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Abstract 

Diabetes mellitus (DM) is a chronic systemic disease with increasing prevalence globally. An important aspect 
of diabetic pathogenesis is cellular crosstalk and information exchange between multiple metabolic organs and 
tissues. In the past decade, increasing evidence suggested that extracellular vesicles (EVs), a class of cell-derived 
membrane vesicles that transmit information and perform inter-cellular and inter-organ communication, are 
involved in the pathological changes of insulin resistance (IR), inflammation, and endothelial injury, and 
implicated in the development of DM and its complications. The biogenesis and cargo sorting machinery 
dysregulation of EVs may mediate their pathogenic roles under diabetic conditions. Moreover, the biogenesis of 
EVs, their ubiquitous production by different cells, their function as mediators of inter-organ communication, 
and their biological features in body fluids have generated great promise as biomarkers and clinical treatments. 
In this review, we summarize the components of EV generation and sorting machinery and highlight their role 
in the pathogenesis of DM and associated complications. Furthermore, we discuss the emerging clinical 
implications of EVs as potential biomarkers and therapeutic strategies for DM and diabetic complications. A 
better understanding of EVs will deepen our knowledge of the pathophysiology of DM and its complications and 
offer attractive approaches to improve the prevention, diagnosis, treatment, and prognosis of these disorders. 
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Introduction 
Diabetes mellitus (DM), a systemic disease with 

an alarming increase in incidence worldwide, is 
characterized by chronic hyperglycemia resulting 
from insulin resistance (IR) and/or insulin secretion 
deficiency. The International Diabetes Federation 
estimates that 9.3% of adults aged 20–79 years are 
currently living with DM and this prevalence is 
projected to rise to 10.2% by 2030 and to 10.9% by 2045 
[1]. DM and associated complications account for 
11.3% of global deaths from all causes [1]. Moreover, 
DM is an independent risk factor for various diseases, 
including coronary heart disease, stroke, cancer, 

chronic kidney disease, blindness, and lower limb 
amputation, placing a heavy burden on global health 
[2-6]. There are no efficacious pharmacological 
treatments for DM, primarily due to its complicated 
pathophysiologic mechanisms and unclear 
etiopathogenesis. 

Generally, DM can be mainly divided into type 1 
diabetes (T1D) and type 2 diabetes (T2D). T2D is the 
most common type of DM, accounting for about 90% 
of cases worldwide, whereas T1D constitutes more 
than 10% [7, 8]. Although the etiologies of T1D and 
T2D are distinct, the progression of both diseases is 
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primarily due to dysregulated intercellular and 
inter-organ communication. In T1D, the interaction 
between immune cells and pancreatic islets 
contributes to the dysfunction and death of β cells. 
More recently, the involvement of gut microbiota in 
the auto-immune response against β cells has added 
another layer of complexity to T1D pathogenesis [9]. 
In T2D, intricate inter-organ communication among 
the pancreas, adipose tissue (AT), liver, muscle, 
intestine, hypothalamus, and other tissues plays an 
essential role in hyperglycemia and IR, two hallmarks 
of T2D [10]. For example, increased inflammatory 
cytokines and free fatty acids (FFAs) derived from 
obese AT can induce lipotoxicity and IR in the liver 
and skeletal muscle, and also impair the 
glucoregulatory function of the central nervous 
system (CNS) and gut, in turn, perturbing the AT 
secretome and reinforce its IR [11]. Furthermore, 
systemic IR triggers a rise in insulin demand, 
overstressing β cells and eventually resulting in islet 
dysfunction and relative insulin insufficiency. 
Therefore, dysregulated inter-organ communication 
plays a key role in initiating and amplifying the 
deleterious vicious cycle of IR and hyperglycemia in 
T2D. Under these circumstances, signaling molecules 
mediating inter-organ conversation are likely key 
pathogenic factors for T1D and T2D. Indeed, several 
classes of signaling mediators, including adipokines, 
hepatokines, peptides from CNS, and hormones from 
the pancreas and intestine, are crucial in the initiation 
and progression of both T1D and T2D [12-18], and 
therapeutic strategies targeting these molecules have 
been partially applied in the clinic benefiting patients. 

Recently, extracellular vesicles (EVs) have 
emerged as a novel class of signaling molecules 
mediating intercellular and inter-organ 
communication. Released by various cell types, EVs 
are widely distributed in diverse tissues and body 
fluids. Moreover, bioactive contents loaded in EVs 
including proteins, DNAs, RNAs, lipids, and 
metabolites, are protected by the lipid bilayer 
membrane against harsh environments and prevented 
from degradation and digestion. The size, quantity, 
morphology, cargoes, and other characteristics of EVs 
are highly variable and influenced by the parental cell 
type. Because of these fundamental features, EVs are 
well-suited to serve as versatile carriers and 
transporters transmitting signals from parental cells 
to recipient cells. Correspondingly, EVs have been 
shown to regulate various biological and 
physiological processes and are implicated in 
multiple human diseases, such as cancer, 
cardiovascular diseases, metabolic disorders, and 
neurodegenerative diseases [19]. In particular, 
understanding the role of EVs in the crosstalk among 

multiple metabolic tissues would provide a new 
perspective to understand the pathogenesis of DM 
and diabetic complications and develop therapeutic 
strategies. 

Here we outline the current knowledge of 
diabetic pathogenesis, focusing on the potential 
mechanisms underlying the altered EV biogenesis in 
DM and the role of EVs originating from different 
cells in regulating systemic metabolism. Finally, we 
summarize studies of EV-RNAs as markers and 
discuss potential applications of EVs derived from 
native cells to treat DM and diabetic complications. 

Pathology of DM and its complications   
IR, also known as low insulin sensitivity, is an 

essential mechanism underlying T2D occurrence and 
a critical driver of associated complications [20]. 
Although there is no consensus on the molecular 
mechanism(s) triggering IR, inter-organ communica-
tion has been widely recognized as a key contributor 
[21]. During obesity, massive expansion of AT, often 
accompanied by inadequate vascularization, induces 
hypoxic response and inflammation, leading to 
increased infiltration of pro-inflammatory 
macrophages and inflammatory cytokine release [22]. 
Inflammation can further disturb insulin signaling in 
AT, resulting in enhanced lipolysis and increased 
release of FFAs and adipokines into circulation. 
Subsequently, elevated circulating FFAs elicit 
lipotoxicity and impair insulin action in the liver and 
skeletal muscle [23, 24]. Also, downstream pathways 
aroused by IR cooperatively induce reactive oxygen 
species (ROS) production and systemic inflammation, 
further worsening IR. Consequently, IR suppresses 
plasma membrane translocation of the glucose 
transporter (GLUT) and glucose uptake, leading to 
elevated blood glucose levels and systemic energy 
metabolism disturbance. In addition to classic 
metabolic tissues, other organs such as the gut, 
vascular endothelium, and brain, have recently been 
shown to participate in the development of IR and 
T2D [25-29]. For example, vascular endothelium can 
function as an adjustable barrier to control the 
transport of metabolic macromolecules such as FFAs, 
lipoproteins, and glucose to metabolic organs, 
including the skeletal muscle and AT. Bioactive 
molecules secreted by endothelial cells (ECs), for e.g., 
nitric oxide and growth factors, may modulate 
systemic metabolism by modulating insulin 
sensitivity, maintaining pancreatic islet structure, and 
insulin secretion [30, 31].  

Pancreatic β cell failure, another hallmark of 
T2D, is also associated with inter-organ 
communication. Increased demand for insulin, 
typically due to peripheral IR, leads to excess insulin 
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secretion and elevated islet amyloid polypeptide 
(IAPP) production. Simultaneously expressed and 
secreted with insulin, IAPP is a membrane-permeant 
toxic agent, and its accumulation forms amyloid 
deposits, causing pancreatic damage [32]. Meanwhile, 
chronic elevated FFAs and glucose elicit endoplasmic 
reticulum (ER) stress and inflammatory response in 
islets, which aggravate the pancreatic injury and 
compromise insulin secretion [33, 34]. In this 
circumstance, the combination of IR and β cell 
decompensation contributes to overt T2D. 

Insulin deficiency, primarily resulting from 
reduced β cell function and mass, is the major driver 
of T1D. Insulitis induced by autoimmune response 
results in β cell death and chronic autoantigen 
exposure, reamplifying the immune attack [35]. The 
uncontrollable autoimmune response against β cells 
accounts for T1D pathology. Besides the crosstalk 
between the islet and immune cells, gut and immune 
system communication has also been implicated in 
T1D pathogenesis. For example, loss of gut integrity 
and changes in metabolites caused by enteric 
dysbacteriosis can significantly promote innate and 
adaptive autoimmune response against islet cells, 
thereby participating in T1D development [36-39]. 

The development of diabetic complications 
shares multiple pathological processes with DM, such 
as glucose variability, lipotoxicity, and activation of 
advanced glycation end products (AGEs) and 
receptors for AGE (RAGEs) signaling, and consequent 
mitochondrial dysfunction, oxidative stress, 
epigenetic changes, and inflammation response 
[40-47]. Besides the in-depth understanding of 
underlying molecular mechanisms, the significance of 
inter-organ crosstalk in the pathogenesis of diabetic 
complications has recently been emphasized. For 
instance, there is increased lipoprotein secretion by 
insulin-resistant hepatocytes that can be glycated and 
oxidated, leading to renal lipid metabolism disorder 
and promoting the development of diabetic 
nephropathy (DN) [48-51].  

Furthermore, inter-organ and intercellular 
communication are crucial in the pathogenesis of DM 
and diabetic complications, and our current 
understanding can only be considered as the tip of the 
iceberg. In this context, EVs, an emerging mediator of 
intra- and inter-organ crosstalk, have been shown to 
play a critical role in various pathological pathways of 
DM and its complications (Figure 1), providing a 
novel paradigm in pathological mechanisms and 
therapeutic interventions. Future investigation is 
required to delineate the molecular mechanisms of 
EV-mediated signaling under diabetic conditions and 
further explore their implications in treating these 
disorders.  

EVs 
Based on their biogenesis, EVs can be divided 

into two major groups, exosomes (30-100 nm) and 
microvesicles (MVs, 50-1000 nm) (also known as 
ectosomes, microparticles) [52]. MVs are generated 
directly by budding and shedding from the plasma 
membrane, while exosome generation involves 
intraluminal vesicle (ILV) budding and shedding, 
intracellular multivesicular endosome (MVE) 
trafficking, and ILV release [53, 54]. In this section, we 
mainly introduce EVs from two perspectives: (i) 
generative processes and (ii) mechanisms of cargo 
sorting. 

EV generation 
Both exosomes and MVs are vesicles formed by 

membrane budding away from the cytosol, and their 
generation requires an integrative cytoskeleton and 
membrane reorganization (Figure 2). 

Exosome generation 
The generation of exosomes principally consists 

of biogenesis, transport, and release. ILV formation is 
the first step of exosome generation, which depends 
on the endosomal sorting complex required for 
transport (ESCRT). Several ESCRT-independent ILV 
formation pathways mediated by ceramide-, CD63-, 
Rab31, and others have been detected [55-58]. As the 
best known ESCRT-independent mode, cone-shaped 
lipid ceramide enriched in specific microdomains of 
the endosomal membrane can effectively lead to 
membrane curvature alteration and budding of ILVs 
[55]. Tetraspanin CD63, the specific surface marker of 
exosomes, can favor the budding of ILVs by 
interacting with a cluster of other tetraspanins and 
proteins [56, 57]. Although several distinct exosome 
generation cellular pathways have been reported, the 
regulatory mechanisms within cells have not yet been 
elucidated.  

The formation of ILVs follows the transport of 
MVEs toward the plasma membrane. Various 
intracellular trafficking molecules have been shown to 
participate in this process, including the cytoskeleton, 
molecular motors, and Rab GTPases. The final step is 
the fusion of MVEs with the plasma membrane for 
which the soluble N-ethylmaleimide-sensitive fusion 
attachment protein receptor (SNARE) complex is 
believed to be essential [59-63].  The interaction 
between vesicle-membrane SNAREs (v-SNAREs) and 
target-membrane SNAREs (t-SNAREs) initiates the 
SNARE complex assembly, presumably allowing the 
fusion of MVEs with the plasma membrane and 
leading to exosome secretion.  
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Figure 1. Inter-organ crosstalk mediated by EVs in the pathogenesis of DM and diabetic complications. EVs contain different proteins, RNAs, DNAs and lipids 
(inner circle). EVs participate in the development of DM and its complications via multiple ways. EVs derived from various tissues, including adipose, liver, pancreas, skeletal 
muscle, immunocytes, vascular endothelium and gut microbiota, play a role in the development and progression of DM (inner ring). Moreover, these EVs are involved in the 
pathogenesis of diabetic complications including diabetic foot, cardiomyopathy, nephropathy, retinopathy, neuropathy and atherosclerosis (outer ring). Abbreviations: 
circRNAs: circular RNAs; DM: diabetes mellitus; EV: extracellular vesicle; lncRNAs: long noncoding RNAs; miRNAs: microRNAs. 

 

MV generation  
MV generation consists of two crucial steps: 

plasma membrane blebbing and scissoring. Plasma 
membrane rearrangement involving lipid and protein 
composition remodeling is the first essential step for 
membrane budding, and is believed to be a calcium 
(Ca2+)-dependent process [64]. A group of 
Ca2+dependent enzymes, including flippases, 
floppases, and lipid scramblases, are involved in the 
rearrangement of membrane phospholipids [65]. 
Mechanistically, phospholipid redistribution and 
maintenance can induce membrane lipid asymmetry 
and alter membranous curvature [66, 67]. Besides 
lipid redistribution, unlocking the plasma membrane- 
cytoskeletal anchorage is necessary for membrane 
blebbing and vesiculation. In this respect, calpain, a 
Ca2+activated cysteine protease, can disrupt the 
attachment between the plasma membrane and 

cytoskeleton by cleaving several cytoskeletal 
components under the plasma membrane, such as 
actin and filamin [68, 69]. However, our 
understanding of MV generation is limited and 
further mechanistic investigation is required.  

In addition to the EV biogenesis machinery, 
recent studies suggest that several types of cell death, 
such as apoptosis, necroptosis, pyroptosis, and 
neutrophil extracellular trap formation (NETosis), are 
associated with EV generation, indicating the 
involvement of additional sophisticated mechanisms 
modulating EV biogenesis [70-76]. EVs secreted by 
necroptotic cells mediate MLKL release, which can, in 
turn, serve as a self-control mechanism of necroptosis 
[77]. These findings collectively indicate that EVs can 
function as a specialized intra- and inter-cellular 
messaging system, highlighting the importance of 
illustrating EV generation mechanisms.  
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Figure 2. EV biogenesis and cargo sorting. Microvesicles and exosomes are two major categories of EVs. Microvesicles are released directly from plasma membrane 
budding and shedding. Exosomes are generated by inward budding of endosomes, known as MVEs, which fuse to plasma membrane, and are followed by the release of exosomes. 
Multiple molecules are implicated in the biogenesis of microvesicles and exosomes, such as ESCRT complexes and related proteins, ceramide, SMase, syntenin, syndecan, calpain, 
Rab GTPases, and so on (see text). Exosomes contain different types of proteins and RNAs, whose sorting are modulated by several molecules, including ESCRT complexes, 
syntenin, tetraspanins, and RBPs. PTMs on certain proteins also have a role in the sorting of exosomal cargos. Abbreviations: aSMase: acid sphingomyelinase; ESCRT: 
endosomal sorting complex required for transport; EVs: extracellular vesicles; ILV: intraluminal vesicle; MVE: multivesicular endosome; nSMase: neutral sphingomyelinase; PTMs: 
post-translational modifications; RBP: RNA binding protein; SMase: sphingomyelinase, SNARE: soluble N-ethylmaleimide-sensitive fusion attachment protein receptor; 
t-SNAREs: target-membrane SNAREs; v-SNAREs: vesicle-membrane SNAREs. 

 

Sorting mechanism of EVs 
Bioactive molecules, including proteins, DNAs, 

mRNAs, non-coding RNAs (ncRNAs), and 
metabolites, are encapsulated in EVs. Accumulating 
evidence suggests that cargoes are not randomly 
packaged into EVs or simply replicate the 
composition of their parental cells [78]. Because of the 
significance of cargoes in signal communication, the 
mechanisms of cargo sorting of EVs are central to 
shed light on the physiological and pathological 
functions of EVs and their therapeutic implications. 
Although these mechanisms are far from being fully 
elucidated, recent advances provide exciting insights 
into this topic. 

Recent studies have provided some clues on the 
sorting of proteins. First, ESCRT components and 
their related proteins can recruit exosomal cargoes 
through direct molecular interactions. For example, 
the ESCRT-I component TSG101 can recruit BAG6 
into EVs, possibly playing a key role in directing EV 
proteins [79]. In addition, the noncanonical 
ESCRT-dependent syntenin pathway also contributes 

to the sorting of specific exosomal cargoes, including 
LMP1 and KRS [80, 81]. Second, common protein 
markers of EVs, particularly tetraspanins, have been 
suggested to account for sorting a great proportion of 
the exosomal proteins [82-85]. High-throughput 
proteomic analysis of potential proteins interacting 
with tetraspanin-enriched microdomains revealed a 
significant overlap between the tetraspanin 
interactome and exosomal proteome, highlighting 
tetraspanins as important sorting machinery for 
protein inclusion into exosomes [82]. Third, specific 
post-translational modifications (PTMs) seem to be 
emerging determinants for protein sorting in EVs, 
such as ubiquitylation [86-91], sumoylation [92], 
palmitoylation [93-96], farnesylation [97], 
phosphorylation [98-100], glycosylation [101-103], and 
lipidation [103]. For instance, there was a 60% 
reduction of total protein levels in EVs derived from 
ubiquitin-like 3 (UBL3)-knockout mice, and UBL3 
could function as a PTM factor by directly interacting 
with more than 1,200 proteins [86]. Also, ESCRT 
components HRS, STAM, and TSG101 with their 
ubiquitin-binding domains might participate in 
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ubiquitination [104]. These observations emphasize 
the significance of ubiquitination, one of the most 
common PTMs, in sorting EV protein cargoes. 
Interestingly, ubiquitinated proteins have also been 
detected in the EVs secreted by insulin-secreting β 
cells, indicating a potential involvement in 
EV-associated islet cell dysfunction and T2D 
pathogenesis [105].  

In addition to protein cargo, EVs carry a rich 
diverse RNA cargo, involved in many EV functions. 
The enrichment of distinct RNAs in EVs responsive to 
different cellular statuses relies on the sophisticated 
RNA sorting system. Recent studies suggest that the 
selective sorting of RNA in EVs is attributed mainly to 
RNA binding proteins (RBPs), accounting for about 
25% of the protein content in EVs [106,107]. RBPs 
usually recognize RNAs with specific “tags”, such as 
certain motifs, modifications, structures, or sequences, 
and sort them into EVs [107,108]. For instance, 
hnRNPA2B1, a well-known regulator of RNA 
metabolism, can package specific miRNAs (miR-198, 
miR-30b-3p) and long noncoding RNAs (lncRNAs) 
(AFAP1-AS1, LNMAT2) into EVs by the direct 
interaction between its RNA-binding domains and the 
GGAG motif of the RNAs [109-113]. Besides 
hnRNPA2B1, other members of the hnRNP family, 
including hnRNPA1, hnRNPC1, hnRNPH1, hnRNPK, 
hnRNPQ, and hnRNPU, have been implicated in 
RNA sorting and enrichment in EVs [114-120]. 
Additionally, YBX1 (miR-223 in HEK293T cells), 
human antigen R (HuR) (miR-122 in human hepatic 
cells), and other RBPs have been reported to play a 
role in the selective miRNA enrichment in EVs 
[121-123].  

The exploration of EV cargo sorting machinery is 
not restricted to EVs per se. An exciting correlation of 
autophagy with EV biogenesis and content loading 
has been recently reported, in which the 
LC3-conjugation machinery is proposed to govern the 
RBP capture and thus specify RNAs in secreted EVs 
[124-126], adding another layer of complexity to EV 
cargo sorting. In summary, EVs are emerging as an 
important mediator of intercellular communication. 
Elucidation of the mechanism underlying EV 
generation and content packaging has been an active 
area of research. 

EV biogenesis machinery in DM and 
diabetic complications 

EVs are crucial information transmitters between 
original and recipient cells, and their abnormalities 
contribute to the development of DM and diabetic 
complications. Exploring the mechanisms underlying 
EV biogenesis and cargo sorting is critical in 
developing novel therapies for various diseases. So 

far, the role of EV biogenesis and sorting machinery in 
diabetic pathology has not been systemically 
reviewed. Here we summarize current knowledge 
about the EV machinery involved in the pathogenic 
process of DM and its complications (Table 1 and 
Figure 3).   

EV generation  

ESCRTs  
ESCRT complexes participate in the generation 

of the majority of EVs. Multiple components of 
ESCRT complexes have been shown to play a role in 
various metabolic processes, especially glucose and 
lipid metabolism, indicating their potential 
involvement in DM and diabetic complications. 
Therefore, it is a reasonable assumption that EVs may 
partially mediate ESCRT functions in metabolism and 
metabolic diseases, albeit direct evidence is currently 
limited. 

ESCRT complexes are involved in the 
transportation of lipid droplets and translocation of 
GLUT4 and glycogen synthase kinase 3β (GSK3β) in 
adipocytes, thereby mediating the regulation of 
neutral lipids micro-autophagy consumption, 
adipogenesis, and insulin-stimulated glucose uptake 
[213-215]. Disruption of these cellular biological 
processes is involved in the pathogenesis of DM. 
Lipotoxicity, a common risk factor for IR and T2D, can 
induce TSG101 expression in adipocytes and thus 
promote the biogenesis of exosomes [216]. 
Subsequently, TSG101 upregulation triggers the 
sorting of CD36 into EVs, which then are delivered 
into hepatocytes and evoke hepatic lipid 
accumulation [216]. Furthermore, several factors 
interacting with ESCRT components may regulate EV 
formation, such as MLKL and HSP20 [217-219]. 
MLKL, a critical factor involved in plasma membrane 
disruption and necroptosis, is upregulated in multiple 
tissues, including the adipose, liver, muscle, kidney, 
and cardiomyocytes under diabetic conditions 
[220-224]. MLKL can engage in the biogenesis of both 
exosomes and MVs by binding ESCRT proteins 
(TSG101, MVB128, VPS28, VPS37A, VPS25, CHMP3, 
CHMP4B, and CHMP2A) [218,219]. Interestingly, 
MLKL can also regulate insulin sensitivity in diabetic 
mice independent of its proinflammatory and 
necroptotic roles [220]. These observations indicate 
that non-necroptotic functions of MLKL might be 
mediated by its effect on EV formation.  

In contrast to MLKL, HSP20 is downregulated in 
T1D and T2D and its reduction is considered a 
primary driver for DM-induced organ damage. 
HSP20 function, at least partially, is attributed to its 
regulatory activity on exosomes. Specific 
overexpression of HSP20 in cardiomyocytes can 
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increase the generation/secretion of exosomes 
enriched in HSP20, p-AKT, survivin, and SOD1 
through interacting with TSG101, thereby attenuating 
cardiac dysfunction, hypertrophy, and microvascular 
rarefaction under diabetic conditions [217,225]. 

Besides the role of ESCRT components in metabolism 
and metabolic disease, it is anticipated that the 
crosstalk between ESCRTs and EVs may be involved 
in the pathogenesis of DM and its complications. 

 

Table 1. Expressions and implications of EV biogenesis and sorting machinery under diabetic conditions. 

Genes Level/activity 
[Reference] 

Sample: resource Function 

aSMase ↑ [127-129] AT: T2D patients with FLD, ob/ob mice Promoting thrombosis and inflammation 
↑ [130,131] Serum: T2D patients, db/db mice Promoting endothelial dysfunction 
↑ [132,133] Plasma, RECs, CD34+ CACs: T2D patients Promoting inflammation and CACs migration 
↑ [134] RPECs: STZ rats  Impairing mitochondrial function 
↑ [135] Liver and brain: HFD mice Promoting hepatic IR and neurodegeneration 
↑ [136] Kidney: GK rats  Promoting ER stress  

nSMase ↑ [127-129] AT: T2D patients with FLD, ob/ob mice Promoting thrombosis and inflammation 
↑ [135] Liver, brain: HFD mice Promoting hepatic IR and neurodegeneration  
↑ [137] Skeletal muscle: Wistar fatty rats Promoting IR in the muscle 
↑ [138] Vastus lateralis muscle: obese IGT patients  UD 
↑ [139,140] Islet β cells: Akita mice Promoting β cell apoptosis  
↑ [141] Atrial appendage: obese T2D patients UD 

Sdc1 ↑ [142] Liver: obese Zucker fa/fa rats Promoting hepatic IR 
↑ [143-145] Neutrophils, serum: T2D patients UD 
↓ [146] Serum, small intestine: STZ mice Promoting epithelial barrier damage 
↑ [147,148] Plasma, serum: T1D DN patients Promoting inflammation and microalbuminuria 
↑ [149,150] Vitreous fluid: PDR Patients Promoting angiogenesis 
↓ [151] Skeletal muscle, heart: HFD ob/ob mice  UD 

Sdc4 ↑ [152,153] Heart, skeletal muscle: STZ rats Promoting cardiac dysfunction 
↑ [154] Kidney: KK/Ta mice UD 
↓ [151] Skeletal muscle, heart: HFD ob/ob mice  Promoting growth factor resistance  

HPSE ↑ [155-158] Islet: NOD/Lt mice, T1D patients, STZ mice Promoting β cell death 
↑ [159] Serum: obese patients with prediabetes Promoting endothelial injury and inflammation 
↑ [160,161] Urine, plasma: T2D patients UD 
↑ [162-167] Kidney: STZ mice and rats, DN patients Promoting renal damage, protein excretion 
↑ [150,168,169] Vitreous fluid, serum, retina: PDR patients, STZ rats Promoting inflammation, angiogenesis, and subendothelial barrier damage 
↑ [146] Serum, small intestine: STZ mice Promoting epithelial barrier damage 
↑ [170] Carotid artery: DM patients, STZ rats Promoting atherosclerosis  

Calpain ↑ [171] Heart: STZ rats Promoting apoptosis 
↑ [172-175] Heart: HFD, STZ, OVE26 mice  Promoting myocardial hypertrophy, and fibrosis 
↑ [176] Aortas: STZ and OVE26 mice Promoting ROS and peroxynitrite production 
↑ [177,178] Platelet: T2D patients, STZ mice Promoting platelets hyperaggregability  
↑ [179,180] Plasma: T2D patients Promoting platelet activation and inflammation 
↑ [181] Platelet: T2D patients Promoting MVs release and inflammation 
↑ [182] Dorsal root ganglion: STZ rats Promoting oxidative stress and inflammation 
↑ [183] Penis: STZ mice Promoting erectile dysfunction  
↑ [184] Lens epithelial cells: DR patients  UD 

Calpain-1 ↑ [185] Heart: STZ rats Promoting oxidative stress and apoptosis  
↑ [186,187] Vascular mesentery: STZ and ZDF rats  Promoting endothelial inflammation 
↑ [188] Retina: STZ rats, HFD rats Promoting retinal ganglion cell death 

Calpain-10 ↑ [189] Islet: T2D patients Biomarker for islet dysfunction 
↑ [190] Kidney: STZ rats, HFD rats Promoting apoptosis and renal dysfunction 
↓ [191] Kidney: STZ rats, ob/ob mice Promoting apoptosis and renal dysfunction 

SNARE a ↓ [192-195] Islet: T2D patients, GK rats, ZDF rats Impairing insulin secretion 
b ↓ [196] AT: STZ-NA rats  Promoting IR 
c ↑ [197] Skeletal muscle: Zucker rats, STZ rats Promoting IR 
d ↓ [198] Hippocampus: STZ rats UD 
e ↑ [199] Serum: T1D patients Promoting insulitis as autoantigen 

CD63 ↑ [200,201] Platelets: T2D patients UD 
↑ [202] Kidney: DN patients Promoting renal cell apoptosis 

CD82 ↑ [203] Skin: DM patients Promoting chronic inflammation 
HuR ↑ [204-207] Kidney: DN patients, db/db mice, STZ rats Promoting pyroptosis, inflammation, and EMT 

↑ [208] Retina: STZ rats Promoting angiogenesis 
↑ [209] BMMØ, heart: db/db mice Promoting cardiac fibrosis and dysfunction 
↑ [210] Heart: diabetic cardiomyopathy patients Promoting pyroptosis and inflammation 

hnRNPK PTMf ↑ [211] Islet: db/db mice Promoting oxidative stress and apoptosis  
↓ [212] Kidney: Akita mice Promoting RAS activation and hypertension  

AT: adipose tissue; BMMØ: bone marrow‐derived macrophage; CACs: circulating angiogenic cells; DN: diabetic nephropathy; FLD: fatty liver disease; GK rats: 
Goto-Kakizaki rats; HFD: high-fat diet; IGT: impaired glucose tolerance; HPSE: heparanase; NOD/Lt mice: nonobese diabetic mice harboring a hybrid rat 
insulin-promoter/SV40 large T-antigen gene spontaneously develop β-cell adenomas; OVE26: FVB(Cg)-Tg(Ins2-CALM)26OveTg(Cryaa-Tag)1Ove/PneJ transgenic mice; 
PDR: proliferative diabetic retinopathy; PTM: posttranslational modification; RAS: renin–angiotensin system; Sdc1: syndecan 1; Sdc4: syndecan 4; SNARE: soluble 
N-ethylmaleimide-sensitive fusion attachment protein receptor; STZ+NA: streptozotocin+ nicotinamide; UD: undetermined; ZDF: Zucker fat diabetic. a: synaptotagmin, 
VAMP-2, syntaxin-1A and -2 and SNAP-25; b: SNAP23, syntaxin-4 and VAMP-2; c: VAMP-2, syntaxin-4; d: syntaxin-1; e: VAMP2; f: phosphorylation. 
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Figure 3. Involvement of the EV biogenesis and cargo sorting machineries in DM and diabetic complications. Diabetic conditions trigger the alteration in the 
expression and activity of the molecules involved in the process of EV  biogenesis and cargo sorting. 1. Lipotoxicity induces TSG101 expression and influences its interaction with 
CD36 and HSP20, leading to their exosomal sorting dysregulation; 2. Elevated syndecans and heparinase in DM animals and patients can potentially activate of the 
syntenin-syndecan-ALIX pathway and promote exosomes biogenesis; 3. Elevated ceramide levels and nSMase/aSMase expression and activity may induce EV generation; 4. High 
glucose may impact the expression and activity of calpain 1 and 2, leading to elevated microvesicle generation; 5. Reduced SNARE components in diabetic conditions may 
influence exosomes release; 6. Altered expression of some regulators associated with EVs cargo sorting, as well as certain PTMs of specific proteins, may also affect EVs proteome 
and RNA profile under DM conditions. Abbreviations: aSMase: acid sphingomyelinase; DM: diabetes mellitus; ESCRT: endosomal sorting complex required for transport; EVs: 
extracellular vesicles; HuR: human antigen R; MV: microvesicle; nSMase: neutral sphingomyelinase; SNARE: soluble N-ethylmaleimide-sensitive fusion attachment protein 
receptor; t-SNAREs: target-membrane SNAREs; v-SNAREs: vesicle- membrane SNAREs. 

 

Ceramide and SMases 
EVs are enriched in cholesterol and sphingo-

lipids, such as sphingomyelin and hexosylceramide, 
and have a remarkable ceramide enrichment. Neutral 
sphingomylinase (nSMase) and acid SMase (aSMase) 
potentially mediate the budding of vesicles into MVEs 
and plasma membrane, respectively, and thus 
promote the generation of exosomes and MVs 
[55,226]. Accumulating evidence suggests a role of the 
SMase-ceramide pathway in the pathogenesis of DM 

and its complications, although direct experimental 
data supporting EV contribution are lacking [127-141]. 

An elevated level of circulating ceramide is 
associated with the severity of IR in obesity [227]. 
Specifically, membranous ceramide can influence the 
structural organization of plasma membrane and 
insulin receptor translocation, impairing insulin 
signaling [228, 229]. In parallel, ceramide metabolism 
is over-represented in the plasma and markedly 
associated with the progression of T1D, consistent 
with its crucial role in immune regulation [230]. 
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Ceramide also serves as a critical lipotoxic mediator 
and drives the development of vascular dysfunction 
and damage [231-233]. Similarly, abnormality and 
dysfunction of both aSMase and nSMase have been 
reported in DM and its complications (Table 1) 
[127-141]. The pathogenic roles of these enzymes have 
generally been attributed to mediating sphingomyelin 
hydrolysis and ceramide in the AT, retina, liver, 
kidney, and other tissues. For example, aSMase and 
nSMase are increased in obese epididymal fat, along 
with altered levels of sphingomyelin, ceramide, and 
downstream ceramide metabolites in AT and plasma, 
promoting the expression of prothrombotic and 
proinflammatory genes and subsequently 
contributing to obesity-associated metabolic and 
cardiovascular diseases, such as atherosclerosis 
[127-129]. Thus, inhibition of SMase-ceramide is 
considered an effective therapy for IR and DM by 
inhibiting inflammatory responses [131,132,234]. 
However, the contribution of EVs in 
SMase-ceramide-mediated functions remains 
unknown and awaits future investigation. 

Syndecan-syntenin pathway 
The syndecan-syntenin-ALIX axis has been 

shown to regulate the formation of ILVs and 
exosomes [235]. Syndecan, syntenin, and ALIX 
co-exist in a subset of exosomes. The PDZ domains of 
syntenin have a high affinity to syndecan, which 
recruits syntenin to membranes, while the N-terminal 
domain of syntenin directly interacts with ALIX. 
Heparanase, the only catalytic enzyme of syndecan, 
trims its heparan sulfate and significantly promotes 
exosome budding and generation [236]. Syntenin can 
also recognize ligands with PDZ-binding motifs, 
which are specifically sorted into the exosomes. For 
example, syntenin directly binds the exposed 
PDZ-binding motif of KRS and targets it into 
exosomes, thereby contributing to caspase-8-triggered 
inflammation [80]. These recent findings collectively 
suggest an important role of the syndecan-syntenin 
pathway in the biogenesis and function of exosomes. 

Syndecan is a ubiquitous transmembrane protein 
and plays important physiological and pathological 
roles in development, differentiation, and human 
diseases, including DM and its complications (Table 
1) [142-154]. Generally, syndecan, particularly 
syndecan-1 and syndecan-4, are upregulated in 
diabetic humans and animals compared with 
euglycemic controls. Syndecan-1 is induced in the 
liver of obese Zucker fa/fa rats and potentially 
promotes lipid uptake, resulting in hepatic IR and 
dyslipidemia [142]. Moreover, elevated syndecan-1 
expression is associated with body mass index (BMI) 
and serum apoA1 in T2D, suggesting its involvement 

in vascular inflammation and injury [143-145]. In T1D, 
syndecan-1 expression is positively correlated with 
microalbuminuria and inflammatory indicators, 
implying a role in DN pathogenesis [147, 148]. 
Syndecan-4 is also increased in the heart and kidney 
of diabetic mice and rats and has a role in diabetic 
cardiomyopathy and DN [152-154].  

The expression and activity of heparanase, a 
unique endoglycosidase known to degrade heparan 
sulfate chains, including those of syndecan-1, are 
increased under diabetic conditions [155-170]. 
Notably, heparanase derived from insulitis leukocytes 
can degrade heparan sulfate of β cells and thus 
promote islet cell death in T1D. In mice, inhibition of 
heparanase can effectively delay the onset of T1D 
induced by STZ and NOD [155-158]. Also, the level of 
heparanase in the circulation and urine is positively 
correlated with glucose and HbA1c [159-161] and is 
also closely associated with albuminuria in DM, 
indicating its crucial role in diabetic renal injury 
[162-167]. Specifically, heparanase can potentially 
lead to the loss of heparan sulfate in the glomerular 
basement membrane, induce glomerular 
inflammation, and promote renal fibrosis in DN 
[150,162-167]. Similarly, elevated heparanase has also 
been implicated in diabetic microangiopathies, such 
as diabetic retinopathy (DR) [150,168,169], and carotid 
artery atherosclerosis [170].  

Together, these findings highlight the key roles 
of syndecan and heparanase in the pathogenesis of 
DM and its complications. Given the importance of 
the syndecans-syndecan-ALIX pathway in exosome 
biogenesis and cargo sorting, it is conceivable that 
exosomes could, at least partially, mediate syndecans 
and heparanase functions under diabetic conditions 
despite a lack of direct evidence.  

Calpain 
Calpains are a superfamily of Ca2+-dependent 

intracellular cysteine proteases and have a role in 
generating MVs via remodeling the cytoskeleton and 
facilitating the budding of the plasma membrane. 
Emerging data suggest that calpains, particularly 
calpain 1, 2, and 10, contribute to the genetic causes 
and biochemical defects of T2D, albeit a clear 
involvement of EVs in calpain-modulated T2D 
phenotypes remains elusive [171-191]. 

CAPN10 encoding calpain 10 is the first 
positionally cloned gene for T2D [237-244]. Its 
polymorphisms are closely associated with chronic 
diabetic vascular complications, such as DN, DR, 
diabetic neuropathy, and cardiovascular diseases 
[245]. By utilizing multiple calpain inhibitors, recent 
studies have uncovered the function of calpains in 
IAPP-mediated cell dysfunction, insulin secretion in 
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islet cells, insulin-stimulated glucose uptake, and 
glycogen synthesis in adipocytes and skeletal muscle 
cells [246,247]. Notably, O-GlcNAcylation modifi-
cation may facilitate the exosomal release of calpain 2 
in hepatocytes under the high glucose (HG) condition 
[248]. Exosomal calpain 2 can cleave the ectodomain 
of the insulin receptor and thus impair insulin action, 
providing a credible link between calpain 2, 
exosomes, and T2D etiology [248]. Moreover, 
activation of calpain 1 and 2 contributes to accelerated 
atherothrombosis development in T2D by regulating 
different substrates in platelets and ECs [177-181]. 
Since MVs loaded with elevated calpain 1 can be 
delivered to ECs and induce vascular inflammation 
[180,181], MVs might contribute to the phenotypes 
mentioned above.  

SNARE proteins 
The assembly of the SNARE complex mediates 

MVE fusion with the plasma membrane and allows 
exosome secretion into extracellular space. The role of 
SNAREs in glucose metabolism and T2D pathology 
has been extensively reported, although the 
involvement of EVs in the SNAREs-mediated effects 
remains unclear and awaits further investigation 
[192-198]. 

SNAREs fundamentally maintain glucose 
homeostasis via participating in insulin and 
glucagon-like peptide 1 (GLP-1) secretion and 
GLUT4-mediated glucose uptake [249-251]. Many 
SNARE components, including VAMP2, syntaxin-1A, 
-2 and -4, SNAP-23 and -25, and synaptotagmin, are 
decreased in human and rodent T2D islets [192-195], 
and are associated with β cell hypertrophy and 
defective insulin secretion. Abnormal expression of 
SNARE proteins is implicated in IR in 
insulin-responsive tissues like the AT and muscle, 
probably due to impaired GLUT4 intracellular 
translocation [196, 197]. In addition to dysregulated 
expression, abnormal location of SNAREs may have a 
role in systemic metabolism and T2D development. 
For example, abnormal sorting of VAMP2 into lipid 
droplets leads to inadequate trafficking of GLUT4 on 
the plasma membrane and IR in adipocytes [252]. 
Additionally, VAMP2 is elevated in serum and 
possibly induces autoimmune response and 
consequent insulitis, suggesting it as a potential 
autoantigen of T1D [199]. 

EV cargo sorting 

Protein cargo sorting 
Proteomic analysis has uncovered that diabetic 

condition alters the protein composition of EVs of 
different origins [253-257]. Therefore, the cellular 
expression and function of EV protein sorting 

machinery in response to diabetic stimulations could 
be attributed to proteomic alterations of EVs in DM. 
In addition to ESCRTs mentioned above, tetraspanins 
CD63 and CD82 that participate in EV protein cargo 
sorting [83-85], have also been implicated in 
developing DM and its complications [200-203, 258].  

Under glucolipotoxic conditions, CD63 mediates 
stress-induced nascent granule degradation of insulin 
in β cells, thereby mitigating insulin secretion and 
accelerating T2D [258]. Moreover, AGEs can induce 
the expression of CD63, the marker of platelet 
activation, and the CD63+ platelet level is elevated in 
T2D patients with progression of carotid wall 
thickness [200, 201]. CD63 is also upregulated in 
diabetic patients with DN and contributes to renal cell 
death by inhibiting the Wnt/β-catenin signaling 
pathway [202]. CD82 is highly expressed in diabetic 
skin tissue and possibly associated with diabetic 
chronic inflammatory and hypoxic state [203], albeit 
its precise role and mechanism in diabetic 
dermopathy remain elusive. Taken together, altered 
expression and function of CD63 and CD82 under 
diabetic conditions may contribute to selective 
enrichment of cargoes in EVs and consequently 
induce changes in the EV proteome profile.  

Additionally, several PTMs of proteins are 
required for their sorting in EVs, possibly involved in 
ubiquitination of PTEN and DMT1, phosphorylation 
of caveolin 1, and other diabetic pathological changes 
[259-265]. Specifically, the concentration of 
polyubiquitinated PTEN, which plays an important 
role in regulating renal fibrosis, is increased in the 
serum and urine of DN patients [260]. It has been 
reported that ubiquitination at lysine 13 of PTEN is 
required for the selective enrichment of PTEN in 
exosomes [90], which may partially mediate the 
pathological role of PTEN in DN. Similarly, the 
release of DMT1 from MVs is mediated by Nedd4-2 
ubiquitin ligase, suggesting a role of ubiquitination in 
the cargo sorting of EV proteins in the gut explant 
[91]. Moreover, in vivo and in vitro studies have found 
that HG leads to elevated DMT1 levels in intestinal 
epithelial cells partially by inhibiting DMT1 
ubiquitination and promoting DMT1 membrane 
translocation, resulting in increased iron uptake and 
iron loading [259]. Together, it is reasonable to 
hypothesize that the ubiquitinated DMT1 located at 
the plasma membrane is sorted into the budding 
vesicles and secreted into the extracellular 
environment. In contrast, the deubiquitinated DMT1 
is trapped within cells, leading to elevated expression 
of DMT1 in the diabetic intestine. Also, 
phosphorylation of caveolin-1, a scaffolding protein 
involved in protein sorting of MVs [100], has been 
shown to be important in DN development [261-265]. 
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Hypoxia induces the phosphorylation of caveolin-1 
that can directly interact with hnRNPA2B1, 
facilitating the sorting of hnRNPA2B1 and 
its-associated miRNAs into MVs [100]. Under diabetic 
conditions, HG promotes caveolin-1 phosphorylation 
in podocytes and glomerular mesangial cells (GMCs), 
resulting in renal cell apoptosis, inflammation, EMT, 
and glomerular matrix accumulation [261-265]. 
Moreover, circulating MVs derived from diabetic rats 
can be delivered into vascular ECs and lead to 
elevated caveolin-1 levels in recipient cells [266]. 

RNA cargo sorting 
RNA cargo affects many EV functions in various 

diseases, including DM and diabetic complications. 
Diabetic conditions induce alterations of mRNAs, 
miRNAs, lncRNAs, and circular RNAs (circRNAs) in 
EVs [267-270], primarily due to the dysregulation of 
numerous RBPs. HuR, an extensively studied RBP, is 
involved in EV RNA sorting by directly recognizing 
and binding RNAs bearing AU-rich elements, such as 
miR-122 and miR-21 [121]. Both HuR and its 
associated miRNAs have been implicated in the 
diabetic heart, DN, and DR developing [204-210].  

In the context of DM, target proteins 
post-transcriptionally modified by HuR have been 
shown to play a role in the pathogenesis of diabetic 
complications like DN, DR, and diabetic 
cardiomyopathy [204-210]. For instance, HuR can 
post-transcriptionally modulate the expression of 
several regulators involved in renal injury, such as 
claudin-1, IL-17, NOD2, NLRP3, CTGF, TGF-β1, and 
Snail [204-207]. Similarly, pyroptosis, inflammation, 
oxidative stress, and EMT have been mechanically 
involved in HuR-mediated DN development and 
progression. Moreover, it has recently been shown 
that HuR can be delivered into cardiomyocytes and 
thus elicit inflammatory and profibrogenic responses, 
highlighting its importance in the diabetic heart [209].  

It has been reported that miR-122 and miR-21, 
two miRNAs sorted by HuR into EVs [121], have a 
role in the diabetic heart [271-273]. MiR-21 is 
significantly decreased in cardiomyocytes of diabetic 
mice and contributes to diastolic cardiac dysfunction 
by directly targeting gelsolin and consequent 
oxidative stress. In contrast, circulating levels of 
miR-21 and miR-122 are increased in T2D patients 
with heart failure [272,273], probably resulting from 
increased EV secretion triggered by HuR 
upregulation. Thus, miR-21 and miR-122 may be 
selectively encapsulated in the EVs via HuR and 
secreted extracellularly, leading to an increase in their 
extracellular levels while causing a decrease in their 
intracellular levels, possibly mediating the pathogenic 
effect of HuR in diabetic cardiomyopathy. Similarly, 

these two miRNAs could play a role in DN and DR 
[274-277]. For instance, it has been shown that miR-21 
encapsulated in EVs exerts a pro-angiogenic effect on 
ECs and promotes DR development [278, 279]. 
Further research is required to clarify whether the 
HuR function in the pathogenesis of diabetic 
complications depends on EV-miRNA sorting. 

HnRNPK is another RBP involved in the RNA 
sorting of EV and its phosphorylation can be induced 
by glucolipotoxicity, a classic metabolic abnormality 
associated with T2D [211,212]. Phosphorylated 
hnRNPK can significantly modulate the expression of 
oxidative and inflammatory genes in β cells [211]. 
HnRNPK expression is decreased in the kidney of 
T1D mice and can potentially mediate RAS activation 
and hypertension in T1D [212]. The altered expression 
and post-translational modification of hnRNPK might 
lead to different RNA selection in EVs, possibly 
contributing to hnRNPK function in DM.  

Collectively, it is reasonable to conclude that EVs 
may mediate specific pathogenic roles of EV 
generation machinery in the initiation and 
progression of DM and diabetic complications. Thus, 
elucidating the association between EV biogenesis 
and diabetic pathogenesis represents an attractive 
direction for future investigation, which would pave 
the way for developing novel targeted therapeutics 
for DM and diabetic complications. 

Roles of EVs in DM 
EVs are emerging as novel effectors of 

intercellular and interorgan communication and play 
active roles in multiple pathophysiological situations 
of metabolic modulation like metabolic homeostasis, 
maintenance, and disturbance. Of note, EV-induced 
phenotypic and molecular alterations in target cells 
are often associated with the composition and origin 
of these microstructures. In this section, we 
summarize the diverse EV functions in DM pathology 
and diabetic complications in the context of the 
cellular origin of EVs.  

Adipocytes 
AT is central in regulating systemic insulin 

sensitivity, hypertrophic adipocyte-induced elevated 
FFA release, inflammation, and adipokine alterations 
that are the drivers of the whole-body IR in T2D. 
Lipogenic stimulus and excess fat expansion promote 
EV generation in obese adipocytes, which, in turn, 
contribute to IR and islet cell dysfunction via 
paracrine effect and/or distant action (Figure 4) 
[280-285]. These EVs induce lipid droplets deposit by 
directly delivering neutral fatty acids [286], and 
promote lipid synthesis by transmitting the key lipid 
synthesis enzyme FASN, lipogenic-related miRNAs 
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and mRNAs, and CD73 [281-284, 287]. In vitro 
experiments showed that EVs can impair insulin 
response and glucose uptake in recipient adipocytes 
[280]. Besides the paracrine effect on local adipocytes, 
EVs secreted by adipocytes can result in peripheral IR 
and metabolic disorder by functioning as adipokine 
carriers [288]. Hypertrophic adipocyte-derived 
exosomes loaded with resistin, a canonical 
obesity-related adipokine, triggered hepatic ER stress 
and liver steatosis [289]. Several studies have 
described functional lncRNA (MALAT1), miRNAs 
(miR-27a, miR-141-3p) and proteins (CD36, and 
Akr1b7) encapsulated in adipocyte-derived EVs as 
novel adipokines that exert metabolic modulatory 
effects on distant organs [216, 290-293]. These newly 
discovered adipokines are sufficient to induce hepatic 
lipid accumulation and IR in the liver and skeletal 
muscle [216, 292, 293]. In addition to peripheral 
tissues, EV-encapsulated MALAT1 can be transported 
to pro-opiomelanocortin neurons, increasing appetite 
and body weight [291]. Additionally, adipocyte- 
derived EVs have a modulatory effect on the survival 
and function of distant islets by delivering specific 
miRNAs [285]. 

Macrophage infiltration in AT is a hallmark of 
obesity and contributes to chronic inflammation and 
subsequent IR [294]. Obese adipocyte-derived EVs 
have been demonstrated to play a role in recruiting 
and activating circulating monocytes and polarizing 
resident macrophages toward the proinflammatory 
phenotype [287, 295-300]. Interestingly, based on the 
specific interactions between surface proteins of EVs 
and recipient cells, EVs are preferentially taken up by 
circulating monocytes in vivo and promote 
macrophage activation and IR [52, 295]. In addition, 
obese adipocyte-derived EVs can shuttle bioactive 
molecules, such as miR-34a and miR-155, into 
recipient macrophages, and thus promote 
pro-inflammatory M1 polarization and inhibit 
anti-inflammatory M2 polarization [296-298].  

EVs can also function as a mode of 
communication between adipocytes and vascular 
ECs, which may be dynamically influenced by 
metabolic status [301], and have a role in 
cardiovascular complications. EVs derived from obese 
AT often exert detrimental effects on vascular cells, 
including ECs, vascular smooth muscle cells 
(VSMCs), and cardiomyocytes [302-308]. It has been 
shown that miR-221-3p, miR-130b-3p, lncRNA 
SNHG9, and VACM-1 within the EVs can result in 
endothelium inflammation, vascular stenosis, 
unstable atherosclerotic plaque formation, and 
impaired cardiac recovery [304-307]. 

Macrophages  
Inflammatory macrophages infiltrated in AT 

lead to low-grade tissue inflammation, which is the 
key cause of IR in T2D [309]. EVs derived from obese 
AT macrophages (ATMs) can serve as systemic 
inflammation factors and impair insulin signaling in 
distal organs (Figure 4). Metabolic regulatory 
miRNAs, such as miR-29a, miR-155, and miR-210, can 
be carried by EVs and delivered into 
insulin-responsive cells and organs via paracrine or 
endocrine routes [310-313]. These miRNAs robustly 
regulate insulin action on AT, liver, and skeletal 
muscle and cooperatively modulate systemic glucose 
homeostasis [310-313].  

Macrophage-derived EVs also play a role in DM 
complications. It has been reported that HG and 
RAGEs induce EVs production in macrophages 
[314-318]. Biomolecular cargoes within these EVs, 
such as IL-1β, iNOS, HuR, miR-21-5p, miR-486-5p, 
and TGF-β mRNA can be transferred to target cells 
and subsequently induce renal and cardiac injury and 
dysfunction [314-319]. In particular, two miRNAs 
closely related to cardiac fibrosis and diastolic 
dysfunction, miR-122 and miR-1246 [320, 321], have 
been shown to be specifically sorted into EVs by the 
RBP HuR [121, 322], raising the possibility that some 
pathogenic effects of HuR may be mediated by 
miRNAs enclosed in macrophage-derived exosomes. 
The oxidized low-density lipoprotein (oxLDL) is 
known to induce M1 polarization of macrophages and 
foam cell formation in the arterial wall, two crucial 
atherogenic events in DM. Interestingly, recent 
studies suggest an important role of miRNAs carried 
by activated macrophage-derived EVs in 
atherosclerosis [323-332]. Thus, EVs can effectively 
transmit pathogenic miRNAs to target cells, including 
VSMCs, ECs, neutrophils, and macrophages, leading 
to vascular stenosis, dysfunction, and inflammation 
that promote atherosclerosis and thrombosis (Figure 
4) [323-329]. Besides miRNAs, functional factors, 
including lncRNA GAS5, integrin β1A, and α5, loaded 
in EVs, also participate in the progression of vascular 
injury and cardiovascular diseases [331,332]. 

Macrophage-derived EVs have been implicated 
in multiple immune response processes [333-335] and 
can present dead cell-associated auto-antigens to 
dendritic cells, and activate an autoimmune response 
[333,336]. Exosomes derived from M1 macrophages 
can also act on T cells, amplifying Th1 response and 
aggravating neuritis in Guillain–Barré syndrome 
[337]. Notably, macrophages infiltrated in islets are 
the main source of free radicals and pro-inflammatory 
cytokines, inducing β cell death in T1D [338,339]; 
however, the potential contribution of EVs in this 
process awaits further exploration. 
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Figure 4. Involvement of adipocyte- and macrophage-derived EVs in DM-related pathological changes. Adipocyte-derived EVs play a distinct role at multiple 
processes in the development of DM-related pathology. These EVs with specific cargoes (FASN, neutral fatty acids, CD73, resistin, Akr1b7, CD36 and miR-27a) can circulate 
throughout the body and reach their destination for IR development and metabolic disturbance in the adipose, liver and skeletal muscle. Islet inflammation, damage and 
dysfunction can also be induced by adipocyte-derived EVs. Upon uptake by recipient cells, these EVs can deliver several pathogenic mediators to ECs, hypothalamus and heart 
(increased miR-221-3p and VCAM-1, reduced SNHG9 to ECs, and increased MALAT1 to hypothalamus), resulting in vascular injury, elevated appetite, and myocardial damage, 
respectively. SHH-, RBP4-, MIP1-α-, miR-34a- and miR-155-containing EVs taken up by macrophages can promote M1 polarization and foam cell differentiation, while inhibit M2 
polarization, leading to localized adipose and systemic inflammation, and accelerated atherosclerosis. Reciprocally, inflamed macrophage-derived EVs carrying elevated miR-210 
and miR-29a can be transferred to adipocytes, causing IR in the adipose tissues. EVs containing miR-29a originated from macrophages can also be delivered to the liver and skeletal 
muscle, leading to IR in target organs. Elevated HuR, integrin β1 and α5, IL-1β, iNOS, TGF-β mRNA, miR-21-5p, miR-185-3p, miR-146a, miR-503-5p, miR-486-5p, miR-106-3p, 
miR-430, miR-150, and lncRNA GAS5 in these EVs ultimately result in cardiac fibrosis and dysfunction, atherosclerosis, renal inflammation, and glomerular mesangial matrix 
accumulation. Abbreviations: AT: adipose tissue; ECs: endothelial cells; ER: endoplasmic reticulum; EVs: extracellular vesicles; FAs: fatty acids; HuR: human antigen R; IR: insulin 
resistance; SHH: sonic hedgehog; TG: triglyceride. 
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Hepatocytes 
Lipid stress under obese conditions leads to 

abnormal fat accumulation and inflammation in the 
liver in T2D, contributing to localized and systemic IR 
and inflammation. EVs derived from hepatocytes 
with overnutrition participate in this process via 
paracrine and endocrine actions. For instance, 
increased geranylgeranylation of Rab27a in 
hepatocytes promotes vesicle docking toward the 
plasma membrane and the subsequent EV release into 
circulation [340]. Specifically, let-7e-5p, with the 
greatest increase in EVs under a high-fat diet (HFD), 
can be transferred to adipocytes and increase 
lipogenesis and adipose expansion through targeting 
Pgc1α [340]. When taken up by the pancreas, EVs can 
promote islet cell proliferation and participate in the 
compensatory response in the early onset of T2D 
[341]. In addition, these EVs are enriched in 
proinflammatory molecules, including S1P, TRAIL, 
integrin β1, ceramide, miR-122, and miR-192-5p, 
which can induce inflammatory cell infiltration and 
inflammation by attracting circulating monocytes and 
polarizing macrophages toward pro-inflammatory 
differentiation in the liver [342-348]. 

Moreover, EVs derived from lipid-stressed 
hepatocytes can mediate the crosstalk between the 
liver and cardiovascular system and contribute to 
related complications.  EVs shed by steatotic hepatic 
cells contain elevated miR-1 and miR-122, which can 
induce expression of adhesion molecules and 
diminish mitochondrial activity in target ECs and 
cardiomyocytes, resulting in atherosclerosis 
aggravation and cardiac function impairment [349, 
350].  

Islet cells  
Insulin-releasing cells are considered the main 

effectors of autoimmune response, and their 
destruction is the main cause of T1D. In the past few 
years, EVs derived from islet cells under 
inflammatory stress have underscored their 
pathogenic function in autoimmune insulitis of T1D. 
Inflammatory cytokines induce islet autoantigen 
enclosure [351-354] and RNA profile alteration 
[270,355] in these EVs. Several known canonical 
diabetic antigens, for e.g., GAD65, IA-2, ZnT8, 
GLUT2, and proinsulin, as well as the newly 
identified Gag antigen, can be effectively delivered to 
antigen-presenting cells (APCs), leading to T cell 
activation and autoimmune response [351-354]. In 
addition, these EVs can transfer bioactive RNAs and 
proinflammatory molecules, such as MCP1 and IL-27, 
to immune cells [355-359], and thus might account for 
the activation of recipient immune cells, such as 

dendritic cells, macrophages, B lymphocytes, and T 
lymphocytes. EVs derived from inflamed islet cells 
may also impose a pro-apoptotic effect on 
neighboring β cells by paracrine action and horizontal 
transmission of pathogenic miRNAs (e.g., miR-375-3p 
and miR-21-5p) associated with pancreas injuries 
[360].  

Bioactive miRNAs loaded in pancreatic β 
cell-derived exosomes can function as endocrine 
factors, whose level changes influence glucose 
homeostasis and T2D development. HFD, the 
common risk factor for obesity and T2D, can affect 
specific miRNA levels in β cell-derived EVs, such as 
an increase in miR-29 and a decrease in miR-26a 
[361-363]. These exosomal miRNAs can be transferred 
to peripheral tissues and impair insulin signaling in 
recipient cells, and also be transmitted to circulating 
monocytes and macrophages and induce chronic 
low-grade inflammation [361-363]. MiR-26a is widely 
expressed in human tissues and involved in the 
pathogenesis of various human diseases, including 
DM and its associated disorders [364-369]. Under T2D 
conditions, miR-26a expression is decreased in β cells, 
subsequently reducing circulating exosomal miR-26a, 
impairing insulin sensitivity and metabolic 
homeostasis in the liver and AT, thereby promoting 
the development of T2D [363]. In contrast, exosomal 
miR-29s and miR-29a derived from islet cells are 
induced by FFAs stimulation and inflammation 
[361,362]. These two exosomal miRNAs are delivered 
to the liver and inflammatory cells, resulting in 
hepatic IR and systemic metabolic dysregulation and 
inflammation [361,362]. Moreover, islet cell-derived 
EVs seemingly contribute to pancreatic failure in T2D 
and thus promote disease progression. 
Mechanistically, EVs may potentially facilitate IAPP 
aggregation and amyloid formation in pancreatic 
cells, resulting in cell death [370]. Additionally, 
pancreatic cell-derived EVs have a role in DM 
complications. HG stimulation significantly increases 
miR-15a levels in exosomes isolated from pancreatic β 
cells that can be readily absorbed by retinal cells and 
induce ROS production and apoptosis in recipient 
cells, leading to DR [371].  

To sum up, the pancreas is the target organ of 
diabetic injury and also serves as the pathogenic 
tissue releasing damaging EVs that can effectively 
mediate the crosstalk among the pancreas, distant 
organs, and immune system (Figure 5). Given that the 
pancreas is an active and potent endocrine and 
exocrine tissue and plays a central role in systemic 
metabolic homeostasis and multiple diseases, its EVs 
are expected to be involved in diverse physiological 
and pathological processes.  
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Figure 5. Islet cell-derived EVs promote the development of T1D, T2D and diabetic retinopathy. Islet cell-derived EVs carry various molecular effectors that can 
trigger multiple signaling cascades, and may regulate the development of T1D, T2D and diabetic complications. In T2D, reduced miR-26a and NCDase in these EVs can exert a 
paracrine effect on ambient islet cells, resulting in cell death, dysfunction and IAPP accumulation. Distant delivery of EVs derived from islets cells with reduced miR-26a and 
elevated miR-29s to the liver, adipose and macrophages can promote IR and lipid accumulation in the liver, and cell expansion and systemic inflammation in the adipose, ultimately 
leading to T2D development. EVs with increased miR-15a are also be transmitted to retina and cause oxidative stress and cell apoptosis, promoting the occurrence of diabetic 
retinopathy. In T1D, islets cell-derived EVs are encapsuled with islet autoantigens and facilitate autoantigen presentation and autoimmune activation, along with activating 
phagocytes and promoting cytokines and chemokines release. Inflammatory islet cell-derived EVs are loaded with increased miR-375-3p and miR-21-5p, exerting a pro-apoptotic 
effect on surrounding β cells via paracrine action. Abbreviations: APC: antigen presenting cell; AT: adipose tissue; EVs: extracellular vesicles; IAPP: islet amyloid polypeptide; 
IR: insulin resistance; ROS: reactive oxygen species; T1D: type 1 diabetes; T2D: type 2 diabetes. 

 

ECs  
ECs are centrally involved in the microvascular 

pathology and complications in DM [372]. 
Specifically, diabetic vascular complications are 
characterized by EC dysfunction and death, and 
endothelium inflammation. Accumulating evidence 
indicates that EC-derived EVs are involved in these 
processes via paracrine action (Figure 6). HG and 
AGEs have been shown to induce MV generation and 
alter EV cargo sorting in ECs [253, 373, 374]. These 
MVs can promote apoptosis and dysfunction of 
recipient ECs [375-378]. For example, reduced EV 
miR-126 and miR-222 are sufficient to decrease 
endothelium repair capacity, partially accounting for 
the loss of protective function of EC-derived EVs 
[376-378]. Moreover, MVs are rich in membranous 
tight-junction proteins, occludin and claudin-5, 
resulting in a reduction of these molecules on the 
surface of parental ECs and impaired vessel walls 
[373]. Additionally, these MVs can induce the 
expression of adhesion molecules in target ECs and 

facilitate inflammatory cells to attach and infiltrate 
into the endothelium [379, 380].  

Capillary basement membrane thickening of the 
glomerular, retinal, cardiac, and cutaneous arterioles 
is the most common microvascular structural 
modification in DM, resulting in organ malperfusion 
and classic diabetic microangiopathy [372]. In the 
diabetic setting, EVs derived from HG-treated ECs 
encapsulate elevated Notch3, versican, PDGF-BB, and 
circRNA-0077930, which can be taken up by 
surrounding VSMCs [381-386]. Consequently, 
recipient VSMCs acquire an anti-apoptotic, 
osteoblast-like and senescent phenotype, leading to 
intimal hyperplasia and vascular calcification 
[381-386]. Furthermore, ECs from different tissues can 
exert paracrine actions on ambient cells and promote 
the development of diabetic cardiomyopathy, DN, 
and diabetic foot. Exosomes derived from HG-treated 
ECs can suppress autophagy, increase apoptosis, and 
interfere with energy metabolism in target 
cardiomyocytes [387]. Exosomes derived from 
diabetic glomerular ECs (GECs) transmit TGF-β1 
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mRNA to GMCs and podocytes then induce elevated 
proliferation and matrix production of GMCs and 
fibrosis of podocytes [388, 389]. More recently, it has 
been shown that specific circRNAs in these exosomes, 
such as circRNF169 and circSTRN3, may also 
contribute to the dysregulation of GMCs and 
mesentery proliferation in DN [269]. Similarly, AGEs 
can boost miR-106b-5p in EVs derived from ECs that 
can be efficiently transported to recipient fibroblasts, 
leading to fibroblast autophagy and subsequent 
delayed wound healing [390].   

Furthermore, generation and abnormal miRNAs 
sorting of EVs induced by oxLDL are also considered 
important atherogenic events in DM. Elevated EV 
miRNAs, including miR-155, miR-4306, miR-505, and 
miR-92a-3p, are delivered into macrophages, 
neutrophils and surrounding ECs, leading to 
endothelial inflammation, dysfunction, and damage, 

and promoting atherosclerosis [328, 391-393]. 
Consequently, recipient inflammatory cells are 
aberrantly activated and exhibit a pro-inflammatory 
phenotype, while target ECs display decreased 
migration, proliferation, and angiogenic capacity 
[328,391-393]. Besides, other bioactive molecules with 
an atherogenic role, such as LINC01005, MALAT1, 
HSP70, and ICAM-1, have also been detected in EVs 
and may play a role in DM pathogenesis [394-397]. 

Other cells 
Skeletal muscle is the major organ for glucose 

uptake, whose IR is one of the primary defects of T2D 
[398]. During lipid-induced IR, exosomes derived 
from skeletal muscle cells are enriched in saturated 
fatty acid palmitate, which can be taken up by 
insulin-sensitive tissues, particularly the pancreas and 
liver, representing a new paradigm of inter-organ 

 

 
Figure 6. Role of EC-derived EVs in the pathogenesis of diabetic complications. EVs derived from ECs are critically involved in the occurrence and progression of 
diabetic complications, including endothelial damage and inflammation, vascular sclerosis, diabetic cardiomyopathy, diabetic nephropathy and diabetic foot, by transferring 
functional biomolecules. On the one hand, by secreting occludin and claudin-5 via EVs, original ECs lose tight junctions. On the other hand, EC-derived EVs can promote 
apoptosis, induce the expression of adhesion molecules, and impair repairment capacity of recipient ECs, resulting in endothelial injury and inflammatory cell attachment and 
infiltration in endothelium. The protective function of EC-derived EVs on endothelium (ECs and VSMCs) is potentially mediated by miR-126 and miR-222, which is decreased 
under diabetic conditions. Notch 3, versican, PDGF-BB, LINC01005, circRNA-0077930 are delivered to VSMCs by EVs from ECs in a paracrine manner, resulting in apoptosis 
resistance and osteoblast-like differentiation in recipient VSMCs. EVs derived from ECs under oxLDL stress can transmit HSP70, ICAM-1, MALAT1, miR-155, miR-4306, miR-505 
and miR-92a-3p into circulating system and local inflammatory cells including monocytes, macrophages and neutrophils, leading to endothelial inflammation and atherosclerosis. 
Glomerular EC-derived EVs are involved in the development of diabetic nephropathy via transferring TGF-β1 mRNA, circRNF16 and circSTRN3, thereby promoting renal cell 
proliferation, fibrosis and ECM production. EVs derived from ECs can disturb energy metabolism and induce cardiomyocyte apoptosis, facilitating the development of diabetic 
cardiomyopathy. MiR-106-5p is increased in the EVs from ECs, and is subsequently transmitted into dermal fibroblasts and contributes to a refractory wound in diabetic foot. 
Abbreviations: AGEs: advanced glycation end products; ECs: endothelial cells; ECM: extracellular matrix; EVs: extracellular vesicles; NET formation: neutrophil extracellular 
trap formation; oxLDL: oxidated low-density lipoprotein; VEC: vascular endothelial cells; VSMC: vascular smooth muscular cell. 
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communication and metabolic homeostasis [399]. 
MiR-16 encapsulated in these lipid toxic exosomes can 
promote the proliferation of target islet cells, acting as 
a compensatory IR mechanism during the onset of 
T2D [400]. Nevertheless, after exercise training, 
skeletal muscle-derived EVs of healthy individuals 
carry specific protein and miRNA signatures and 
display liver tropism [401, 402]. Bioactive miRNAs, 
including miR-133b, are transmitted to hepatic cells, 
inhibiting FoxO1 expression and leading to improved 
systemic metabolism [402]. The target specificity is 
thought to be mediated by interactions between the 
proteins distributed on the surface of exosomes and 
recipient cells [401, 402].  

Gut microbiota dysbiosis has a driving role in 
T2D by inducing abnormal intestinal metabolites and 
intestinal permeability dysfunction [403]. Recent 
studies indicate that EVs derived from Akkermansia 
muciniphila, a beneficial bacterium preventing IR, 
contribute to the HFD-induced gut permeability 
elevation due to decreased intestinal tight junction 
function [404]. In general, intestinal barrier disruption 
causes an increase in EVs derived from gut microbes 
in the circulation and whole body [405-408]. The gut 
dysbiosis-related EVs appear to promote IR by 
transferring deleterious cargoes to recipient cells, such 
as HMGB1 and phosphatidylcholine [404-407]. 

In T1D, β cell death is primarily mediated by T 
cells, triggering diabetogenic insulitis [409]. In 
addition to inflammatory cytokines that are 
traditionally viewed as inducers of islet mass loss, 
EVs loaded with pro-inflammatory miRNAs, such as 
miR-142-3p, miR-142-5p, and miR-155, have been 
shown to specifically target pancreatic β cells and 
function as a novel pathogenic factor mediating 
autoimmune attack of β cells in T1D [410]. 

In T2D, platelets are considered a mediator of 
cellular crosstalk and a driver of inflammation [411]. 
EVs shed by platelets carrying soluble inflammatory 
cytokines have been recently implicated in these 
processes [412-414]. In a diabetic setting, platelets can 
release more EVs containing increased CXCL7 and 
CXCL10 that could be targeted to ECs in the aorta, 
kidney, and retina, resulting in increased expression 
of adhesion molecules, ROS production, oxidative 
stress, and inflammation-induced endothelial injury, 
thereby promoting the development of DR, DN, and 
atherosclerosis [412-414]. 

EVs derived from the kidney also have a role in 
mediating intercellular crosstalk in diabetic 
conditions. On the one hand, HG and AGEs induce 
shedding of MVs from podocytes potentially via 
activation of NOX4/ROS and the Smad3 pathway 
[415, 416]. These EVs mediate proximal tubular 
epithelial cell (PTECs) injury and apoptosis and 

proximal tubule fibrosis, partially due to 
transportation of miR-221 to target cells and 
subsequent regulation of Wnt/β-catenin signaling 
[415-419]. On the other hand, HG-treated 
GMC-derived exosomes can be delivered to 
podocytes, which induce apoptosis and inhibit cell 
adhesion, leading to impairment of the last line of 
defense of the glomerular filtration barrier [420]. 
These exosomes also potentially trigger an autocrine 
response in GMCs by delivering circ-DLGAP4 and 
miR-15b-5p that induce fibrosis and apoptosis 
[421,422]. Interestingly, HG seems to have a distinct 
effect on the generation of MVs and exosomes in 
PTECs. The MV release is increased under HG 
stimulation, which has a paracrine function on 
surrounding PTECs, promoting their fibrosis and 
impairing their adaptive responses combating 
hypoxia [423, 424]. In contrast, exosome biogenesis is 
decreased by HG treatment, which then exhibits a 
pro-proliferative effect on target fibroblasts and 
promotes extracellular matrix production [425].  

Exosomes derived from HG-treated retinal 
pigment epithelial cells can promote angiogenesis by 
directly delivering the pro-angiogenic factor VEGF 
into retinal ECs [426]. Exosomes released by limbal 
stromal cells from non-diabetic individuals, but not 
from diabetic patients, can improve proliferation and 
migration of recipient limbal epithelial cells and 
maintain the integrity of cornea limbal epithelium 
[427]. Additionally, diabetic condition disrupts the 
metabolism of Schwann cells (SCs), the most 
abundant cells in the peripheral nervous system, and 
results in their neurotrophic molecules production 
compromise, contributing to diabetic peripheral 
neuropathy [428]. SC-derived exosomes act as an 
important neuronal support factor, nurturing 
peripheral axons and maintaining neuronal structure 
and function [429]. Conversely, diabetic SC-derived 
exosomes likely function as carriers of pathogenic 
content, reducing the nerve conduction velocity and 
aggravating mechanical and thermal hypoesthesia in 
diabetic mice [430]. 

Clinical applications of EVs in DM and 
diabetic complications 
EVs as a biomarker for DM 

As described previously, EVs function as 
paracrine and endocrine factors and facilitate the 
crosstalk between metabolic organs and tissues. In 
addition, EVs have promising potential as biomarkers 
due to their good stability in body fluids and the ease 
of isolation and detection by fast-evolving 
technologies. Indeed, accumulating data have 
demonstrated the promise of EVs for clinical 
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applications as biomarkers in DM. Several recent 
reviews, extensively summarizing EVs as potential 
biomarkers for the early detection of DM and diabetic 
complications, stratification of patients, and response 
monitoring of treatment from different perspectives, 
are highly recommended [431-433]. Given the 
emerging role of EV RNAs in DM, here we briefly 
summarize the application of EV RNAs, including 
mRNAs and ncRNAs, as clinical biomarkers for the 
identification of diabetic patients and disease 
management (Table 2) [434-451]. 

For example, urinary exosomal miR-424 is 
robustly associated with islet autoimmunity and 
could efficiently discriminate patients with T1D with 
an area under the receiver operating characteristic 
(ROC) curve (AUC) of 0.803. However, serum 
miR-424 showed a relatively low diagnostic accuracy 
and sensitivity of 43% [452], suggesting urinary 
exosomal miR-424 as a more efficient biomarker for 
early detection of T1D. Another cohort study found 
that the combination of miR-10b and miR223-3p in 
serum MVs can effectively predict the occurrence of 
T2D in individuals with pre-diabetes with an AUC of 
0.884 [451]. Importantly, this correlation has been 

further confirmed in the validation set with an AUC 
of 0.807 [451]. It has recently been pointed out that 
during the serum sampling process, apoptotic MVs 
with surface membrane phosphatidylserine could be 
consumed and new populations of MVs generated 
[453]. The authors indicated that these possible major 
changes in serum MVs might raise controversy over 
the results [453]. Compared to serum, the sampling 
process for plasma is simple with relatively stable 
contents. In this regard, it has been proposed that 
plasma might be a better source of MVs for biomarker 
investigation.  

Native EVs for DM therapy 
EVs have been used as carriers of therapeutic 

substances and the administration of exogenous EVs 
has great promise in diabetic treatment. The 
therapeutic potential of EVs in treating DM and its 
complications in animal trials have been summarized 
and discussed in recent reviews [432,454]. Here, we 
briefly discuss recent advances and the prospect of 
native EV-based therapeutics in DM and its 
complications.  

 
 

Table 2. Diagnostic index of EV RNAs in DM and diabetic complications. 

RNAs Types [Reference] Source Number (ND/DM) AUC SEN (%) SPE (%) 95% CI 
let-7c-5p T2DN [444] Urine 15/28 0.818 96 53.4 0.718-0.919 
miR-21-5p T2D [442] Plasma 60/57 0.859 - - - 

T2D-C [442] Plasma 57/101 0.744 - - - 
T2DN [438] Urine 15/14 0.830 - - 0.673-0.986 

miR-23a T2D [434] Plasma 36/42 0.828 - - 0.735-0.920 
miR-29c-5p T2DN [444] Urine 15/28 0.774 - - - 
miR-30a-5p T2D-ESRD [436] Urine 80/40 0.912 - - - 
miR-30a T2DN [443] Urine 56/110 0.897 76.4 90.9 0.858-0.936 
miR-34a Dyslipidemia [439] Serum 78/42 0.730 - - 0.630-0.830 

T2DN [441] Urine 44/136 0.917 93.3 86.7 0.874-0.96 
miR-133b T2DN [443] Urine 56/110 0.867 86.4 72.7 0.820-0.914 
miR-146a-5p T2D [442] Plasma 60/57 0.911 - - - 

T2D-C [442] Plasma 57/101 0.673 - - - 
miR-156 T2DN [441] Urine 44/136 0.883 97.8 82.2 0.824-0.942 
miR-156-5p T2DN [444] Urine 15/28 0.818 - - - 
miR-192 T2D [434] Plasma 36/42 0.717 - - 0.607-0.828 

MIC [440] Urine 30/30 0.802 - - 0.696-0.907 
miR-194 MIC [440] Urine 30/30 0.703 - - 0.581-0.826 
miR-215 MIC [440] Urine 30/30 0.757 - - 0.545-0.869 
miR-218 T1D [437] Urine 30/30 0.817 - - - 
miR-342 T2DN [443] Urine 56/110 0.910 81.8 80.9 0.873-0.948 
miR-424 T1D [437] Urine 30/30 0.803 - - - 
miR-636 T2DN [441] Urine 44/136 0.984 97.8 93.3 0.971-0.997 
miR-4534 DN [435] Urine 14/14 0.786 85.7 78.6 0.607-0.965 
miR-10b and miR223-3p T2D [451] Serum 8/9 0.884 - - - 
circ_0000907 DFU [445] Serum 20/20 0.878 80 80.85 - 
circ_0057362 DFU [445] Serum 20/20 0.848 86.005 70.22 - 
Ace Overt DN [448] Plasma 100/37 0.75 73 72 0.66-0.83 

Incipient DN [448] Plasma 37/66 0.62 65.2 61 0.54-0.71 
Aebp1 T2DN [446] Plasma 15/15 0.742 53.3 86.7 - 
Ccl21 T2DN [447] Urine 15/28 0.888 - - 0.737-0.997 
Umod T2DN [450] Urine 15/88 0.90 93 73 - 
Wt1 Incipient DN [448] Plasma 37/66 0.63 50 74 0.55-0.72 

Overt DN [448] Plasma 100/37 0.83 67.6 93 0.74-0.92 
DN [449] Urine 10/10 0.705 - - - 

AUC: area under the ROC curve; CI: confidence interval; DFU: diabetic foot ulcer; DM: diabetes mellitus; DN: diabetic nephropathy; ESRD: end-stage renal disease; MIC: 
microalbuminuria; ND: non diabetes; SEN: sensitivity; SPE: specificity; T2DN: T2D with DN; T2D-C: T2D with complications. 
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Figure 7. Potential clinical applications of native cell-derived EVs in treating DM and its complications. EVs of native cells (such as pancreatic pathfinder cells, 
adipocytes, stem cells, retinal pigment epithelial cells, keratinocytes, endothelial progenitor cells, amniotic epithelial cells, endothelial cells, fibrocytes, and macrophages) show 
potent promise as novel therapies for T1D (via inhibiting autoimmune response) and T2D (via promoting islet cell function and survival, and/or improving peripheral insulin 
sensitivity). These EVs also have the potential to treat diabetic complications including atherosclerosis, diabetic retinopathy, diabetic heart, diabetic nephropathy, diabetic erectile 
dysfunction, diabetic neuropathy, and diabetic foot ulcer. Abbreviations: APC: antigen presenting cells; DM: diabetes mellitus; EMT: epithelial-mesenchymal transition; ECM: 
extracellular matrix; EVs: extracellular vesicles; GLUT4: glucose transporter 4. 

 
Anti-diabetic EVs have been isolated from 

various native cells, such as pancreatic pathfinder 
cells [455,456], adipocytes [457], and stem cells 
[458-462] (Figure 7). The preclinical data collected so 

far indicate that these EVs can improve peripheral 
insulin sensitivity and pancreatic islet function, 
alleviate inflammation, and/or attenuate obesity, 
regardless of their origin. The therapeutic roles of EVs 
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in recipient cells have been ascribed to the delivery of 
bioactive proteins. For example, the anti-inflam-
matory and anti-apoptotic roles of exosomes have 
been attributed to active STAT3 and VEGF [459, 460]. 
Depending on the source and content of EVs, they can 
trigger various therapeutic effects, such as inhibiting β 
cell apoptosis, restoring the phosphorylation of the 
insulin receptor substrate 1 and protein kinase B, 
increasing hepatic glycogen storage, polarizing M2 
macrophages, and inhibiting the auto-immune 
response [458-462]. Moreover, numerous examples of 
EV-mediated functional transfer of ncRNAs have 
been demonstrated for various diseases and the 
therapeutic applications of EV ncRNAs in treating 
DM offer a fertile field for study. 

Another important clinical application of EVs 
from different origins is in treating diabetic 
complications, such as DN [463-466], DR [467-471], 
diabetic erectile dysfunction [472-475], diabetic foot 
[476-490], diabetic cardiomyopathy [217], 
atherosclerosis [491-500], and diabetic peripheral 
neuropathy [429] (Figure 7). Currently, the 
therapeutic roles of EVs in treating diabetic 
complications are mostly attributed to the delivery of 
ncRNAs, especially miRNAs. For example, the 
angiogenic role of EVs has been ascribed to miR-21, 
let-7, miR-10, miR-30, miR-148a-3p, miR-126, 
miR-130a, and miR-132 [474-478], whereas their 
anti-fibrotic function has been attributed to let-7b and 
let-7c [474]. Some of these miRNAs have been 
identified in previous studies as anti-diabetes 
therapies, such as miR-21 [271,501,502], let-7 [503], 
miR-126 [504], and miR-132 [505, 506], further 
highlighting their great potential in DM treatment. In 
addition to ncRNAs, some proteins like TGF-β1, 
angiogenin, BMP-7, Nrf2, and DMBT1within EVs can 
also elicit biological therapeutic effects [463, 482, 484].  

However, important limitations in eliciting 
functional responses must be overcome for EVs to be 
used as an effective clinical therapeutic tool. Efforts 
have been made to address the challenges of 
harnessing the full potential of native EVs in the 
treatment of DM and diabetic complications. Because 
the EV composition is dependent on features of their 
donor cells, transfecting the original cells with 
exogenous compounds might modulate EVs and 
realize the goal of improving their bioactivity and 
augmenting their therapeutic efficacy. For example, 
overexpression of siFas and anti-miR-375 in human 
bone marrow mesenchymal stem cells can increase 
their levels in exosomes, effectively inhibiting Fas and 
miR-375 in recipient pancreatic islet cells and thus 
improve islet viability and function against 
inflammation [462]. Similarly, overexpression of 
functional proangiogenic components, such as Nrf2 

[482], miR-221-3p [507], mmu_circ_0000250 [480], and 
miR-126 [476], in parental stem cells is accompanied 
by upregulation of these genes in the secreted 
exosomes, thereby improving the therapeutic effect 
against diabetic foot ulcer.  

Furthermore, biomaterials, such as the 
thermosensitive and/or antibacterial hydrogel, have 
been developed to prolong the half-life of EVs and can 
serve as the controlled drug delivery system of EVs 
for treating chronic wounds [483, 508-510]. 
Additionally, taking advantage of the high-yield 
EV-mimetic nanovesicles (EMNVs) as a novel drug 
delivery system, the nanocarriers loaded with 
lncRNA-H19 have been applied to treat diabetic 
wounds [511]. These EMNVs function effectively by 
restoring lncRNA-H19 expression in dermal 
microvascular ECs and remarkably increase vascular 
formation [511] to treat DM and diabetic 
complications in the future.  

Conclusion and Perspective  
EVs are major regulators of DM and diabetic 

complications and play an important role in IR, 
inflammation, and islet dysfunction. Significantly, 
EVs have shown promising efficacy in animal models 
to deliver bioactive proteins and RNAs and can be 
harnessed as effective therapies for DM and diabetic 
complications. Despite these tremendous advances, 
the basic and clinical research of EVs in DM and 
diabetic complications is still at an infant stage. 

Although it is generally recognized that EVs 
communicate between cells and organs by delivering 
messages and exchanging information, many 
questions remain to be resolved. First, it is still 
challenging to categorize and characterize EV 
subclasses with high heterogeneity [512], mainly due 
to technological limitations in separating and 
analysing vesicles. Second, due to the complexity of 
EV contents, their functions, individually or 
collectively,  are far from being fully elucidated. Many 
attempts have been made to address this issue, for 
e.g., by developing a single-vesicle array and imaging 
method to track EV uptake [513,514]. Third, limited 
information is available about the molecular 
mechanisms underlying the target specificity of EVs 
with different origins so far. This process is believed 
to be largely mediated by membranous interactions 
between EVs originating from different cell types and 
target cells. Finally, it is important to monitor the fate 
of EVs after docking at recipient cells and determine 
the mechanisms underlying the usage of their cargoes. 

From the clinical perspective, therapeutic 
applications of EVs have multiple challenges that 
need to be addressed. Biological detection of EVs 
requires adequate enrichment together with high 
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sensitivity. Nanomaterials, such as magnetic 
nanoparticles, have been used to improve the 
sensitivity of EV detection [515, 516] by effectively 
increasing the interface between biological molecules 
and nanomaterials to facilitate the capture of target 
EVs, significantly raising the efficiency of EV 
isolation. Also, improving the specificity of EV 
separation required for the high specificity of 
biomarkers represents another challenge. Appropriate 
modifications of magnetic nanoparticles by attaching 
biological probes, such as antibodies targeting EV 
surface markers, can efficiently improve specificity 
[517,518].  

However, there are several outstanding issues 
regarding the use of EVs as effective therapies for DM 
and diabetic complications, including scale-up of the 
production, shelf stability, prolonging the half-life of 
therapeutic EVs, toxicity, off-target effects, and the 
delivery specificity. Despite these problems, EV-based 
biomarker discovery and clinic application are 
feasible and promising with constantly developing 
technologies. Due to their unique biological 
characteristics, EVs still have a great potential for 
accurate early diagnosis of DM and overcoming 
diabetic complications.  

Abbreviation 
aSMase: acid sphingomyelinase; AGEs: 

advanced glycation end products; APCs: antigen- 
presenting cells; AT: adipose tissue; AUC: area under 
the receiver operating characteristic curve; BMI: body 
mass index; circRNAs: circular RNAs;  CNS: central 
nervous system; DM: diabetes mellitus; DN: diabetic 
nephropathy; DR: diabetic retinopathy; ECs: 
endothelial cells; EMNVs: EV-mimetic nanovesicles; 
ER: endoplasmic reticulum; ESCRT: endosomal 
sorting complex required for transport; EVs: 
extracellular vesicles; FFAs: free fatty acids; GECs: 
glomerular ECs; GLP-1: glucagon-like peptide 1; 
GLUT: glucose transporter; GMCs: glomerular 
mesangial cells; GSK3β: glycogen synthase kinase 3β; 
HG: high glucose; HFD: high-fat diet; HuR: human 
antigen R; IAPP: islet amyloid polypeptide; ILVs: 
intraluminal vesicles; IR: insulin resistance; lncRNAs: 
long noncoding RNAs; MVs: microvesicles; MVEs: 
multivesicular endosomes; ncRNAs: non-coding 
RNAs; NETosis: neutrophil extracellular traps 
formation; nSMase: neutral sphingomyelinase; 
oxLDL: oxidated low-density lipoprotein; PTECs: 
proximal tubular epithelial cells; PTMs: 
posttranslational modifications; RAGEs: receptors for 
AGE; RBPs: RNA binding proteins; ROC: receiver 
operating characteristic; ROS: reactive oxygen species; 
SCs: Schwann cells; SNARE: soluble 
N-ethylmaleimide-sensitive fusion attachment 

protein receptor; t-SNAREs: target-membrane 
SNAREs; T1D: type 1 diabetes; T2D: type 2 diabetes; 
UBL3: ubiquitin-like 3; v-SNAREs: vesicle-membrane 
SNAREs; VSMCs: vascular smooth muscle cells. 
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