not found to 
participate in the signaling imbalance of SCC25 
(Figure 3B). Additional survival assay (MTT, 
assessing metabolic activity of the cells) revealed the 

same result verifying further the efficiency of the 
predicted drug combination in comparison with other 
treatments (Figure 3F).  

 

 
Figure 3. The SA-based calculation of PaSSS allowed designing the efficient drug combinations for SCC25. (A, B) Barcode, depicting the unbalanced processes and its 
emerging altered signaling signature in SCC25 cells, according to PaSSS analysis. Zoom-in images of the unbalanced processes active in SCC25 cells are shown (Figure S4 shows all participating 
proteins in each process). Correspondingly, the upregulation or downregulation of every protein is indicated in green or yellow, respectively. The complete number of unbalanced processes 
found in the cell line dataset is presented in Figure S4. The predicted drug combination and the processes each drug targets are shown (B). (C, D, E) Survival of SCC25 in response to different 
treatments and dosages. The combination of drugs predicted to target the unbalanced signaling signature (marked with an asterisk), as well as combinations that were predicted to partially 
target the unbalanced signaling flux of SCC25, were tested. (F) MTT assay confirms further the efficiency of the predicted drug combination (erlotinib and LY2584702). The predicted drug 
combination for SCC25 depletes the signaling flux and prevents cell regrowth. (G, upper panel) Cells were treated every three days and regrowth was measured up to 21 days with either 
monotherapy (erlotinib 0.1µM (Er), LY2584702 (LY) 35µM, TOFA (T) 5µM), the predicted drug combination (marked with an asterisk) or with the combinations that were predicted to 
partially target the unbalanced signaling flux of SCC25. Representative methylene blue-stained cell cultures are shown. (G, lower panel) Regrowth was quantified and presented as a heatmap. 
Day 0 represents the amount of cells seeded at the same day and was defined as 100%. Fold change relative to the amount of cells at day 0 is presented. Green color indicates higher regrowth 
levels (> 100%) and red shows decrease or depletion of the cells (< 100%). (H) Western blot analysis of the treated cells at different time points. The predicted drug combination is marked 
with an asterisk (*). 
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Furthermore, the predicted drug combination 
was significantly more efficient than other 
combinations or each drug alone in preventing 
cellular regrowth (Figure 3G). Analysis of the 
signaling proteins, related to the EGFR and S6 
signaling pathways, revealed a gradual decrease in 
signaling activity during 3 weeks when the predicted 
combination was applied, until the complete cell 
death (Figure 3H). Anti-EGFR monotherapy failed to 
reduce pS6, whereas anti-pS6 was not efficient in 
reducing the EGFR related signaling (Figure 3H). This 
result points to the independent activity of those 
pathways and corresponds to the computational 
interpretation suggesting that EGFR and S6 proteins 
are involved in different processes and thus should be 
inhibited simultaneously. TOFA+erlotinib or 
TOFA+erlotinib+LY combinations were less efficient 
in reducing the cellular signaling during the period of 
3 weeks (Figure 3H). 

The predicted drug combination for Cal27 
included 3 different drugs: TOFA, LY and erlotinib, as 
suggested by Cal27 signaling signature (Figure 4A,B). 
Experimental validation indeed confirmed that either 
monotherapies or double therapy (erlotinib and LY, 
which was efficient for SCC25) were significantly less 
efficient in killing Cal27 (Figure 4C-E). 

Adding TOFA to erlotinib and LY significantly 
reduced the cell survival of Cal27 in opposite to 
SCC25, in which TOFA was ineffective. MTT assay 
confirmed further the efficiency of TOFA, LY and 
erlotinib combination (Figure 4F). 

Moreover only the PaSSS-based combination of 
the 3 drugs prevented cellular regrowth in opposite to 
mono- or double therapies (Figure 4G). This 
combination brought about depletion of the cellular 
signaling in all tested proteins besides EGFR. 
Phosphorylation levels of EGFR were reduced after 3 
days, but were induced again after 7, 14 and 21 days 
(Figure 4H). The long term activation of EGFR in 
response to erlotinib (e.g. measured after several 
days) corresponds to the studies by others (see for 
example [29]. However, this activation was not 
sufficient to activate its downstream signaling, as 
represented by pAkt/pERK/pS6/p4E-BP1 levels, and 
initiate cellular regrowth of Cal27 cells, as a very low 
number of cells could be found after 21 days of 
treatment with the PaSSS-based combination (Figure 
4H). 

These results confirm the ability of the presented 
approach to determine the patient-specific signaling 
signatures with high accuracy and therefore to predict 
the individualized drug optimizations of anti-EGFR 
monotherapies. The results provide also a clear 
evidence that although the malignancies can be of the 
same cancer type (e.g. oral cancer from tongue), they 

may acquire different signaling reorganizations and 
thus require different individualized treatments. 

Patient-specific targeted therapy enhances 
CD8+ T cell activation potential 

In the recent years immunotherapy became one 
of the major treatment modalities in HNSCC. Recent 
studies connect between EGFR activation and 
immunosuppression, suggesting an additional role 
for EGFR as a modulator of tumor microenvironment 
(7). To compare the effect of EGFR monotherapies to 
the predicted individualized targeted therapies on 
immune response, we treated HNSCC cell lines with 
either monotherapies, or combined therapies, and 
examined a change in the secreted levels of interferon 
gamma (IFN-γ) in response to different treatments 
(Figure 5A, left panel). The results show that the 
PaSSS-guided treatment of SCC25 induced IFN−γ 
secretion compared to the anti-EGFR monotherapy 
(Figure 5A, middle panel). Cal27 cells responded 
similarly when either the anti-EGFR monotherapy or 
the PaSSS-based therapy were administrated (Figure 
5A, right panel). 

Next, we co-cultured oral cancer cell lines, with 
peripheral blood mononuclear cells (PBMC) obtained 
from healthy donors (Figure 5B, left panel). 

Examination of CD8+ T lymphocyte activation 
potential (by measuring CD3 expression levels) in 
naïve PBMC, co-cultured with SCC25 cells, 
demonstrated a significant increase in CD3 expression 
when the predicted drugs combined with Keytruda 
(anti-PD-1 inhibitor) were added to the co-culture 
(CC, Figure 5B, middle panel). This result was even 
stronger in Cal27 model, showing enhanced CD3 
expression in CD8+ cells in response to the 
PaSSS-based combination (Figure 5B, right panel). 
Although in SCC25 malignancy, the PaSSS-based 
treatment enhanced the levels of CD3 in CD8+ T cells 
when it was supported by anti-PD-1 inhibitor, the 
combination predicted for Cal27 enhanced the CD8+ 
T cell activation potential in Cal27 model without 
Keytruda support. Overall, these results indicate that 
the PaSSS-based combinations not only induce tumor 
cell death, but may also activate immune response. It 
remains to validate this effect in-vivo using a 
specialized (humanized) immune-competent mice 
model. 

To examine whether the killing effect of cancer 
cells, initially induced by the individualized 
treatments, increases more upon induction of the T 
cell activation, we quantified the viability of HNSCC 
cells co-cultured with PBMC (Figure 5C, left panel). 
Although PBMC, either non-activated or 
pre-activated, did not enhance killing of SCC25 cells, 
the predicted for Cal27 drug combination eliminated 
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Cal27 cells completely when Cal27 were co-cultured 
with pre-activated PBMC (Figure 5C, middle and 
right panels). This result may point to the different 
regulatory and/or anti-apoptotic mechanisms, which 

might exist in certain HNSCC malignancies, or to the 
requirement of additional microenvironmental 
parameters needed for PBMC in order to enhance the 
cell death of SCC25. 

 

 
Figure 4. The SA-based calculation of PaSSS allowed designing the efficient drug combinations for Cal27. (A, B) Barcode, depicting the unbalanced processes and its emerging 
altered signaling signature in Cal27 cells, according to PaSSS analysis. Zoom-in images of the unbalanced processes active in Cal27 cells are shown (Figure S4 shows all participating proteins 
in each process). Correspondingly, the upregulation or downregulation of every protein is indicated in green or yellow, respectively. The predicted drug combination and the processes each 
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drug targets are shown (B). (C, D, E) Survival of Cal27 in response to different treatments and dosages. The combination of drugs predicted to target the unbalanced signaling signature 
(marked with an asterisk), as well as combinations that were predicted to partially target the unbalanced signaling flux of Cal27, were tested. (F) MTT assay confirms further the efficiency of 
the predicted drug combination (erlotinib, LY2584702 and TOFA). The predicted drug combination for Cal27 depletes the signaling flux and prevents cell regrowth. (G, upper panel) Cells 
were treated every three days and regrowth was measured up to 21 days with either monotherapy (erlotinib 0.1µM (Er), LY2584702 (LY) 35µM, TOFA (T) 5µM), with the predicted drug 
combination (marked with an asterisk) or with the combinations that were predicted to partially target the unbalanced signaling flux of Cal27. Representative methylene blue-stained cell 
cultures are shown. (G, lower panel) Regrowth was quantified and presented as a heatmap. Day 0 represents the amount of cells seeded at the same day and was defined as 100%. Fold change 
relative to the amount of cells at day 0 is presented. Green color indicates higher regrowth levels (> 100%) and red shows decrease or depletion of the cells (< 100%). (H) Western blot 
analysis of the treated cells at different time points. The predicted drug combination is marked with an asterisk (*). 

 
Figure 5. The PaSSS-based drug combinations induced an immune response of PBMC in SCC25 and Cal27 models in vitro and reduced tumor growth in vivo. (A) To 
examine IFN-γ secretion (as illustrated in the scheme on the left) SCC25 cells (middle panel) and Cal27 cells (right panel) were treated with either anti-EGFR monotherapy (Er) or the 
PaSSS-based combination. C stands for control. After 48h and 96h respectively the supernatants were collected for IFN-γ levels quantification (*P < 0.05, **P < 0.001). (B) SCC25 (middle 
panel) and Cal27 cells (right panel) were co-cultured (CC) with PBMCs (as illustrated in the scheme on the left) and treated for 48h and 96h respectively with either anti –EGFR monotherapy 
or the predicted combination (with or without the addition of 10µg/ml Keytruda, Ky). PBMCs were then collected and CD3 levels in CD8 positive cells were measured (*P < 0.02 for 
SCC25,*P < 0.007 for Cal27). (C) SCC25 (C, upper right panel) and Cal27 (C, lower right panel) were CC with non-activated /activated PBMCs (AC PBMC) and then the cells were treated 
with either anti-EGFR monotherapy or the predicted combination with or without the addition of 10 µg/ml Keytruda for 96h. Cell survival was measured via methylene blue. (D) SCC25 (D, 
left panel) or Cal27 (D, right panel) were injected subcutaneously into mice, and once tumors reached 50 mm3, treatments were initiated. In both cases, the PaSSS-based drug combinations 
(see black arrows) inhibited tumor growth and demonstrated an effect superior to monotherapy of erlotinib or to the drug combinations predicted to partially target the PaSSS (*P < 0.03 for 
SCC25) (*P < 0.03 for Cal27) (see Figures 3,4 for details regarding the altered signaling signatures and the PaSSS-based drug combination predictions). (E) Representative, treated and 
untreated SCC25 and Cal27 tumors, harvested after 25 days and 14 days respectively, are shown. Panels (A-C) were created using BioRender.com. 
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Figure 6. Anti-EGFR monotherapy fails to reduce the unbalanced flux in HNSCC human samples. (A) Changes in gene expression levels were acquired from 15 HNSCC 
patients before and after treatment with cetuximab for 2 weeks as shown in the illustration. (B) Patient-specific barcodes were generated for each patient before (left panel) and after the 
treatment (right panel). Negative/positive amplitude denotes how the patients are correlated with respect to a particular process. For example, patient 1 harbors process 12− (labeled with 
a black arrow), whereas patient 2 harbors process 12+. Therefore, transcripts that participate in process 12 (Table S9) deviate from the steady state in opposite directions in these patients. 
(C) Only processes in which EGFR participates are shown for each patient. EGFR upregulation or downregulation due to the process were defined as explained in the Figure legend of Figure 
S2 and labeled with green (upregulation due to a process) or red (downregulation due to a process) colors. In certain tumors, in which a clear reduction in the levels of EGFR and EGFR-related 
transcripts was detected, other onco-transcripts were upregulated. (D) Patient-specific barcodes are shown for patients #1,14,15. EGFR participation in active processes is labeled with green 
and red colors as indicated. Examples for a change in the experimental gene expression levels in response to EGFR inhibition are shown for selected genes and for each patient in lower panels. 
(B –barcodes before the treatment; A – after the treatment). Panel (A) was created using BioRender.com. 

 

The PaSSS-based drug treatments were 
required to inhibit tumor growth in-vivo 

In order to investigate the effect of the 
PaSSS-based drug combinations in murine mice 
models HNSCC cells (SCC25 or Cal27) were injected 
subcutaneously into immunodeficient NSG mice, and 
treatments were carried 6 times a week for up to 4 
weeks (Figure 5D). 

Figures 5D and 5E show that the PaSSS-based 
combinations inhibited the tumor growth in both 
cases, and were more efficient than anti-EGFR 
monotherapies. Moreover the PaSSS-based combina-
tions were highly selective, as the predicted and 
efficient combination for SCC25 malignancy (Figure 
5D, E) was significantly more effective in SCC25 than 
the combination predicted for Cal27 and vice versa. 

These results highlight further the need for the 

design of personalized treatments for HNSCC based 
on individualized alterations in signaling networks. 

Anti-EGFR monotherapy fails to reduce the 
unbalanced flux in HNSCC human samples 
and in certain cases induces initially inactive 
unbalanced processes 

To validate further our hypothesis, namely, that 
the anti-EGFR monotherapy should be optimized in a 
patient-specific manner, we analyzed changes in gene 
expression levels in response to cetuximab 
monotherapy (anti-EGFR) in patient-derived HNSCC 
tumors (GSE109756, GEO database). Using PaSSS 
analysis we analyzed tissues from 15 different 
patients who received cetuximab treatment for 2 
weeks (Figure 6A, B; Table S9 and Figure S5). 
Certain processes with induced EGFR expression 
were abolished in response to treatment. For example 
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process 12, the only process with EGFR in patient 1 
before the treatment (Figure 6C, labeled with * in 
Figure 6C, left panel), disappeared in response to 
cetuximab (Figure 6C, right panel). This process 
included, for example, transcripts involved in cell 
adhesion and regulation of cell proliferation (Table 
S10, Tab “G12 negative”). Processes 7 and 11 (labeled 
with *) are additional examples for the EGFR+ 
processes which were reduced in response to 
treatment in almost all samples which harbored this 
process. However, many of the processes in which 
EGFR does not participate (shown in Fig. 6B), but also 
some EGFR+ processes, remained unchanged in 
response to treatment (Figure 6B, C). Moreover 
certain processes, for example EGFR+ process 2, were 
induced in patients 2 and 4 in response to cetuximab 
(Figure 6C, right panel, labeled with *). This process 
included different enriched categories related to cell 
proliferation, cell cycle and cell migration (Table S10, 
Tab “G2 negative”). 

Figure 6D presents 3 different patient-derived 
tissues, as an example, in which a clear reduction of 
EGFR+ unbalanced processes was observed in 
response to cetuximab (Figure 6D). However, along 
with the profound reduction in the EGFR+ processes, 
other onco-processes were upregulated. For example 
in patient 1 (Figure 6D) process 2 appeared in 
response to the treatment, which corresponded to a 
decrease in EGFR levels, but an increase in the levels 
of cKit oncogene (Figure 6D, patient 1, lower panel; 
Table S10 includes additional genes/biological 
categories that characterize process 2). Similarly, an 
amplitude of process 1 was induced in response to the 
treatment (Table S9) leading to an increase in the gene 
expression levels of ERBB3 onco-receptor (Figure 6D, 
patient 1, lower panel). 

Another two examples include patients 14 and 
15 in which EGFR and the associated unbalanced 
processes were reduced by cetuximab, whereas other 
onco-transcripts and the processes as indicated in 
Figure 6D were induced. These results show that 
anti-EGFR monotherapies not only fail to reduce the 
entire tumor imbalance but can also induce various, 
previously inactive processes leading to 
reorganization of the network structures [19]. 

Discussion 
Assigning the right anti-cancer drugs to the right 

HNSCC patient is pivotal for generating positive 
treatment outcomes. Using the information-theoretic, 
SA-based computational approach [15,18,23], we 
provide a quantitative characterization of the 
inter-patient HNSCC heterogeneity in order to resolve 
patient-specific network reorganizations. We suggest 
that an accurate characterization of the individualized 

network alterations should contain information 
sufficient to predict the response of patient-specific 
networks to different therapeutic modalities. 

Our study included a large dataset which was 
obtained from a cohort of 1038 tumors, encompassing 
4 different cancer types and more than 200 HNSCC 
patients. Rather than relying on known signaling 
pathways, such as EGFR regulated pathways, PaSSS 
analysis identifies individualized groups of co- 
varying proteins, deviating in a similar manner from 
the reference state, in every tumor. Each such a group 
was defined as an unbalanced biological process. 

We uncover the individualized set of unbalanced 
signaling processes in every single patient, namely 
patient-specific altered signaling signature (PaSSS). 
These processes are distinct, and therefore we 
hypothesized that each of them must be targeted 
individually in order to reduce the tumor-specific 
signaling imbalance [18,19]. Importantly, PaSSS 
approach addresses individual patients in an 
unbiased manner rather than assigning them to 
pre-defined groups of patients (e.g. according to the 
status of EGFR or anatomical origin). 

We show that 19 altered molecular processes 
capture the inter-tumor heterogeneity of 1038 tumors, 
where each tumor is characterized by a specific subset 
of 2-4 unbalanced processes. Accordingly, each 
HNSCC patient is assigned a unique barcode, 
denoting the patient-specific altered signaling 
signature. We found that the collection of 1038 tumors 
is described by 261 distinct barcodes. A 
subpopulation of 203 HNSCC patients is 
characterized by 61 unique barcodes, suggesting that 
the cohort of these patients consists of 61 subtypes of 
HNSCC cancer. Moreover we show that HNSCC 
tissues from different anatomic regions might have 
similar barcodes and thus should be treated with 
similar drug combinations, whereas patients 
harboring cancer in the same region might have 
completely different signaling signatures. 

These 61 subtypes of HNSCC tumors, each 
representing a signaling barcode, are assigned 
patient-tailored combinations of drugs, many of 
which already exist in clinics for the treatment of 
different types of cancer. For example lapatinib (dual 
anti-EGFR and HER2 inhibitor), used for the 
treatment of breast cancer [28], appears frequently in 
PaSSS analysis as a suggested drug in mono- or 
combined treatments for HNSCC. Another example 
includes crizotinib (anti-cMet inhibitor, approved for 
the treatment of lung cancer) that appears in certain 
cases, usually in combination with lapatinib, as a 
suggested drug for HNSCC patients. 

We demonstrate experimentally our ability to 
rationally design effective anti-HNSCC drug cocktails 
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by analyzing a proteomic dataset including ATCC 
human cancer cell lines. We decipher the altered 
signaling signatures in these cell lines (PaSSS), and 
then design drug combinations that are predicted to 
target the unbalanced signaling flux in each sample. 
We used two HNSCC EGFR overexpressing cancer 
cell lines for experimental validation: SCC25 and 
Cal27. We demonstrate herein that by combining 
anti-EGFR (erlotinib) with one or two additional 
drugs, as predicted by the PaSSS-based analysis, the 
efficacy of the treatment enhances significantly. We 
show that although SCC25 and Cal27 belong to the 
same genetic subtype (e.g. EGFR overexpressing) and 
from the same anatomic region (e.g. tongue), different 
drug combinations were predicted to be most efficient 
for each of the malignancies. In both cases, our 
predicted drug cocktails demonstrated high potency 
and achieved higher rates of tumor inhibition than 
anti-EGFR monotherapy. Moreover the PaSSS-based 
drug combinations were highly selective. The efficient 
and predicted drug combination for SCC25 was less 
efficient for Cal27 and vice versa. Furthermore we 
demonstrate that the PaSSS-based drug combinations 
led to enhanced expression of CD8/CD3 T cell 
markers and IFN-γ secretion than anti-EGFR 
monotherapies, pointing to the enhanced ability of the 
patient-specific combinations to activate the immune 
system. This result suggests that the immune cells 
may further enhance the tumor response to the 
PaSSS-based combinations. Studies are underway in 
our laboratory, aiming to evaluate the efficiency of the 
PaSSS-based therapies in the presence of human 
immune system in humanized mice models. 
Moreover PaSSS therapy, which may be further 
combined with immunotherapy strategies, may 
provide long-term efficacy for HNSCC patients. 

Analysis of the gene expression data obtained 
from HNSCC patients, treated with anti-EGFR 
monotherapies, validated further our hypothesis. We 
found that anti-EGFR monotherapy did not reduce 
efficiently the patient-specific molecular imbalance. 
Moreover we have shown that in certain cases 
anti-EGFR monotherapy led to the induction of new, 
previously undetected unbalanced processes, leading 
to a change in the signaling states of HNSCC patients. 
This result provides an additional support to the idea 
that in order to reduce the PaSSS-specific flux, 
anti-EGFR monotherapies should be replaced by 
patient-specific drug combinations, in which 
anti-EGFR drugs might be one of the suggested 
inhibitors in the individualized combined treatment 
[19]. 

In essence we suggest how a high complexity of 
the HNSCC tumors can be reduced to the simple, 
PaSSS-based, signaling barcodes that guide the 

rational design of patient-specific drug therapies. This 
deep understanding of the patient-specific signaling 
imbalances should advance the fields of personalized 
HNSCC research and therapeutics. 

Materials and Methods 
Surprisal analysis 

Surprisal analysis, a thermodynamic-based 
information-theoretic approach, was applied in this 
study as detailed in [10,18]. Briefly, the analysis is 
based on the premise that biological systems reach a 
balanced state when the system is free of constraints 
[15]. However, when under the influence of 
environmental and genomic constraints, the system is 
prevented from reaching the state of minimal free 
energy. Each constraint can induce a change in a 
specific part of the protein network in the cells. The 
subnetwork that is altered due to the specific 
constraint is termed an unbalanced process. System 
can be influenced by several constraints thus leading 
to the emergence of several unbalanced processes. 
When tumor systems are characterized, the specific set 
of unbalanced processes is what constitutes the 
tumor-specific signaling signature (PaSSS). 

Surprisal analysis discovers the complete set of 
constraints operating on the system in any given 
tumor, k, by utilizing the following equation [15]: ln 
Xi(k) = ln Xi0(k) – ΣGiαλα(k), where i is the protein of 
interest, Xi0 is the expected expression level of the 
protein when the system is at the steady state and free 
of constraints, and ΣGiαλα(k) represents the sum of 
deviations in expression level of the protein i due to 
the various constraints. 

The term Giα denotes the degree of participation 
of the protein i in the unbalanced process α. Proteins 
with significant Giα values (Figure S2B, [10,16]) are 
grouped into unbalanced processes (Figure S2A, S4A) 
which are active in the dataset. 

The term λα(k) represents the importance of the 
unbalanced process α in the tumor k. The detailed 
description on how Giα and λα(k) values are 
calculated can be found in the Supplementary file of 
the reference [15]. 

Determination of the number of unbalanced 
processes 

To examine the number of significant processes 
in the dataset we check how many processes are 
required to reproduce the experimental data as 
described in Figure S3 and [10,16,30]. Threshold 
limits for λα(k) were calculated as described previously 
[10,16,30]. 
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Generation of functional subnetworks and barcodes 
representing PaSSSs 

The functional subnetworks presented in Figures 
S2,S4 were generated by combining the Gi values 
(represented by the size of circles) and the String 
parametrs (used to generate functional maps) [16,18]. 
The barcodes presented in Figures 2-4,6 and Tables S3, 
S7 were generated using λα(k) values that exceeded the 
threshold limit in each sample k. The obtained 
patient-specific sets of λα(k) values (unbalanced 
processes) were converted to -1 (for -λα(k)), 0 (for 
insignificant λα(k)) and 1 (for +λα(k)) values [10,18]. 

For gene expression data 
The procedure of SA was performed as 

described above. The biological meaning of the 
unbalanced processes was deciphered as following: 
transcripts with significant Gi values (Figure S5, [16]) 
were grouped into biological categories according to 
Gene Ontology (GO) using David database (Table 
S10) as described previously [16]. 

Selection of HNSCC cell lines for 
experimental validation of the PaSSS-Based 
Strategy 

In this study we selected 2 EGFR expressing 
HNSCC cell lines SCC25 and Cal27, which were part 
of the cell line dataset (Table S6) to validate the 
approach. To provide a statistical meaning for the 
selection of 2 HNSCC cell lines we calculated an 
upper bound for the probability to select 2 and 3 
unbalanced processes in HNSCC, as found in HNSCC 
cell lines, randomly. Calculation of the upper bound 
was based on the frequency of the most abundant 
unbalanced processes in the HNSCC subset calculated 
using a large set of 3467 tumors [10]. The probability 
to find the three most abundant processes in a 
particular HNSCC malignancy equals to (161/212) × 
(70/212) × (65/212) = 0.076. 

Numbers in italic represent numbers of HNSCC 
patients found to harbor the most abundant processes 
in the subset [10], e.g. processes 1, 2, and 3 and the 
number 212 is the number of HNSCC patients 
comprising this subset. The probability to find the two 
most abundant processes in a particular HNSCC 
sample was calculated in a similar manner and equals 
to (161/212) × (70/212) = 0.25. 

Thus the upper bound for the probability to 
select 2 and 3 unbalanced processes, characterizing 
both, SCC25 and Cal27 malignancies randomly equals 
to 0.019. 

Cell Culture 
The head and neck squamous cell carcinoma cell 

lines – SCC25 and Cal27 were obtained from ATCC 

and grown in DMEM (Cal27) or DMEM/F12 medium 
with sodium pyruvate (SCC25). They were 
supplemented with 10 % fetal calf serum (FCS), 
L-glutamine (2mM), 100 U/ml penicillin and 100 
mg/ml streptomycin, and incubated at 37 °C in 5% 
CO2. The cell lines were authenticated at the 
biomedical core facility of Technion, Haifa, Israel. 

Western blot analysis 
The procedure was performed as described 

previuosly [31]. The following antibodies were used: 
anti-pY (1068) EGFR (#3777), anti-PARP (#9542), 
anti-pS(235/236)S6 (#4858), anti- S6 (#2217), 
Phospho-4E-BP1 (Thr37/46) (236B4) (#2855), 4E-BP1 
(53H11) (#9644), Phospho-Akt (Ser473) (D9E) XP, 
(#4060), Acetyl-CoA Carboxylase (C83B10)( #3676), 
Phospho-Acetyl-CoA Carboxylase (Ser79) (#3661), all 
were purchased from Cell Signaling Technology 
(Beverly, MA). Anti-ERK pT(202)Y(204) (E-4), Akt 
1/2/3 (H-136), anti-EGFR(A-10), anti-ERK2 (c-14) and 
GAPDH (FL-335) were from Santa Cruz 
Biotechnology (Santa Cruz, CA). HRP-conjugated 
goat anti-mouse and HRP-conjugated goat anti-rabbit 
were from Jackson ImmunoResearch Laboratories, 
Inc. (West Grove, PA). 

Methylene blue assay 
The assay was performed as described 

previously [10]. 

MTT assay 
The cells were seeded and treated as indicated in 

a 96 well plate for 72 hours. The cell viability was 
checked using MTT assay kit (Abcam). Equal volume 
of MTT solution and culture media was added to each 
well and incubated for 3 hours at 37 °C. MTT solvent 
was added to each well, covered in aluminum foil and 
put on the orbital shaker for 15 minutes. Absorbance 
was read at 590nm within 1 hour. 

Resistance Assay 
Cells were seeded in 96 well plates and treated as 

indicated for different time points (3, 7, 14, 21 days). 
At every time point the cells were fixed with 4% 
paraformaldehyde and quantified using methylene 
blue assay. 

Following inhibitors were used for the above 
assays: erlotinib, LY2584702 were from Cayman 
Chemicals (Ann Arbor, MI), and TOFA was 
purchased from Abcam. The inhibitors were diluted 
in DMSO (equal concentration of DMSO was also 
used as a control in the appropriate experiments). 

Animal Studies 
SCC25 (1 × 106 cells/mouse) or Cal27 (1 × 106 

cells/mouse) were inoculated subcutaneously into 
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NSG mice (n = 8 mice per group), and once the 
volume of the tumors reached 50 mm3, treatments 
were initiated 6 times a week for up to 4 weeks. 
Tumor volume was measured twice a week. erlotinib 
(15 mg/kg), LY (12.5 mg/kg) and TOFA (1 mg/kg) 
were suspended in aqueous mixture of 0.5% 
Hydroxypropyl methylcellulose + 0.2% Tween 80 and 
administered by oral gavage. LY-2584702 was 
purchused from the MCE (MedChemExpress). 

The rest of the drugs were purchased from 
Cayman chemicals. The Hebrew University is an 
AAALAC International accredited institute. All 
experiments were conducted with approval from the 
Hebrew University Animal Care and Use Committee. 

Isolation of human PBMCs 
PBMCs were collected from healthy volunteer 

(IRB approval number HMO-19-0033) using 
Polymorphprep™ (Axis-shield, Oslo, Norway) 
according to the manufacturer’s instructions. Cells 
were cultured for 72h in 10 cm plate in complete 
RPMI-1640 media (RPMI-1640 medium supplemented 
with 10% FBS, 2 mM L-glutamine, 100 IU/ml 
penicillin and 100 µg/ml streptomycin and 0.1% 
2-mercaptoethanol) at 37 °C in a humidified 
atmosphere containing 5% CO2. 

When activated PBMC were used, their medium 
was also supplemented with purified human 
anti-CD3 (0.1 ng/ml) and IL2 (10 ng/ml) for 3 days 
incubation. 

Co-culture of PBMCs with HNSCC tumor cells 
SCC25 or Cal27 cells were seeded at 105 per well 

in their respective growth medium for 24h and then 
were co-cultured (CC) with equal number of naïve 
PBMCs or activated PBMC (preincubated with 0.1 
ng/ml anti-CD3 and 10 ng/ml IL2 for 3days). Anti- 
EGFR monotherapy (0.1 µΜ erlotinib) or combined 
therapies (in which the following concentrations we 
re used: 35µM LY, 5µM TOFA, 0.1 µΜ erlotinib) as 
indicated with/without 10µg/ml Keytruda. After 48 
and 96h of co-culture, the supernatants were collected 
for IFN-γ quantification using ELISA (R&D systems, 
Minneapolis, MN, USA) and PBMCs were collected 
for quantification of CD3 levels in CD8 cells using 
flow cytometry analysis (labeled with anti-CD45 
(2D1/104), CD3, CD8 specific antibodies) using BD 
FACS LSR Fortessa. 

Statistical analysis 
Statistical significance was determined by 

Student’s t test (two tails, two samples equal 
variance); P values of ≤ 0.05 were considered 
statistically significant. All data represent the 
mean ± S.E. (standard error of the means). If not 

indicated otherwise, the experiments were performed 
at least three times. 

Availability of data and materials 
The human tumor and cell line datasets that 

support the findings of this study can be found at 
TCPA portal [32], https://tcpaportal.org/tcpa/ 
download.html. Gene expression data of HNSCC 
tissues treated with cetuximab can be found at GEO 
database, (GSE109756). Anti-cancer drugs used to 
design PaSSS combinations (Table S4) can be found in 
https://www.anticancerfund.org/en/cancerdrugs- 
db [28]. 
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