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Abstract 

Background: The prevalence of rectal neuroendocrine tumors (RNET) has increased substantially over the 
past decades. Little is known on mechanistic alteration in the pathogenesis of such disease. We postulate that 
perturbations of human gut microbiome-metabolome interface influentially affect the development of RNET. 
The study aims to characterize the composition and function of faecal microbiome and metabolites in RNET 
individuals. 
Methods: We performed deep shotgun metagenomic sequencing and untargeted liquid chromatography-mass 
spectrometry (LC-MS) metabolomic profiling of faecal samples from the discovery cohort (18 RNET patients, 
40 controls), and validated the microbiome and metabolite-based classifiers in an independent cohort (15 
RNET participants, 19 controls). 
Results: We uncovered a dysbiotic gut ecological microenvironment in RNET patients, characterized by 
aberrant depletion and attenuated connection of microbial species, and abnormally aggregated lipids and 
lipid-like molecules. Functional characterization based on our in-house and Human Project Unified Metabolic 
Analysis Network 2 (HUMAnN2) pipelines further indicated a nutrient deficient gut microenvironment in 
RNET individuals, evidenced by diminished activities such as energy metabolism, vitamin biosynthesis and 
transportation. By integrating these data, we revealed 291 robust associations between representative 
differentially abundant taxonomic species and metabolites, indicating a tight interaction of gut microbiome with 
metabolites in RNET pathogenesis. Finally, we identified a cluster of gut microbiome and metabolite-based 
signatures, and replicated them in an independent cohort, showing accurate prediction of such neoplasm from 
healthy people. 
Conclusions: Our current study is the first to comprehensively characterize the perturbed interface of gut 
microbiome and metabolites in RNET patients, which may provide promising targets for microbiome-based 
diagnostics and therapies for this disorder. 

Key words: Rectal neuroendocrine tumor; Gut microbiota; Metabolite; Shotgun metagenomic sequencing; Untargeted liquid 
chromatography-mass spectrometry (LC-MS) metabolomics. 

Introduction 
Gastroenteropancreatic neuroendocrine neo-

plasms (GEP-MENs) refer to a relatively rare but 
clinically important aggregation of malignancies, 

accounting for ≤ 1% of all neoplasms [1-3]. As the 
second most common digestive cancer in terms of 
prevalence, GEP-MENs are defined as deprivation of 
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normal epithelial tubular gland architectures and the 
expression of neuroendocrine markers such as 
chromogranin A (CgA) or synaptophysin (SYN) [4]. 
WHO classification system, mainly based on the 
proliferative index, subdivided these malignancies 
into well differentiated MENs (Neuroendocrine 
tumors, NETs; grade (G) 1, Ki-67 index ≤ 2%; or G2, 
Ki-67 index 3 - 20%), and poorly differentiated MENs 
(Neuroendocrine carcinomas, NECs; G3, Ki-67 index 
≥ 20%) [3-5]. Most recent evidence confirmed 
repeatedly that the annual incidence rate of 
GEP-MENs was continuously increased over the past 
three decades [1], probably due to the widespread use 
of screening colonoscopy, presenting great challenges 
for clinical management.  

Rectum is the second most primary MEN site in 
the gastrointestinal tract, only next to small intestine 
(30.8%), accounting for 26.3% of all GEP-MENs [3, 
6-8]. Unlike midgut MENs mostly diagnosed in white 
individuals, higher frequency of rectal MENs tends to 
develop in Asian, African American, and Native 
American patients. According to the Surveillance, 
Epidemiology, and End Results (SEER) registry 
database, the incidence of rectal MENs has increased 
by 800 - 1000% in the last 35 years in US [9]. Similar 
findings were reported in Far East, including China, 
Japan, and Taiwan [10-12]. In contrast with other 
GEP-MENs, most (> 90%) rectal MENs were detected 
as small and single polyps (< 1 cm), with 
well-differentiated histological morphology (G1, G2). 
Rectal MENs are usually asymptomatic and featured 
by slow proliferation. As such, treatment delays often 
occur, resulting in incurable once neoplastic cells 
metastasize to distant locations [8]. Currently, surgical 
resection is still the standard treatment for rectal 
MENs patients without distant metastases, whereas 
options for unresectable patients are limited. Further 
understanding of the aetiology and pathogenesis of 
rectal MENs will provide deep insight for novel 
diagnostic and therapeutic advances for patients with 
this disease. 

A large body of evidence has highlighted the 
decisive role of gut microbiota in establishment and 
maintenance of human health [13]. This community 
exerts broad modulation effects on host, including 
nutrient synthesis, metabolizing indigestible 
carbohydrates, preventing the colonization of 
pathogenic microbes, promoting maturation of host 
immune system, and maintenance of colon mucosal 
integrity [14]. Gut microbiome affects the host not 
only through the destructive effect of certain 
pathogens, but also by means of metabolites, which 
are small molecules derived from bacterial 
metabolism of dietary substrates, or directly produced 
by gut microbes. Disordered intestinal flora and 

metabolite profiles have been documented, also 
implicated in the pathogenesis of diverse 
gastrointestinal disorders [15]. For example, Franzosa 
et al. uncovered a strong correlation of specific classes 
of metabolites such as short chain fatty acids (SCFA) 
with intestinal inflammation and IBD [16]. SCFA, 
mainly consist of acetate, propionate and butyrate, are 
the end-products produced by gut microbiota 
through saccharolytic fermentation of non-digestible 
carbohydrates in small and large intestines. Specific 
bacterial species responsible for SCFA production 
have been well characterized by genomic sequencing 
approaches. Butyrate synthesis was predominantly 
contributed by Ruminococcus bromii via fermentation 
of resistant starch in human colon [17], while mucin 
was fermented into propionate mostly by Akkermansia 
municiphilla [18]. These studies collectively 
highlighted that the interdependence between gut 
microbiota and metabolites are closely associated with 
profound effects on host health. 

Dysbiosis of gut microbiome and metabolites has 
been widely studied in various types of digestive tract 
diseases, however, to date, partly due to the relatively 
low number of patients, we still know little about how 
specific bacterium and metabolites shape the 
colorectal environment, thus, to cause, sustain, 
mitigate, or predict the rectal diseases such as rectal 
neuroendocrine tumors (RNET). To address whether 
gut microbiota and metabolites contribute to the 
pathogenesis of RNET, our current study performed 
deep shotgun metagenomics and untargeted liquid 
chromatography-mass spectrometry (LC-MS) 
metabolomic profiling on 92 stool samples from two 
cohort, the 58-case discovery cohort (40 healthy 
controls, 18 RNET patients) and the 34-case validation 
cohort (19 healthy controls, 15 RNET patients), aiming 
at characterizing the composition and function of 
faecal microbial community and metabolites from 
patients diagnosed as RNET. With these unbiased 
approaches, for the first time, we presented 
comprehensive characterization regarding specific 
microbiome and metabolites in RNET patients, with 
the intention of yielding further insights into the 
details of RNET pathogenesis and the implication of 
disease-related microbial dysbiosis.  

Materials and Methods 
See details in the supplementary experimental 

procedures. 

Results 
In total, 58 eligible cases in the discovery cohort 

including 18 treatment-naïve patients diagnosed as 
RNET and 40 healthy individuals were included in 
this study. Clinical characteristics for each subject 



Theranostics 2022, Vol. 12, Issue 5 
 

 
https://www.thno.org 

2017 

were provided in Table S1 and Figure S1A. Smoking 
and alcohol consumption history differed between 
groups without significance (Figure S1B, Brinkman 
index, p = 0.75; Alcohol, p = 0.089, two-tailed wilcoxon 
rank-sum test). RNET patients in our cohort tended to 
have higher age and BMI index, although we didn’t 
find statistical significance regarding these clinical 
parameters between RNET and healthy individuals 
(Figure S1B, Age, p = 0.12; BMI, p = 0.36; two-tailed 
wilcoxon rank-sum test). 

To comprehensively characterize the gut 
microbiome and metabolic features in RNET patients, 
we carried out highthroughput shotgun metagenomic 
sequencing on 58 faecal samples to profile their 
microbial community taxonomic composition. Then, 
each sample was further explored by LC-MS 
metabolomics in non-targeted modes, in order to 
capture a mass of established and uncharacterized 
metabolites (Figure 1A). Metagenomic and 
metabolomic data were analyzed for: 1) disease 
specific alteration in individual’s microbial and 
metabolic features; 2) association between disease 
abundant microbiota and metabolites; 3) potential 
value of these features in RNET diagnosis. Specific 
features discovered in this cohort were then validated 
against an independent cohort of 15 RNET patients 

without receiving preoperative chemoradiotherapy 
and 19 healthy controls.  

RNET-specific microbial community structure 
identified by shotgun metagenomic 
sequencing 

Metagenomic sequencing was performed and 
generated an average of 71.36 million clean reads (11 
Gb of data) per faecal sample on an NovaSeq 6000 
platform. High-quality reads were then aligned to the 
updated gut microbiome gene catalog, representing 
the microbiome of the discovery cohort. To assess the 
difference of bacterial diversity between groups, we 
aligned sequences for gene count and α-diversity. The 
Integrated Gene Catalog (IGC) (Figure 1B) and 
Metagenomic phylogenetic analysis (MetaPhlAn2) 
(Figure 1C) results didn’t show statistical significance 
between groups, although consistent reduction of 
community richness and Shannon index were 
observed in RNET patients compared with their 
control counterparts (IGC: Community richness, p = 
0.65, Shannon index, p = 0.71; MetaPhlAn2: 
Community richness, p = 0.42, Shannon index, p = 
0.41; two-tailed wilcoxon rank-sum test), which is 
indicative of delicate alterations of gut bacterial 
composition in RNET individuals. Next, by 

 

 
Figure 1. Faecal microbiome structure in RNET and control individuals. (A) We collected 92 stool samples from two cohort, the 58-case discovery cohort (40 
healthy controls, 18 RNET patients) and the 34-case validation cohort (19 healthy controls, 15 RNET patients). Each faecal sample was subjected for deep shotgun metagenomic 
sequencing and LC-MS metabonomic profiling. (B-C) Microbiome community richness and Shannon index (α-diversity) at gene and species levels were measured using IGC (B) 
and MetaPhlAn2 (C) annotation, respectively. The dot represents one value from individual participants. Lines in the boxes indicate medians, the width of the notches is the IQR, 
the lowest and highest values within 1.5 times the IQR from the first and third quartiles. p values were calculated by two-sided Wilcoxon rank sum test. (D) Principal coordinates 
analysis (PCoA) with Bray-Curtis distance (β-diversity) of the discovery cohort based on gut metagenomic species profiles. p values were calculated by two-sided Wilcoxon rank 
sum test. ADONIS, R2 = 0.017, p = 0.389. 
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performing analysis including Principal Component 
Analysis (PCA), Principal Coordinates analysis 
(PCoA) and Nonmetric MultiDimensional Scaling 
(NMDS), we evaluated the overall gut microbial 
structure in RNET patients at the phylum, genus, and 
species levels, respectively. Similarly, we didn’t find 
distinct separation of microbiome composition at 
these levels (Figure S2, Table S2). Analysis of 
similarities (ANOSIM) with Bray-Curtis distance also 
showed marginal difference between these two 
groups at the three dimensions (Figure S2). 
Ordination of Bray-Curtis dissimilarity by PCoA 
analysis at the species level was presented in Figure 
1D (Adonis: R2 = 0.02, p = 0.389). As BMI, smoking and 
alcohol history have been implicated as potential risk 
factors for MENs [19], we next adjusted bacterial 
diversity for these parameters using multivariate 
association with linear models (MaAsLin2) method 
(Table S3-5). Here we found that bacterial α and 
β-diversity were not significantly influenced by 
gender, age, BMI, smoking and alcohol history. Thus, 
our findings collectively indicate mild shift of gut 
microbiome structure in patients with RNET. 

Species-level changes in RNET microbiome 
community composition 

To further dissect the taxonomic profiling of 
individual’s gut microbiome differentially abundant 
in RNET, MetaPhlAn2 annotation was run to assess 
the microbial abundance at the species level. In total, 
641 microbial species representing 217 genera were 
profiled in 58 faecal samples (Figure S3), 24 of which 
differed significantly between RNET and control 
groups (Figure 2A). Notably, we observed a 
remarkable depletion of microbial species in RNET as 
compared with controls, which was consistent with 
the general trend towards loss of species diversity in 
several digestive diseases’ microbiome [16]. 
Bacterium such as Haemophilus parainfluenzae, 
Veillonella unclassified, and Streptococcus salivarius were 
significantly abundant in the healthy group. 
Haemophilus parainfluenzae and Streptococcus salivarius 
were commensal bacterium colonized in upper 
respiratory tract and gut, with the latter being a 
probiotic strain closely related with low occurrence of 
colorectal cancer [20, 21]. In contrast, species, 
primarily composed of Erysipelotrichaceae bacterium_ 
6_1_45, Varibaculum cambriense and Methanobrevibacter 
smithii exhibited the strongest enrichments in RNET 
subjects. Varibaculum cambriense is a medically related 
species involved in abscess formation [22], while 
overgrowth of Methanobrevibacter smithii was highly 
correlated with irritable bowel syndrome (IBS) 
[23-25]. Erysipelotrichaceae bacterium_6_1_45 belongs to 

the Erysipelotrichaceae family. Changes in the 
abundance level of such microorganism was observed 
in a spectrum of gastrointestinal diseases, including 
colorectal cancer, IBD, and TNF-driven Crohn’s 
disease (CD) [26]. Interestingly, previous studies 
strongly supported the close relation of these bacteria 
with metabolic disorders such as obesity. Highly 
abundant Erysipelotrichaceae was identified in obese 
individuals and in mice fed with high-fat diet [27], 
whereas germ-free mice colonized with 
Methanobrevibacter smithii showed enhanced 
degradation of dietary fructans, thereby promoting 
energy harvest and lipid storage [28]. Linear 
discriminant analysis effect size (LEfSe) approach was 
further applied and identified 23 species that 
discriminately enriched in RNET or control groups 
(LEfSe: LDA > 2.0, p < 0.05). All these species were 
overlapped using the two methods (Figure S4A). 

Microbial co-occurrence and co-excluding 
networks at the genus and species levels were 
constructed based on the Sparse Correlations using 
FastSpar [29]. In contrast with healthy group, patients 
with RNET harbored a decreased complexity of 
network with lower connectivity. In the species 
network, we observed higher numbers of edge in 
control individuals (co-occurrence, 26; co-excluding, 
17) compared with RNET patients (co-occurrence, 11; 
co-excluding, 5) (Figure 2B). In control subjects, 
RNET-enriched species, including Erysipelotrichaceae 
bacterium_6_1_45, Varibaculum cambriense and 
Methanobrevibacter smithii, showed the closest 
connectivity (roh > 0.6), which didn’t recur in RNET 
group. Haemophilus paraphrohaemolyticus in healthy 
individuals contributed to most connection, including 
co-occurred with 4 species (Neisseria subflava, roh = 
0.3106, p = 0.025; Rothia aeria, roh = 0.2768, p = 0.047; 
Haemophilus sputorum, roh = 0.3938, p = 0.01; 
Actinobacillus unclassified, roh = 0.5987, p = 0.001) and 
co-excluded with other 4 bacterium (Atopobium 
parvulum, roh = -0.3239, p = 0.02; Granulicatella 
unclassified, roh = -0.3506, p = 0.03; Streptococcus 
salivarius, roh = -0.3346, p = 0.024; Veillonella 
unclassified, roh = -0.3657, p = 0.024), highlighting its 
importance as a network-hub in control participants. 
By contrast, species network showed a less 
complexity in patients with RNET, implying the 
attenuated connection among these microorganisms, 
which may be due to the depleted microbial species in 
this group. Similar findings were found in the genus 
network (Figure S4B). We observed relatively higher 
connection among genera in control group as 
compared with RNET individuals. 

 



Theranostics 2022, Vol. 12, Issue 5 
 

 
https://www.thno.org 

2019 

 
Figure 2. Species-level changes in RNET microbiome community composition. (A) Relative abundance of microbial species showed significant difference between 
RNET patients and controls (p < 0.05, two-sided Wilcoxon rank-sum test). Boxes represent the IQRs between the first and third quartiles, and the line inside the box represents 
the median; whiskers represent the lowest or highest values within 1.5 times IQR from the first or third quartiles. (B) Co-occurrence (Orange) and co-excluding (Green) 
relationships between bacterial species in Control and RNET groups. FastSpar correlation coefficients were presented by edge width (roh < −0.2 or roh > 0.2, p < 0.05). Nodes’ 
size (Control: blue; RNET: dark red) were scaled based on the relative abundance of each microorganism in either RNET or Control group. 
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Figure 3. Functional characterization of the RNET microbiome. (A) The top 15 Kyoto Encyclopedia of Genes and Genomes (KEGG) modules annotated by our in-house 
pipeline were differentially abundant either in control or RNET groups (LDA > 2.0, p < 0.05). Modules overlapped with those annotated by the HUMAnN2 pipeline were marked 
with red asterisk (*). (B) Dominant taxonomic contributors for 5 KEGG modules simultaneously enriched by our in-house and HUMAnN2 pipelines, including M00125, M00157, 
M00164, M00183 and M00319 were predicted using the HUMAnN2 analysis. Species are proportionally scaled within the total bar height. 

 

Functional characterization of the RNET 
microbiome 

Next, we characterized the species-level 
functional outcomes of microbial changes in RNET 
through annotation of KEGG modules based on our 
in-house and the Human Project Unified Metabolic 
Analysis Network 2 (HUMAnN2) pipelines [30], 
aiming at providing a more comprehensive and 
accurate profiling of the molecular activities of 
microbial communities at the pathway perspective. In 

total, 69 KEGG modules (based on our in-house 
pipeline) and 38 KEGG modules (based on the 
HUMAnN2 pipeline) were differentially abundant 
between RNET and control groups (LEfSe: p < 0.05, 
LDA > 2.0), 11 of which overlapped using these two 
methods (Figure 3A, Figure S5). Probably due to the 
depleted microbial community, we only identified 3 
KEGG modules enriched in RNET samples based on 
the HUMAnN2 pipeline, including M00378 (F420 
biosynthesis), M00184 (RNA polymerase, archaea), 
and M00145 (NAD(P)H:quinone oxidoreductase, 



Theranostics 2022, Vol. 12, Issue 5 
 

 
https://www.thno.org 

2021 

chloroplasts and cyanobacteria), resulting in the 
overlapped pathways mostly enriched from healthy 
individuals. Within the 11 pathways highlighted in 
both pipelines, those accounting for energy 
metabolism (M00157, M00164), RNA polymerase 
(M00183) and vitamin biosynthesis (M00125) were 
particularly enriched in control participants. We 
further identified species contributing predominantly 
to the highlighted pathways based on the output of 
HUMAnN2. Resultingly, we found that, despite the 
dominant species between these two groups were 
identical, their proportions were different (Figure 3B). 
A cluster of microorganisms mostly abundant in 
healthy people, including Escherichia coli, Faecalibac-
terium prausnitzii, Bacteroides vulgatus, Haemophilus 
parainfluenzae, Ruminococcus torques were the leading 
contributors to the above pathways. In contrast, 
Manganese/zinc/iron transportation (M00319) also 
enriched in control individuals was mainly 
contributed by species belonging to Veillonella genera, 
including Veillonella atypica, Veillonella dispar and 
Veillonella parvula. Overall, our findings indicate that 
shifts in microbial community composition drove a 
disease-liked state through interference with 
physiological functions.  

Metabolite enrichments in patients with RNET 
To further explore metabolic changes in RNET, 

untargeted LC-MS metabolomics was applied to 
detect metabolomes profiles of stool samples from 
RNET and healthy individuals. PCoA analysis 
displayed a clear separation of metabolite features 
between these two groups (adonis: R2 = 0.083, p = 
0.001, Figure 4A). After adjusting for gender, BMI, 
age, smoking and alcohol consumption, we showed 
that Bray-Curtis similarities were not significantly 
affected by these parameters (Table S6). Similarly, we 
also observed significant dissociation by using the 
orthogonal projections to latent structures- 
discriminant analysis (OPLS-DA) to assess the 
quantitative variation in the metabolites between 
groups (anosim: R = 0.149, p = 0.026, Figure S6A), 
indicating broad metabolic difference between RNET 
and control samples. Enrichment analysis revealed a 
total of 545 faecal metabolites (Figure S7), 104 of 
which showing significantly different abundances 
between groups (p < 0.05, the projection value (VIP) > 
1.0, Figure 4B). Contradicted to depleted microbial 
communities in RNET patients, most differential 
metabolites were remarkably abundant in stool 
samples from RNET patients (78 metabolites) versus 
control participants (26 metabolites). Differential 
metabolites were then assigned to putative molecular 
superclasses based on comparisons with the Human 
Metabolome Database (HMDB). Intriguingly, we 

found a total of 38 lipids and lipid-like molecules 
markedly up-regulated in RNET samples (Figure 
S6B). Among them, 57.9% (22 of 38) were fatty acyls 
such as Cohibin C, Cohibin B and Citramalic acid; 
26.3% (10 of 38) were glycerophospholipids, including 
LysoPE (18:1(9Z)/0:0), PC (16:1(9Z)/15:0), and PE 
(14:0/18:1(11Z)) (Figure S6C). Cohibin C and Cohibin 
B, belonging to the annonaceous acetogenin group, 
were mitochondrial complex I inhibitors exerting a 
range of biological activities, including cytotoxic, 
immunosuppressive and antiparasitic properties [31, 
32]. By contrast, organoheterocyclic compounds, 
organic acids and derivates and organic nitrogen 
compounds showed distinctively up-regulated in 
control subjects. KEGG analysis further revealed that 
glycerophospholipid metabolism as key pathway was 
significantly altered in patients with RNET (Figure 
4C). Together, our results suggested that 
dysregulation of lipid metabolism was involved in the 
pathogenesis of RNET. 

Putative correlation of gut microbial species 
with metabolites in RNET patients 

Aberrations in gut metabolites have been tightly 
correlated with the pathophysiological processes 
contributing to IBD, obesity and colorectal cancer, 
which is a possible reverberation of perturbed 
microbiome community compositions and functions 
[33, 34]. To understand the association of structure 
and metabolism of gut microbiota in RNET, we 
calculated the spearman’s correlation of distinctively 
abundant species and metabolites, and presented a 
heatmap to highlight the species-metabolite- 
associated patterns (Figure 5). We revealed a total of 
291 significant associations between representative 
differentially enriched species and metabolites. 
Roughly, positive correlations were detected between 
microorganisms and metabolites simultaneously 
enriched in RNET or controls, and vice versa. For 
example, Methanobrevibacter smithii was observed to 
be positively associated with several RNET-specific 
metabolites such as Cohibin B, Cohibin C and 
LysoPE(18:1(9Z)/0:0), corroborating the putative 
mechanistic relationship that positive correlations 
between species and metabolites could be explained 
by species producing metabolites, or metabolites 
benefiting the growth of certain species. Meanwhile, 
negative associations between control-enriched 
species and RNET-specific metabolites were also 
uncovered. Overall, although it remains to be further 
determined whether these metabolic products are 
directly metabolized by gut microbiota, our results 
demonstrate a tight interaction of gut microbial 
species with metabolites in RNET pathogenesis.  
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Figure 4. Metabolite enrichments in patients with RNET. (A) PCoA with Bray-Curtis distance in RNET and control groups based on faecal metabolic profiles. p values 
were calculated by two-sided Wilcoxon rank sum test. ADONIS, R2 = 0.083, p = 0.001. (B) Faecal metabolites (Log2 FC >1 or < -1, VIP > 1.0, p < 0.05, two-sided Wilcoxon 
rank-sum test) differentially abundant in RNET or healthy individuals were presented as lollipop chart. The length of line indicated the relative abundance of metabolites detected 
by LC-MS metabolomics. VIP score was indicated by a color gradient from purple (small numerical value) to yellow (large numerical value). (C) Bar plots of the top 15 KEGG 
pathways based on the In (p value) that biologically enriched from RNET-specific metabolites as compared with control subjects. 

  

Multi-omics signatures-based predication of 
RNET 

To excavate potential diagnostic microbial and 
metabolic signatures, we explored whether certain 
microbial species and metabolites could be utilized to 
predict RNET status. To this end, we constructed 
random forest (RF) classifiers based on the differential 
metabolic and microbial species profiles from control 
and RNET samples. Classification performance was 
evaluated using five-fold cross-validation and 
receiver operating characteristic curves. Notably, this 
approach enabled us to obtain a panel of gut 
microbiome and metabolite signatures composed of 3 
species and 9 metabolic products, most of which were 
distinctively abundant in RNET patients (Figure 6A). 

The identified disease signatures included 
RNET-specific microbial species such as Varibaculum 
cambriense and Erysipelotrichaceae bacterium_6_1_45, 
and a cluster of metabolites. Among these, 
5-Aminopentanamide, enriched in RNET, was the 
most discriminatory signature for the association with 
RNET. Stomatobaculum longum was the only 
taxonomic species significantly abundant in healthy 
group. Likewise, we adjusted these microbial and 
metabolic based classifiers for gender, age, BMI, 
smoking and alcohol consumption history, revealing 
that the identified biomarkers were not significantly 
influenced by these parameters (Table S7). 

All RF classifiers performed markedly better 
than random in differentiating RNET and controls 
(Figure 6B). In particular, prediction model pointed 
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out that metabolic signatures attained a high 
sensitivity in detecting RNET in the discovery cohort, 
with area under the curve (AUC) value of 1.0. 
Combination of microbial species and metabolites 
produced a remarkable improvement in classification 
accuracy compared with species alone (AUC = 0.96 
versus 0.76). Next, we validated this discriminatory 
model on an additional independent cohort consisting 
of 15 RNET patient without receiving preoperative 
chemoradiotherapy and 19 healthy individuals 
(Figure 6C). Metabolic signatures still achieved higher 
accuracy for distinguishing RNET patients from 
controls with an AUC of 0.83. After combing these 
with microbial markers, the AUC value still reached 
to 0.74, which is better than microbiota biomarkers 
alone (AUC = 0.71). Thus, our results suggest the 
great potential for developing these microbial and 
metabolic based classifiers as a promising 
non-invasive tool in early fecal detection of 
populations with RNET.  

Discussion 
US SEER database highlighted a substantially 

increased prevalence of RNET during the last 
decades, however, no advancement in outcome was 
traced over a similar period [35]. One possible reason 
is the lack of messages about mechanistic alterations 
underlying the development of RNET. To date, apart 
from a handful of studies focusing on the genetic and 
epigenetic changes in such neoplasms [36], 
comprehensive mechanistic characterization is still 
urgently needed for therapeutic and diagnostic 
improvement for patients with RNET. To this end, we 
hereby presented a comprehensive and in-depth 
study by performing shotgun metagenomic and 
untargeted metabolomic profiling of faecal samples 
from RNET and healthy individuals. To the best of 
our knowledge, this study represents the first effort to 
elaborate RNET-specific alteration in human gut 
microbiome and metabolome in an integrated 
multi-omics framework. 

 

 
Figure 5. Putative correlation of gut microbial species with metabolites in RNET patients. Heatmap of Spearman’s rank correlation coefficients between 
differentially abundant species (LEfSe: LDA > 2.0, p < 0.05) and metabolites (Log2 FC > 1 or < -1, VIP > 1.0, p < 0.05, q < 0.05) from RNET patients and controls. Correlation 
coefficients in each square represent positive (red) and negative (green) relationships. Statistically significant correlations (p < 0.05) were marked with asterisks (*). 
Representatively negative and positive correlations were labeled as deep blue squares.  
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Figure 6. Multi-omics signatures-based predication of RNET. (A) 12 faecal microbial and metabolic biomarkers from RNET and control individuals reached the lowest 
classifier error were obtained by the mean decrease accuracy tool from the random forests (RFs) algorithm, and ranked by their contributions to classification accuracy after 
permutation. The color of each biomarker indicates its enrichment in RNET (purple) or control (green) participants. (B-C) Receiver operating characteristic (ROC) curve of the 
RF model using discriminatory signatures (3 species, 9 metabolites) in the 58 samples of discovery cohort (B) or 34 samples of validation cohort (C). RF method was used with 
train function of R’s caret package. For training set, five-fold cross-validation was applied with trainControl function. To compute and visualize AUC from ROC outcome, the 
pROC package was utilized. 

 
In general, our study identified dysbiotic gut 

microbial and metabolic profiles in patients with 
RNET, although we didn’t find a distinct shift of 
microbial community structure, as evidenced by 
multiple bacterial diversity analysis. However, 
aberrant depletion and attenuated connection of 
microbial species were uncovered in these RNET 
subjects, which was reminiscent of numerous 
publications indicating a similar loss of microbial 
diversity in a range of microbiota-associated diseases 
such as colorectal cancer [15], obesity [33] and IBD [16, 
37], suggesting a pivotal role for the microbiota in 
health maintenance.  

Gut microbiota are important for energy balance, 
for its influential behavior in enabling the host for 
energy harvest from diet [38]. For example, Bäckhed et 
al. showed that fecal transplantation of gut microbiota 
from obese donors to germ-free mice led to rapid 
weight gain, due to the recovered capability of energy 
uptake [39]. Our current study unveiled a nutrient 

deficient condition in gut microenvironment of RNET 
patients, which was supported by the metagenome- 
based functional analysis, showing diminished 
molecular activities such as energy metabolism, 
vitamin biosynthesis and transportation in RNET 
individuals. Such reduction was mostly attributed to 
the changed proportion of microbial species, but not 
maladjusted taxonomic composition. In particular, we 
discovered a weakened biosynthesis capacity of 
riboflavin (also known as vitamin B2) in patients with 
RNET. Higher vitamin B2 intake has been strongly 
associated with decreased risk for colorectal cancer 
and cardiovascular diseases [40-42], although its 
beneficial role in CRC was contradicted by a recent 
inspection [43]. Future comprehensive investigations 
including the impact of preoperative and 
postoperative supplemental diet of this vitamin 
would help to validate its involvement in RNET 
pathogenesis. 

Lipids have long since been recognized not just 
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as critical substances of membrane structure and 
reservoir for energy storage, but also the key mediator 
to trigger diverse physiological processes [44]. A large 
body of evidence coordinates the involvement of lipid 
molecules such as fatty acyls and glycerophos-
pholipids in all phases of inflammation through 
interacting with cell surface or intracellular sensors to 
regulate inflammatory cell signaling and gene 
expression, therefore contributing to disease 
progression. Dysregulated lipid metabolism is now 
recognized a hallmark characteristic of many 
malignancies such as cardiovascular diseases, 
diabetes, obesity, and cancers [45-47]. The lipid 
metabolic pathways that have been affected by 
diseases include synthesis, desaturation, elongation, 
and mitochondrial oxidation of lipid molecules [48]. 
Our current faecal metabolomic analysis indicated a 
markedly aberrant accumulation of lipid and 
lipid-like compounds in RNET individuals, most of 
them could be assigned to the classes of fatty acyls 
and glycerophospholipids. KEGG analysis further 
implies glycerophospholipid metabolism as key 
pathway in RNET pathogenesis. Moreover, the 
correlation network exhibited a predominant 
association between gut microorganisms and 
metabolites. Thus, our findings proposed a possible 
implication of these differentially abundant intestinal 
flora and metabolic compounds in the onset and 
development of RNET, a process probably correlated 
with chronic inflammation. Although these putative 
association needs further in vivo and in vitro 
validation, our multi-omic results offered a guide for 
future exploration of causal relationship between key 
microbial species and metabolites in the development 
and progression of RNET.  

Currently, we still lack of applicable, 
non-invasive approach for early diagnosis of RNET. 
Our present study identified a cluster of gut 
microbiome and metabolite-based signatures largely 
enriched in RNET individuals, showing accurate 
prediction of such neoplasm from healthy people, 
which was further validated in an independent 
cohort. Intriguingly, a core set of metabolic 
compounds mainly derived from RNET such as 
5-Aminopentanamide achieved more reliable 
diagnostic accuracy relative to microbial signatures. 
Therefore, our findings may provide evidence for a 
stool-based diagnostic test for RNET among high-risk 
population. 

Meanwhile, we acknowledge that limitations 
still exist in the current study. First, we included 
relatively small sizes of discovery and validation 
cohorts, mainly because of the small number of 
individuals affected by this neoplasm. Future 
multi-center studies comprising of geographically 

separated cohorts with well-phenotyped patients will 
be needed for further corroboration of these findings. 
Secondly, our findings are mostly data-driven, further 
in vivo and in vitro experiments are required for 
downstream validation. However, to date, the 
establishment and application of RNET disease 
models are still limited [49]. In addition, although 
most RNET were detected as low-grade with 
well-differentiated histological morphology (Tumor 
grade of all RNET participants in our cohort were G1), 
patients with poorly-differentiated rectal neuroendo-
crine carcinomas need to be further recruited, for the 
purpose of better understanding the molecular 
pathogenesis of this disease.  

In summary, our current study delineates a 
dysbiotic gut ecological microenvironment in patients 
with RNET, characterized by depleted microbial 
species and aberrantly aggregated lipids and 
lipid-like molecules. Although it remains to be further 
investigated whether these specific species and 
metabolic compounds directly cause tumorigenesis, 
disordered ecological structures may contribute to the 
oncogenic process of such neoplasm. Thus, our 
findings extend our insights to a potential role of 
disrupted gut microbiota and metabolites in the 
pathogenesis of RNET, which may provide promising 
targets for microbiome-based diagnostics and 
therapies. 

Abbreviations 
ANOSIM: Analysis of similarities; AUC: Area 

under the curve; BMI: Body mass index; CD: Crohn’s 
disease; CgA: Chromogranin A; GEP-MENs: 
Gastroenteropancreatic neuroendocrine neoplasms; 
HMDB: Human Metabolome Database; HUMAnN2: 
Human Project Unified Metabolic Analysis Network 
2; LC-MS: Liquid chromatography-mass spectro-
metry; LEfSe: Linear discriminant analysis effect size; 
IGC: Integrated Gene Catalog; MetaPhlAn2: 
Metagenomic phylogenetic analysis; NMDS: 
Nonmetric MultiDimensional Scaling; OPLS-DA: 
Orthogonal projections to latent structures- 
discriminant analysis; PCA: Principal Component 
Analysis; PCoA: Principal Coordinates analysis; 
SCFA: Short chain fatty acids; SEER: Surveillance, 
Epidemiology, and End Results; SYN: Synaptophysin; 
RF: Random forest; RNET: Rectal neuroendocrine 
tumors; VIP: The projection value. 

Supplementary Material  
Supplementary materials and methods, figures. 
https://www.thno.org/v12p2015s1.pdf  
Supplementary tables. 
https://www.thno.org/v12p2015s2.xlsx  



Theranostics 2022, Vol. 12, Issue 5 
 

 
https://www.thno.org 

2026 

Acknowledgements 
The authors would like to thank all participants, 

and their families, who participated in this study. We 
also thank Shanghai Biotree Biotech Co., Ltd. for 
high-throughput sequencing and technical support.  

Author Contributions 
WG conceived and designed the study. WG, 

SLH and YC managed the project. WH wrote the 
manuscript. WH, ZMC, XXL and LL performed the 
bioinformatic analysis. All authors contributed 
intellectually to the project through discussion and 
critically reviewed the manuscript. 

Funding 
This work was supported by National Key R&D 

Project of China (No. 2018YFC0115301), National 
Natural Science Foundation of China (No. 81974070 & 
81800503 & 81101610), Guangdong Basic and Applied 
Basic Research Foundation (2020A1515011063), 
Guangdong Young Innovative Talents Foundation 
(2020KQNCX013), Shenzhen Science and Technology 
Program (JCYJ20210324131010027) and Research 
Foundation of Shenzhen Hospital of Southern 
Medical University (PT2018GZR05 & PT2018GZR10). 

Ethics approval 
This study was approved by the Ethic 

Committee of Southern Medical University 
(NYSZYYEC20190013). 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Patel N, Barbieri A, Gibson J. Neuroendocrine Tumors of the Gastrointestinal 

Tract and Pancreas. Surg Pathol Clin. 2019; 12: 1021-44. 
2. Fraenkel M, Kim M, Faggiano A, de Herder WW, Valk GD, Knowledge N. 

Incidence of gastroenteropancreatic neuroendocrine tumours: a systematic 
review of the literature. Endocr Relat Cancer. 2014; 21: R153-63. 

3. Cives M, Strosberg JR. Gastroenteropancreatic Neuroendocrine Tumors. CA 
Cancer J Clin. 2018; 68: 471-87. 

4. Starzynska T, Londzin-Olesik M, Baldys-Waligorska A, Bednarczuk T, 
Blicharz-Dorniak J, Bolanowski M, et al. Colorectal neuroendocrine neoplasms 
- management guidelines (recommended by the Polish Network of 
Neuroendocrine Tumours). Endokrynol Pol. 2017; 68: 250-60. 

5. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, et al. 
The 2019 WHO classification of tumours of the digestive system. 
Histopathology. 2020; 76: 182-8. 

6. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The 
epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol 
Metab Clin North Am. 2011; 40: 1-18, vii. 

7. Hauso O, Gustafsson BI, Kidd M, Waldum HL, Drozdov I, Chan AK, et al. 
Neuroendocrine tumor epidemiology: contrasting Norway and North 
America. Cancer. 2008; 113: 2655-64. 

8. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred 
years after "carcinoid": epidemiology of and prognostic factors for 
neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008; 
26: 3063-72. 

9. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the 
Incidence, Prevalence, and Survival Outcomes in Patients With 
Neuroendocrine Tumors in the United States. JAMA Oncol. 2017; 3: 1335-42. 

10. Tsai HJ, Wu CC, Tsai CR, Lin SF, Chen LT, Chang JS. The epidemiology of 
neuroendocrine tumors in Taiwan: a nation-wide cancer registry-based study. 
PLoS One. 2013; 8: e62487. 

11. Fan JH, Zhang YQ, Shi SS, Chen YJ, Yuan XH, Jiang LM, et al. A nation-wide 
retrospective epidemiological study of gastroenteropancreatic neuroendocrine 
neoplasms in china. Oncotarget. 2017; 8: 71699-708. 

12. Ito T, Igarashi H, Nakamura K, Sasano H, Okusaka T, Takano K, et al. 
Epidemiological trends of pancreatic and gastrointestinal neuroendocrine 
tumors in Japan: a nationwide survey analysis. J Gastroenterol. 2015; 50: 58-64. 

13. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and 
clinical applications. Nat Rev Gastroenterol Hepatol. 2019; 16: 690-704. 

14. O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat 
Rev Gastroenterol Hepatol. 2016; 13: 691-706. 

15. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, et al. Metagenomic 
analysis of faecal microbiome as a tool towards targeted non-invasive 
biomarkers for colorectal cancer. Gut. 2017; 66: 70-8. 

16. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker 
S, et al. Gut microbiome structure and metabolic activity in inflammatory 
bowel disease. Nat Microbiol. 2019; 4: 293-305. 

17. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone 
species for the degradation of resistant starch in the human colon. ISME J. 
2012; 6: 1535-43. 

18. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila 
gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst 
Evol Microbiol. 2004; 54: 1469-76. 

19. Leoncini E, Carioli G, La Vecchia C, Boccia S, Rindi G. Risk factors for 
neuroendocrine neoplasms: a systematic review and meta-analysis. Ann 
Oncol. 2016; 27: 68-81. 

20. Corredoira JC, Alonso MP, Garcia JF, Casariego E, Coira A, Rodriguez A, et al. 
Clinical characteristics and significance of Streptococcus salivarius bacteremia 
and Streptococcus bovis bacteremia: a prospective 16-year study. Eur J Clin 
Microbiol Infect Dis. 2005; 24: 250-5. 

21. Norskov-Lauritsen N. Classification, identification, and clinical significance of 
Haemophilus and Aggregatibacter species with host specificity for humans. 
Clin Microbiol Rev. 2014; 27: 214-40. 

22. Brown CT, Sharon I, Thomas BC, Castelle CJ, Morowitz MJ, Banfield JF. 
Genome resolved analysis of a premature infant gut microbial community 
reveals a Varibaculum cambriense genome and a shift towards 
fermentation-based metabolism during the third week of life. Microbiome. 
2013; 1: 30. 

23. Takakura W, Pimentel M. Small Intestinal Bacterial Overgrowth and Irritable 
Bowel Syndrome - An Update. Front Psychiatry. 2020; 11: 664. 

24. Kim G, Deepinder F, Morales W, Hwang L, Weitsman S, Chang C, et al. 
Methanobrevibacter smithii is the predominant methanogen in patients with 
constipation-predominant IBS and methane on breath. Dig Dis Sci. 2012; 57: 
3213-8. 

25. Ghoshal U, Shukla R, Srivastava D, Ghoshal UC. Irritable Bowel Syndrome, 
Particularly the Constipation-Predominant Form, Involves an Increase in 
Methanobrevibacter smithii, Which Is Associated with Higher Methane 
Production. Gut Liver. 2016; 10: 932-8. 

26. Kaakoush NO. Insights into the Role of Erysipelotrichaceae in the Human 
Host. Front Cell Infect Microbiol. 2015; 5: 84. 

27. Wang Z, Lam KL, Hu J, Ge S, Zhou A, Zheng B, et al. Chlorogenic acid 
alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci 
Nutr. 2019; 7: 579-88. 

28. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of 
host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A. 2006; 103: 
10011-6. 

29. Watts SC, Ritchie SC, Inouye M, Holt KE. FastSpar: rapid and scalable 
correlation estimation for compositional data. Bioinformatics. 2019; 35: 1064-6. 

30. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart 
G, et al. Species-level functional profiling of metagenomes and 
metatranscriptomes. Nat Methods. 2018; 15: 962-8. 

31. McLaughlin JL. Paw paw and cancer: annonaceous acetogenins from 
discovery to commercial products. J Nat Prod. 2008; 71: 1311-21. 

32. Bermejo A, Figadere B, Zafra-Polo MC, Barrachina I, Estornell E, Cortes D. 
Acetogenins from Annonaceae: recent progress in isolation, synthesis and 
mechanisms of action. Nat Prod Rep. 2005; 22: 269-303. 

33. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum 
metabolome alterations in obesity and after weight-loss intervention. Nat 
Med. 2017; 23: 859-68. 

34. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in 
inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020; 17: 223-37. 

35. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. 
Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008; 9: 61-72. 

36. Kosaloglu Z, Zornig I, Halama N, Kaiser I, Buchhalter I, Grabe N, et al. 
Identification of immunotherapeutic targets by genomic profiling of rectal 
NET metastases. Oncoimmunology. 2016; 5: e1213931. 

37. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. 
Interplay of host genetics and gut microbiota underlying the onset and clinical 
presentation of inflammatory bowel disease. Gut. 2018; 67: 108-19. 

38. Heiss CN, Olofsson LE. Gut Microbiota-Dependent Modulation of Energy 
Metabolism. J Innate Immun. 2018; 10: 163-71. 



Theranostics 2022, Vol. 12, Issue 5 
 

 
https://www.thno.org 

2027 

39. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut 
microbiota as an environmental factor that regulates fat storage. Proc Natl 
Acad Sci U S A. 2004; 101: 15718-23. 

40. Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr. 2003; 77: 
1352-60. 

41. Zschabitz S, Cheng TY, Neuhouser ML, Zheng Y, Ray RM, Miller JW, et al. B 
vitamin intakes and incidence of colorectal cancer: results from the Women's 
Health Initiative Observational Study cohort. Am J Clin Nutr. 2013; 97: 332-43. 

42. Balasubramaniam S, Christodoulou J, Rahman S. Disorders of riboflavin 
metabolism. J Inherit Metab Dis. 2019; 42: 608-19. 

43. Yoon YS, Jung S, Zhang X, Ogino S, Giovannucci EL, Cho E. Vitamin B2 intake 
and colorectal cancer risk; results from the Nurses' Health Study and the 
Health Professionals Follow-Up Study cohort. Int J Cancer. 2016; 139: 
996-1008. 

44. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 
2008; 9: 162-76. 

45. Calder PC. Fatty acids and inflammation: the cutting edge between food and 
pharma. Eur J Pharmacol. 2011; 668 Suppl 1: S50-8. 

46. Anand PK. Lipids, inflammasomes, metabolism, and disease. Immunol Rev. 
2020; 297: 108-22. 

47. Zhang C, Wang K, Yang L, Liu R, Chu Y, Qin X, et al. Lipid metabolism in 
inflammation-related diseases. Analyst. 2018; 143: 4526-36. 

48. Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids 
composition and metabolism in colorectal cancer: a review. Lipids Health Dis. 
2019; 18: 29. 

49. Kawasaki K, Fujii M, Sato T. Gastroenteropancreatic neuroendocrine 
neoplasms: genes, therapies and models. Dis Model Mech. 2018; 11. 


