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Abstract 

Carbon dots (CDs), as one new class of carbon nanomaterials with various structure and extraordinary 
physicochemical properties, have attracted tremendous interest for their potential applications in tumor 
theranostics, especially in targeted bioimaging and therapy. In these areas, CDs and its derivatives have 
been employed as highly efficient imaging agent for photoluminescence bioimaging of tumors cells. With 
unique structure, optical and/or dose attention properties, CDs have been harnessed in various 
nanotheranostic strategies for diverse tumors through integrating with other functional nanoparticles or 
utilizing their inherent physical properties. Up to now, CDs have been approved as novel biomaterials by 
their excellent performances in precise targeted bioimaging and therapy for tumors. Herein, the latest 
progress in the development of CDs in targeted bioimaging and tumor therapy are reviewed. Meanwhile, 
the challenges and future prospects of the application of CDs in promising nanotheranostic strategies are 
discussed and proposed. 
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1. Introduction 
Cancer has been one of the widely spread 

diseases around the world, leading to millions of 
deaths every year [1-4]. Up to now, quite a few 
research has been carried out on the causes and 
biology of cancer, dramatically accelerating the 
development of diagnosis and treatment strategies of 
cancers [3, 5-12]. In the areas of cancer diagnosis, 
targeted imaging for tumor cells is considered as a 
promising technology to in vivo distinguishing the 
tumor sites efficiently and precisely, proving the 
promising diagnosis of cancer without trauma and 
expensive cost in common detailed physical 
examination [13-18]. Meanwhile, the in vivo imaging 
also provides the ability to monitor tumor 
morphologies in real-time, allowing doctors to 
understand the evolution of tumor tissues and 
enabling to adjust the dosing of drug to abate 

overtreatment of harmful side-effects, or 
undertreatment of incomplete cancer remission 
[13-15, 17-28]. Yet, diverse models of targeted imaging 
have been established with the accumulation 
biodistribution of imaging agent in tumor sites [17-18, 
26-28]. However, there are always various limitations 
for the common imaging agent, such as the inability to 
bypass biological barriers, poor biocompatibility, lack 
of stability, etc. In the areas of cancer therapy, there 
are various recommended guidelines of clinical 
oncology treatment for different kinds of tumors, such 
as operative treatment, chemotherapy, radiation 
therapy, etc. [10, 29-32]. Nevertheless, the common 
strategies for cancer therapy also still remind diverse 
restrictions such as serious damages to living body, 
potential drug resistance, ineffectiveness against 
metastatic disease, drug resistance of cancers, and 

 
Ivyspring  

International Publisher 



Theranostics 2022, Vol. 12, Issue 6 
 

 
https://www.thno.org 

2861 

lack of effective modality for treatment monitoring. 
With the development of advanced technologies, the 
concept of precise targeted therapy for tumors are 
proposed, enabling the ability to overcome the 
limitations in common strategies of cancer therapy 
[17, 28, 33-36] 

In recent years, the excellent performance of 
nanotheranostic strategies for diverse cancer has been 
approved with various experiments, enabling the 
engineered imaging agent or medicines to overcome 
the specific limitations of some cancers [37-41]. Up to 
now, several nanotheranostic strategies through 
targeted bioimaging and therapy have been designed 
to improve the targeting or therapies of cancers 
[42-46]. For examples, some nanomaterials, such as 
Au nanoparticles (Au NPs), semiconductor polymer 
nanoparticles (SPNPs), graphene and superpara-
magnetic iron oxide (SPIO), have been approved for 
targeted bioimaging with different models, such as 
photoluminescence (PL), afterglow, chemilumi-
nescence (CL), photoacoustic (PA), and magnetism 
imaging and precise therapy through targeted drug 
delivery or advanced biological treatment [47-54]. 
Additionally, several nanomedicines have been 
approved and recommended as guidelines of clinical 
oncology treatment for several specific cancers [33, 
35]. While these nanotheranostic strategies are 
complex and restricted in clinical treatment, their 
potential utility has substantiated the investment 
required at the front-end [27, 55-60]. Drawing back on 
these nanotheranostics strategies, the advanced 
nanotechnologies of targeted bioimaging and therapy 
for tumors have been utilized and developed with 
various approaches, enabling their advantages of 
efferent and precisely therapeutic effect. 

Since the discovery in the process of 
electrophoretic purification of single walled carbon 
nanotubes in 2004, fluorescent carbon dots (CDs) have 
been proved one new class of carbon-related 
nanomaterials owing to their extraordinary 
physicochemical properties and diverse potential 
applications [61-83]. With different approaches to 
preparation, the obtained CDs can illustrate wide 
diversity in sizes, structures, surface function group 
and physicochemical properties [78-91]. Typically, 
CDs are always classified as one kind of 0 D carbon 
nanomaterials, which is consisted of sp2/sp3 carbon 
skeleton and abundant functional groups/polymer 
chains [87-101]. Compared with the other 
bio-nanomaterials, such as phosphorene, 2D Xenes, 
hydrogels, hydrophobic organic polymers, semi-
conducting polymer nanoparticles, the CDs, as one 
zero-dimensional carbon-based nanomaterials, have 
illustrated obvious advantages in structure and 
properties for the application of nanotheranostics: (I) 

CDs can achieve different luminescent models, such 
as PL, phosphorescence, thermally activated delayed 
fluorescence (TADF), chemiluminiscence, etc., which 
can be used for diverse models of bioimaging; (II) CDs 
behave excellent biocompatibility and photostability 
compared with other imaging probes, which is 
favorable to be used as in vivo real-time imaging 
agents; (III) CDs exhibit tunable PL emission, 
especially the near-infrared (NIR) emission, which is 
suitable for tissue imaging with deep penetration; (IV) 
CDs are proved unique properties, such as 
penetration of blood brain barrier (BBB) and novel 
targeting for some cells, which is extraordinary 
advantages for imaging; (V) CDs exhibit clearable 
property in living body, which is excellent for 
long-term imaging. In addition to the applications as 
imaging agent, CDs have been approved to be as a 
nanoplatform to design biomaterials or directly used 
as nanomedicines for treatment of several special 
kinds of diseases [102-107]. On the one hand, the CDs 
possess a sp2 hybridized structure with different 
surface functional groups, enabling their novel 
physical properties including excellent water 
solubility, biocompatibility, and photophysico 
chemical properties. Meanwhile, due to their special 
structure, some CDs present abundant superiority, 
such as modifiable surface, long-term permeation and 
metabolism in living body, approved unique 
properties of BBB penetration, special cells targeting, 
observed unique therapeutic effects for some diseases, 
etc. For examples, Rosenkrans et al. developed 
selenium-doped CDs as broad-spectrum antioxidants, 
and Kim et al. indicated the promising application of 
CDs in preventing α-synucleinopathy for Parkinson’s 
disease [108, 109]. On the other hand, comprised with 
other larger nanomaterials, the smaller CDs (with the 
size of usually less than 10 nm) exhibit well-organized 
carbon atoms with a high aspect ratio, large surface 
area, and high thermal and chemical stabilities, 
enabling their promising capability for designing 
different biomaterials and nanomedicines. These 
CDs-based nanotheranostics have been approved in 
various works. 

Recently, there have been some reviews about 
the nanotheranostics focus on bioimaging and cancer 
therapy, enabling the contrast and precise imaging of 
cell and organelle or improving the therapeutic effects 
of several tumor lines [110-115]. However, with the 
development of synthetic technique, the targeted 
bioimaging and cancer therapy have been expanded 
to a broader field, such as uptake accumulation, 
charge or pH, targeting agent, self-targeting, drug 
delivery, light-activate theranostic, metabolism and 
precise therapy via different CDs and their 
nanocomposites (Figure 1 and Table 1) [116-166]. 
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Herein, the strategies of CDs-related nanotheranostics 
to achieve efficient targeted bioimaging and cancer 
therapy have been reviewed and discussed, and the 
challenge and prospect in the future development of 
this emerging field are also discussed and proposed. 

2. Synthesis and classification of CDs 
Since the CDs firstly prepared via electrophoretic 

purification of single walled carbon nanotubes, 
various synthetic methods to obtain CDs have been 
developed (Figure 2). Up to now, the strategies to 
prepare CDs are always based on the two main 
routes, naming top-down and bottom-up. Generally, 
the top-down strategy is considered to obtain 
nanosize nanoparticles from bulk carbon precursors 
by broking or exfoliating. Arc-discharge, laser 
ablation and electrochemical oxidation approaches 
are the common top-down strategies to achieve 
broking or exfoliating (Figure 2A-C) [61, 63, 80]. In the 
early stages, the CDs are usually synthesized via the 
top-down strategy and these CDs always illustrate 
excitation-dependent emission with low PL QY. 
Afterwards, with the practical requirement, these 
top-down strategies are reserved as a paradigm to 
solve the extensive concern and pioneering studies. 
By contrast, the bottom-up strategies to prepare CDs 

are usually considered to obtain nanoparticles by the 
direct pyrolysis of small molecular. In the early years, 
researchers developed the template method to 
prepare CDs with different carriers as template. And 
the CDs can be obtained in the template through the 
pyrolysis of carbon-rich precursors, which can 
accurately control the size and structure of CDs 
(Figure 2D). With the development of synthetic 
technology, solvothermal strategy gradually become 
the most widespread routes to prepare CDs because 
of its low cost and easy manipulated parameters, such 
as temperature, time, and pressure of vessel. Among 
diverse precursors for preparing CDs in solvothermal 
method, citric acid and its related reactant are the 
most common ingredients. Since Zhu et al. firstly 
synthesized the fluorescent CDs with the high PL QY 
of ~80% with citric acid and ethylenediamine, various 
solvothermal strategies have been employed to 
achieve fluorescent CDs with high QY through tuning 
the pyrolysis of small-molecular (Figure 2E) [83]. 
Similarly, microwave-assisted pyrolysis is another 
fast, low cost and effective bottom-up strategy. In 
recent years, the microwave radiation has drawn 
researchers’ more attention due to its short reaction 
times and potential introduced optical properties via 
special heating principle (Figure 2F). Up to now, 
fluorescent CDs with ultraviolet to infrared emission 

have been achieved through 
bottom-up strategy, implying their 
great potential for practical 
applications. 

Since the first discover of 
fluorescent carbon nanoparticles 
(CNPs) in 2004, diverse kinds of 
nanoparticles with carbon skeleton 
have been classified as CDs as 
shown in the Figure 3. Typically, 
with the development of synthesis 
strategies and raw materials, CDs 
have been defined as one kind of 
concept of 0 D nanomaterials 
whose main element is carbon. 
Recently, Xia et al. improved the 
classification and nomenclature to 
precisely distinguish different CDs, 
which are defined as carbon 
quantum dots (CQDs), graphene 
quantum dots (GQDs), carbon 
polymer dots (CPDs), and carbon 
nanodots (CNDs) via the summary 
and analysis of structure and 
properties features for different 
kinds of CDs (Figure 3A) [92]. In 
these classifications, CQDs are 
defined as spherical NPs with 

 

 
Figure 1. Schematic of the carbon dots in tumor for targeted bioimaging and cancer therapy. 
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obvious crystal lattices and chemical groups on the 
surface, possessing intrinsic state luminescence and 
quantum confinement effect. GQDs are considered as 
small graphene fragments consisting of single or few 
graphene sheets with obvious graphene lattices and 
chemical groups on the edge or within the interlayer 
defect, which result in the quantum confinement 

effect and edge effect. The CPDs are considered as a 
polymer/carbon hybrid structure comprising of 
abundant functional groups/polymer chains on the 
surface and a carbon core. For the CNDs, these NPs 
possess high carbonization degree with some 
chemical groups on the surface with no obvious 
crystal lattices structure and polymer features. 

 

Table 1. Summary of the types of CDs and their nanocomposites with different sizes, morphology/composition, and photophysical 
properties. 

Type Shape Chemical 
composition 
(elements) 

Size [nm] λabs / range [nm] PLmax 
[nm] 

PL lifetime 
[ns] 

PL QY 
 

PCE 
@λex 

ROS, QY Ref 

CDs Spherical C, O, S 10 ± 4 400–750 640 2.3% N/A 38.5%@671 nm N/A [116] 
Supra-CDs CD aggregates C, O, N 12.4 600–800 N/A N/A N/A 53% N/A [117] 
CyCD Spherical C, O 2.9 ± 0.5 (D) 2.8-5.0 (H) 770 820 N/A 5.7% 38.7%@808nm N/A [118] 
CDs Spherical C, O, S 6–10 (D) 3–5 (H) 400–700 640 3.5  36.2%@808nm. 1O2, 27% [119] 
R-CDs Spherical C, O, N 4 550 640 0.68 22.9% 44% N/A [120] 
NIR-PCNDs Disk-like C, O, N 7.8 (D) 2.1 (H) 277, 450–631 710 3.7 26.28% N/A N/A [121] 
CDs Platelet-like C, O, N, S, Se 20 (D) 4 (H) 526 730, 820 N/A 0.2% 58%@635nm N/A [122] 
R-NBE-T-CQDs Triangular C, O 3.9 582 598 6.6 54% N/A N/A [87] 
CDs Spherical C, O, N 7.6 268, 277, 634 750 2.1 43% N/A N/A [123] 
CDs Disk-like C, O, N, S 2–5 (D) 0.5–2 (H) 340, 455, 605, 650 720 N/A 0.2% 59%@655 nm N/A [39] 
CDs Spherical C, O, N 2 270–400 450 nm N/A 20% N/A 1O2, 0.82 [124] 
N-O-CDs Spherical C, O, N 1.2–3.3 (D) 1.06 (H) 375/600–850 nm 475 16.1% N/A 38.3%@808 N/A [125] 
CDs-650 Spherical C, O, N 7 (D) 8.5 (H) 250, 365, 650 530 N/A N/A 54.3%@655nm N/A [126] 
DPP CDs N/A C, O, N, S 3.72 ± 0.67 530 N/A N/A N/A N/A 1O2, 27.6% [127] 
CuCD NSs Sheet-like C, O, N, S, Cu 23.4 340 N/A N/A N/A 41.3%@808 nm N/A [128] 
CuSCDB@MMT7 Spherical N/A 222.5 ± 20.1 N/A N/A N/A N/A 39.7%@808nm N/A [129] 
BCCGH Sphere-like C, O, N, S, Cu, Gd 7.9 605/ 640–700 655 N/A N/A 68.4%@808nm N/A [130] 
CDs Spherical C, O, N 5.6 226, 280, 615 648, 685 20 34% N/A N/A [131] 
CDs Spherical C, O, N 4–5 560 630, 670 N/A 25% N/A N/A [132] 
NIR-CDs Disk-like C, O, N 4 (D) 0.4–2 (H) 619, 720 770 0.561 11% N/A N/A [133] 
CNDs Spherical C, O, N 2.5 540 600–900 3.3 56% N/A N/A [90] 
Ce6-RCDs Spherical C, N, O 3.7 405, 640 653 N/A N/A 46%@671 nm N/A [134] 
Ni−pPCDs Spherical C, N, O, Ni 2.9 ± 0.5 204, 243, 286, 510 605 N/A 45.6% N/A N/A [135] 
NIR-CD/MoS2 Sheet C, O, N, S, Mo 100 450 N/A N/A N/A 78.2% @808 nm N/A [136] 
DA@N-CDs(Mn) 
NPs 

Spherical N/A 3.1 530 620 nm 4.5% N/A 28.2%@808 nm N/A [137] 

CQDs Disk-like C, O, N 2.42 628 665 2.49 47% N/A N/A [138] 
C-CD 
/TiO2 

spherical C, O, Ti 244.6 285, 400 N/A N/A N/A 9.54%@808nm N/A [139] 

CDs spherical C, N, O, S 4.4 315, 355/ 320-750 930 4.59, 13.08 ∼8.0% 54.7%@808nm N/A [140] 
SCDs spherical C, O, N 20 337, 600 N/A N/A N/A 41.7%@808 nm N/A [141] 
CDs Spherical C, O, N, F 2.6 556, 624, 715, 847 658, 777 6.8 10 N/A N/A [142] 
CDs Spherical C, O, N 4 295, 395, 580 642 5.9 N/A N/A N/A [143] 
CDs Spherical C, O, N 4–6 339 449 2.56 0.39% N/A O2–, 1.08% [144] 
Se/N-CDs Spherical C, O, N, Se 3.6 ± 0.6 317,550 607 N/A 3.70% N/A 1O2, 10.6% [145] 
CCOF 
@PEG 

Spherical N/A 235 200–900 650 N/A N/A N/A N/A [146] 

NCDs Spherical C, O, N 4.1 ± 1.6 (D) 2.3 ± 0.8 (H) 610 623   77.6%@660 1O2, 37% [147] 
S-CDs Sphere-like C, O, S, 3.2 (H) 2.0 (H) 300, 360/ 400–900 440 N/A N/A 55.4%@808 nm N/A [148] 
Ni-CDs Spherical C, O, N, Ni 4.6 (D) 1.9 (H) 1002/ 750–1350 N/A N/A N/A 76.1%@1064 nm N/A [149] 
S, N-CDs Spherical C. N. O, S 9 560/ 600–700 630 N/A 12.4% 34.4% @808nm 1O2, 27% [150] 
TP-CDs Quasi-spherical C, O, N 4.0 ± 1.1 274/400-600 605 N/A N/A N/A N/A [151] 
RGQDs Spherical C, O 3.54 230 532, 950 N/A 6% N/A N/A [152] 
CDs spherical C, O, 3–4 310, 365 502 N/A N/A N/A 1O2, 0.51 [153] 
f-CDAs  C, O, N 12–22 (D) 7–13 (H) 550–700 675 2.3 15.6% 26.1%@655 nm N/A [154] 
FA-CD/PPy-NPs spherical C. N. O 6.08 ± 2.07 260/ 700–1000 nm 520 N/A 20.39 ± 

1.80 % 
40.80 ± 1.54% 
@808nm 

N/A [155] 

NIR-II-CD/BP 
Hybrids 

Sheet-like C, N, O, P 100–200 (D) 2.0 (H) 420 480 N/A N/A 61.4%@1064 nm 
77.3%@808 nm 

N/A [156] 

anti-EpCAM@ 
PDA-CDs@Pt(IV) 

Spherical C, N, O, Pt 1.7 275, 360 454 N/A ∼22.5% 39.1%@808 nm N/A [157] 

Abbreviations: D—diameter; H—height; λabs—Maximal absorption wavelength; λex—excitation wavelength; λem—emission wavelength; PCE@ λex—photothermal conversion 
efficiency @ corresponding excitation wavelength; and ROS, QY—reactive oxygen species, quantum yield. 
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Figure 2. Schematic illustration of the synthetic strategies of CDs. (A) The CDs synthesized by arc-discharge. Adapted with permission from [61], copyright 2004, American 
Chemical Society. (B) The CDs synthesized by electrochemical oxidation. Adapted with permission from [79], copyright 2007, WILEY‐VCH Verlag GmbH & Co. KGaA, 
Weinheim. (C) The CDs synthesized by laser ablation. Adapted with permission from [80], copyright 2006, American Chemical Society. (D) The CDs synthesized with templet 
method. Adapted with permission from [81], copyright 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (E) The CDs synthesized by microwave-assisted pyrolysis. 
Adapted with permission from [82], copyright 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (F) The CDs synthesized with solvothermal method. Adapted with 
permission from [83], copyright 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 

 
Figure 3. Schematic illustration of the classification of CDs and their different kinds of luminescence models for bioimaging. (A) The classification of CQDs, GQDs, CNDs and 
CPDs for different CDs. Adapted with permission from [69], copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Schematic illustration of the PL bioimaging. 
Adapted with permission from [80], copyright 2009, American Chemical Society. (C) Schematic illustration of the bioimaging via superresolution PL. Adapted with permission 
from [91], copyright 2018, American Chemical Society. (D) Schematic illustration of the bioimaging by phosphorescence and TADF. Adapted with permission from [143], 
copyright 2020 Elsevier Ltd. (E) Schematic illustration of the bioimaging with CL. Adapted with permission from [167], copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, 
Weinheim. 
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3. Targeted Bioimaging  
Due to the novel photophysical properties, CDs 

has been employed as contrast agents for in vivo 
optical imaging (Figure 3B-E) [24, 80, 167-174]. In 
those approaches to optical imaging, the direct PL 
imaging with light irradiation is the most common 
strategy. With the down-conversion or multiphoton- 
excited upconversion fluorescence, the structure of 
cells or tissues can be reconstructed via the emitted 
photon of imaging agent (Figure 3B) [83, 90, 93-101]. 
However, the common PL imaging with conventional 
fluorescence microscopy is limited by the diffraction 
limit of light by the Abbe criterion. Thereby, two 
major approaches are employed to overcome the 
diffraction limit: the patterned illumination-based 
imaging, including stimulated emission depletion 
(STED) microscopy and structured illumination 
microscopy (SIM), and single molecule localization- 
based imaging, including stochastic optical 
reconstruction microscopy (STORM) and 
photoactivated localization microscopy (PALM). For 
the single molecule localization-based imaging, 
closely clustered fluorescent particles are resolved by 
stochastically turning each particle’s signal on and off, 
and then the centroid of on-state particle is 
mathematically determined in each imaging frame. 
On the condition, the super-resolution PL image can 
be reconstructed via the combination of multiple 
iterations (Figure 3C) [167]. In addition to the direct 
PL imaging, afterglow imaging is considered as 
another excellent strategy for bioimging. In general, 
the afterglow imaging through the phosphorescence 
and TADF can decrease the noise of photoexcited 
autofluorescence from the background because of the 
novel delay luminescence (Figure 3D) [13, 69]. 
Similarly, CL is also employed as a contrast optical 
imaging strategy. Owing to the CL emission as the 
result of a chemical reaction without photoexcitation, 
the CL imaging can be employed as special 
biomolecularr sensor with ultrahigh sensitivity and 
provide their distinguished bioimging without 
photoexcited autofluorescence from the background 
(Figure 3E) [20, 22-27]. Thereupon, different strategies 
have been developed to further achieve targeting 
bioimaging of cancer cells. In the early stage, 
researchers found the accumulation effect of CDs in 
tumors sites and further developed the uptake 
accumulation targeted imaging. With the 
development of nanotechnologies, CDs was further 
developed to achieve tumor targeting imaging with 
rational design, such as the stimulus-responsive 
imaging triggered by the novel charge and pH in 
tumor microenvironment and in vivo biomarker 
imaging with the interaction between CDs and 

various biomoleculars. More importantly, several 
researches have observed and approved the special 
targeting cancer cells marker of CDs in several special 
tumors, enabling a novel application in self-targeting 
bioimaging and promising approaches to dignoisis of 
cancer. Up to now, the CDs-related targeted 
bioimaging for tumor have been approved for the 
promising clinical diagnosis for various cancers. 

3.1. Uptake accumulation 
As one new class of powerful nanoprobes, CDs 

have been proved one kind of contrast agents for 
diverse models of bioimaging since its discover [175, 
176]. Ideally, the CDs for bioimaging exhibit high PL 
quantum yield (QY), long-wavelength PL emission, 
minimum toxicity and renal cleavability, enabling the 
rational use of inherent CDs in visualizing biological 
systems both in vitro and in vivo [177-183]. At early 
stage, CDs exhibit homogeneous permeation and 
distribution in all cells, endowing similar uptake 
accumulation for the normal and cancer cells [80, 167]. 
However, several researchers have observed the 
distinctive accumulation of CDs in tumor tissues due 
to the enhanced permeability and retention (EPR) 
effect. For example, Su et al. reported the preferential 
accumulation and efficient renal clearance of CDs at 
the tumor site [184]. In their work, a novel kind of 
Hafnium-doped CDs (Hf-CDs) exhibited preferential 
targeted tumor accumulation capability with 
significant advantages including robust stability, 
good biocompatibility, excellent water solubility, 
remarkable computed tomography (CT) contrast 
performance, enabling the CDs in particular 
CT/fluorescence imaging for orthotopic liver cancer 
(Figure 4A-B). In their experiments, researchers found 
that the Hf-CDs could accumulate at the tumor site for 
rapid bioimaging (Figure 4C-E), implying a facile and 
universal method to multimodal imaging. In addition, 
these researchers further strengthen the distinctive 
cancer cells uptake accumulation through various 
approaches. For example, Zhang et al. constructed a 
biocompatible nanoplatform for long time 
mitochondria-targeting cellular imaging with CDs 
and further develop the magnetic field-enhanced 
cellular uptake functionalities to increase the 
distinctive accumulation [185]. With the magnetic 
mesoporous silica nanoparticles (Fe3O4@mSiO2) via 
surface modified triphenylphospine (TPP) and 
conjugated fluorescent CDs (Figure 4F), researchers 
have proved the novel time-dependent mitochondrial 
colocalization of the Fe3O4@mSiO2−TPP/CDs 
nanoplatform in various cell lines such as A549, CHO, 
HeLa, SH-SY5Y, HFF and HMEC-1. Furthermore, 
researchers indicated that the cellular uptake 
efficiency of A549 and HFF cell lines could be 
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enhanced in a short time under a static magnetic field 
(Figure 4G-J). These distinctive accumulations of CDs 
in tumors sites provided the basis of targeted uptake 
and paved the abundant approaches to targeted 
bioimaging. 

3.2. Charge or pH 
In addition to the direct uptake accumulation, 

these stimulus-responsive strategies to achieve 
targeted uptake of CDs based on the distinctive 
microenvironment in tumor sites, such as charge or 
the pH, also been explored [186]. For example, the 
zwitterionic CDs can easily bioconjugate with various 
biomolecules through the interaction between 
biomolecules and their carboxylic moieties, shed their 
anionic component and leave a positive charge on 
their surface when they achieve interaction with 
cancer cell microenvironment, enhancing their 
targeted uptake in cancer cells [187-189]. On the basis, 
Sri et al. developed one kind of zwitterionic CDs and 
indicated their targeted bioimaging for the oral cancer 
cell lines of FaDu (human pharyngeal carcinoma) and 
Cal-27 (human tongue carcinoma) (Figure 5A-B) [189]. 
Similarly, Kong et al. developed an efficient detected 
and targeted nanosystem based on the DNA aptamer 
AS1411 modified CDs with polyethyleneimine (PEI) 
as connecting bridge (Figure 5C) [190]. In their work, 
researchers confirmed the higher cellular uptake of 

CDs-PEI-AS1411 nanosystem in MCF-7 cells 
compared with that of L929 cells, which revealed the 
highly selective detection ability of nucleolin-positive 
cells. In addition to the charge interaction, 
pH-responsive interaction was indicated another 
factor to increase the cellular uptake selectivity of free 
CDs. For example, Phuong et al. developed a selective 
and sensitive nanotheranostic nanoplatform based on 
the pH-responsive TiO2-integrated cross-linked CDs 
(C-CD/TiO2) for tumor diagnosis by the specific 
targeted capability of the tumor cell membrane and 
nuclei (Figure 5D) [139]. In their work, researchers 
designed the zwitterionic-formed CD (Z-CD) which 
could target the nucleus and the hydrophobic 
Dopa-decyl (D-CD) which could penetrate the 
hydrophobic sites of cell membrane. With the 
boronate ester linkages between the 
TiO2-immobilized D-CD and Z-CD for nuclear 
targeting, the fluorescence “off” state at physiological 
pH and the fluorescence “on” state in acidic cancer 
cells were employed for tumor-selective biosensors 
through the cleavages of the boronate ester bonds by 
the disruption of the FRET. In the in vivo tumor 
model, the C-CD/TiO2 could efficiently ablate tumors 
under NIR light irradiation with up-regulation of the 
pro-apoptotic markers in tumor, illustrating excellent 
targeted bioimaging and therapy capability. 

 

 
Figure 4. CDs-based targeted bioimaging through uptake accumulation. (A) CT value of Hf-CDs/iohexol aqueous solution at different concentrations. (B) CT values of major 
organs collected at different times after intravenous injection of Hf-CDs. (C) Ex vivo bright field, FI and CT images of major organs collected at different intervals post tail vein 
injection of Hf-CDs. (D) Quantitative analysis of the CT values. (E) Quantitative analysis of the FI intensity. Adapted with permission from [184], copyright 2020 Elsevier Ltd. (F) 
Schematic route of the synthesis of Fe3O4@mSiO2-TPP/CDs nanoplatform. (G) Illustration of the cells exposed to the Fe3O4@mSiO2-TPP NPs while positioned or not in a static 
magnetic field. (H)-(J) CLSM images of the A549 (I), HFF (J), and HeLa (K) cell lines treated with the Fe3O4@mSiO2-TPP NPs for different time under Mag+ or Mag−. Adapted 
with permission from [185], copyright 2015 American Chemical Society. 
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Figure 5. CDs-based targeted bioimaging through charge or pH interaction. (A) Scheme of the synthesis of CDs and its bio-imaging in oral cancer cell lines. (B) Mechanism 
underlying uptake of zwitterionic CDs. Adapted with permission from [189], copyright 2018 American Chemical Society. (C) Predicted mechanism of the different cellular uptake 
behaviour of CDs-PEI-AS1411 with the nucleolin-positive MCF-7 cancer cells and nucleolin-negative L929 fibroblast cells. Adapted with permission from [190], copyright 2019 
John Wiley & Sons Ltd. (D) Scheme of the design and application of pH-responsive C-CD/TiO2 for targeted bioimaging via cellular membrane-nucleus translocation in response 
to visible-light irradiation. Adapted with permission from [139], copyright 2020 American Chemical Society. 

 

3.3. Targeting biomarker 
Beyond the direct targeted imaging of cancer 

cells, the strategy to in vivo image the biomarkers in 
tumors is another approach to the diagnosis of cancer 
[191-193]. For example, Shen et al. reported one 
approach to bioimaging Cathepsin B (CTSB), which 
were one of the most promising biomarkers for 
numerous malignant tumors, enabling efficient 
diagnosis of cancers at an early stage [194]. In the 
work, researchers developed one kind of amine-rich 
CDs and further covalently assembled the 
nucleolin-targeting recognition nucleic acid aptamer 
AS1411 and a CTSB-cleavable peptide substrate that 
tethered with chlorin e6 (Ce6), enabling a 
cancer-targeting and CTSB stimulus-responsive 
ratiometric nanoprobe of AS1411-Ce6-CQDs (Figure 
6A). With the quenching of blue fluorescence from 
CDs and NIR fluorescence enhancement from the Ce6 
by the efficient fluorescence resonance energy transfer 
(FRET), the overexpressed CTSB in lysosome could 
cleave Ce6-Pep and trigger the Ce6 moiety 
dissociation from AS1411-Ce6-CQDs after selective 
accumulation in cancer cells, thus leading to the 

termination of FRET and achieving the ratiometric 
fluorescence response to CTSB (Figure 6B). Thereby, a 
vigorous ratiometric fluorescent method could be 
achieved by integrating a cancer-targeting recognition 
moiety to report CTSB activity. Meanwhile, Qian et al. 
prepared one kind of CDs (AA-CDs) and proved that 
the AA-CDs could selectively recognize folic acid 
(FA), resulting in fluorescence quenching (Figure 6C) 
[195]. In their work, researchers developed a sensitive 
approach to FA analysis with a detection limit of 40 
nM and further developed one kind of fluorescent 
nanoprobe (FA-AA-CDs) via the conjugated 
interaction between FA and AA-CDs, enabling them 
as a fluorescence turn-on nanoprobes for targeted 
imaging of cancer cells. In the models of cancer cells 
with different levels of folate receptors (FRs) 
expression (Hela, SMMC-7721, and A549 cells), 
FA-AA-CDs exhibited specially targeted imaging of 
cancer cells with the accordant relationship between 
the corresponding PL intensity of these cells and their 
FRs expression levels. Similarly, Das et al. reported 
the ACD-GNP nanohybrid which comprised the 
anionic CDs (ACD) protected gold nanoparticle 
(GNP) as nanoprobe for imaging glutathione (GSH) 
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[196]. These researchers indicated the selective GSH 
sensing of ACD-GNP nanohybrid based on the 
GSH-triggered variation between fluorescent 
indicator ACD and the GNP (Figure 6D). With higher 
selectivity and sensitivity to GSH than other biothiols, 
the ACD-GNP hybrid achieved selective imaging of 
cancer cells. In addition, Li et al. developed one kind 
of dual-emission CDs and approved their ability of 
ratiometric GSH sensing in cancer cells [197]. With the 
intrinsic ratiometric fluorescence displacement of 
as-prepared CDs for GSH sensing (Figure 6E-F), these 
CDs could be employed as an effective tool to achieve 
targeted imaging of cancer cells. 

As similar as these common strategies to directly 
sense the biomarker, the approaches to selective 
recognizing the substance such as antibody or 
metabolites of cancer cells are also developed. For 
example, Gao et al. designed one kind of turn-on 
fluorescent nanoprobes of P-CDs/HA-Dox by 
electrostatic assembly of PEI-modified CDs (P-CDs) 
and Hyaluronic acid (HA)-conjugated doxorubicin 

(Dox) to selectively sense and image hyaluronidase 
(HAase) (Figure 7A) [198]. In their work, the 
P-CDs/HADox illustrated low PL emission in a 
physiological environment and were capable to 
selectively penetrate into cancer cells due to the 
activation of HAase by utilizing their overexpressed 
HA to CD44 receptors, resulting in effectively 
distinguish of cancer cells and sensitive assay of 
HAase. In addition, Demir et al. coupled one kind of 
CDs with molecularly imprinted polymers (MIPs) to 
prepare biocompatible nanoprobes for cancer cells 
(Figure 7B) [199]. In their work, researchers designed 
a MIP shell round the CDs by the CDs’ emission as an 
internal light source for photopolymerization to 
specific recognize the glucuronic acid (GlcA), which 
was a substructure (epitope) of hyaluronan and a 
biomarker for certain cancers (Figure 7C-D). Their 
work proved the targeting imaging of hyaluronan and 
selectively recognized human cervical cancer with the 
CD-based nanocomposites. 

 

 
Figure 6. CDs-based targeted bioimaging through targeting biomarker sensor. (A-B) Schematic diagram of the engineering of nucleolin-targeted ratiometric fluorescent 
nanoprobe AS1411-CQDs-Ce6 for endogenous CTSB imaging with a remarkably large emission wavelength shift in living cancer cells. Adapted with permission from [194], 
copyright 2020 American Chemical Society. (C) Fluorescence emission spectra of AA-CDs upon gradual addition of FA. Adapted with permission from [195], copyright 2018 
Elsevier B.V. (D) Schematic of the glutathione triggered Fluorescence “Turn On” of ACD. Reproduced with permission [196], copyright 2016 American Chemical Society. (E) 
Fluorescence spectrum of CDs in the presence of various concentrations of GSH. (F) UV-vis spectrum of CDs in the presence of various concentrations of GSH. Adapted with 
permission from [197], copyright 2020 American Chemical Society. 
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Figure 7. CDs-based targeted bioimaging through selective recognition. (A) Schematic illustration of the formation of PEI-CDs/HA-Dox, and the nanoprobe used for targeted 
cancer cell imaging and drug delivery. Adapted with permission from [198], copyright 2017 Elsevier B.V. (B) Schematic of molecularly imprinted polymer coated CDs for cancer 
cell targeting bioimaging, (C) Confocal microscope images of fixed HaCaT and HeLa cells treated with CDs, CD-NIP, and CD-MIPGlcA. (D) Confocal micrographs showing 
labeling of GlcA on a single HeLa cell by CD-MIPGlcA (green) and nuclear staining with PI (red). (E) Analysis of labeled cells with CD-MIPGlcA, CDNIP, and CD as obtained from 
Image J by measuring the normalized fluorescence of each single cell area from five different images. Adapted with permission from [199], copyright 2018 American Chemical 
Society. 

 

3.4. Self-Targeting 
Since the CDs were proved a powerful targeted 

imaging agent to achieve diagnosis of cancer, these 
strategies still remain a great challenge to achieve 
clinic application due to their complex chemical route 
and potential toxicity. Recently, several kinds of CDs 
are proved distinctive self-targeting for cancer cells, 
enabling their promising application in various fields. 
For example, Zheng et al. designed the self-targeted 
CDs (CD-Asp) with targeting capability to brain 
cancer glioma through a direct pyrolysis approach 
with D-glucose and L-aspartic acid [200]. The 
as-prepared CD-Asp with tunable PL emission 
exhibited selective targeted function toward C6 
glioma cells without the requirement of another 
targeting molecular. In their work, the in vivo 
bioimaging with CD-Asp as fluorescent imaging 
agent exhibited high-contrast targeted distribution 
and the higher fluorescent intensity obtained in the 
glioma site than that in normal brain, enabling the 
capability of CD-Asp for free penetration in the 
blood-brain barrier and precise self-targeting of 

glioma tissue (Figure 8A-D). Generally, there are two 
major mechanisms by which various agents can cross 
the BBB: transporter- and receptor-mediated 
transports. Glucose transporter (GLUT-1) is a 
brain-tumor-targeting property through facilitative 
glucose metabolism by the glucose transporters. 
ASCT2 is an important L-isomer-selective transporter 
across the BBB through L-glutamine (L-Glu) and 
L-asparagine (L-Asp) as high-affinity substrates. In 
the work, researchers observed that the CDs 
synthesized with glucose, L-Asp, and/or L-Glu and 
containing the reactant functional groups (glucose, 
L-Asp, L-Glu) could help them cross the BBB through 
the GLUT-1 and ASCT2 transporters. Therefore, RGD, 
a tripeptide composed of L-arginine, glycine, and 
L-aspartic acid, was a common glioma-targeting agent 
that binding to RVβ3 integrin on immature 
endothelial cells. Thereupon, researchers deduced 
that the targeting function of CD-Asp originated from 
the formation of RGD-like functional groups on the 
CDs’ edge, which were prepared and derived from 
D-glucose and L-Asp. Similarly, Li et al. developed a 
series of self-targeted CDs (LAAM TC-CQDs) which 
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functionalized with multiple paired α-carboxyl and 
amino groups and indicated their selective 
accumulation in tumor [201]. In their work, the 
LAAM TC-CQDs showed bright PL emission with a 
NIR PL emission peak around 700 nm (Figure 9A-B). 
With the treatment of the excess of Leu, Phe or Gly 
before adding LAAM TC-CQDs for HeLa cells, 
researchers found that the cell uptake of LAAM 
TC-CQDs was significantly inhibited by Leu and Phe 
but not by Gly (Figure 9C). On the basis of different 
experiments, researchers indicated that the LAAM 
TC-CQDs could penetrate into cancer cells via the 
interaction with LAT1 and approved this hypothetical 
mechanism with six lines. First, the pretreatment with 
the LAT1 inhibitor BCH reduced the uptake of LAAM 
TC-CQDs (Figure 9D). Second, LAT1 knockout 

reduced the uptake of LAAM TC-CQDs (Figure 9E-F). 
Third, overexpressing LAT1 of HeLa cells via 
lentiviral transduction increased the cellular uptake of 
LAAM TC-CQDs. Fourth, the expression level of 
LAT1 correlated with the amount of LAAM TC-CQDs 
in diverse cell lines and the level of LAT1 expression 
in cancer cells was higher than that in normal cells. 
Fifth, the overexpression of LAT1 in tumors increased 
the uptake LAAM TC-CQDs in vivo. Sixth, the 
pretreatment with Leu decreased the accumulation of 
LAAM TC-CQDs in tumors. With the functionalized 
CDs which could load aromatic drugs through π-π 
stacking interactions, researchers further achieved the 
NIR fluorescence and photoacoustic imaging for 
various tumors and the targeted drug delivery for the 
chemotherapeutics to the tumors. 

 

 
Figure 8. CDs-based targeted bioimaging by self-targeting. (A) In vivo and ex vivo imaging of glioma-bearing mice after tail intravenous injection of CD-Asp. (B) In vivo imaging of 
glioma-bearing mice at different time points after injection with CD-Asp, CD-G, CD-A, and CD-Glu. (C) Ex vivo imaging of glioma-bearing brain of brain and glioma. (D) Ex vivo 
imaging after the injection of CD-Asp, CD-G, CD-A, and CD-Glu of heart, liver, spleen, lung, and kidney. Adapted with permission from [200], copyright 2015 American Chemical 
Society. 
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Figure 9. CDs-based targeted bioimaging by self-targeting. (A) Schematic and hypothetical steps of LAAM TC-CQD synthesis. (B) Fluorescence emission spectrum with an 
excitation wavelength of 600 nm. (C) LCSM images of HeLa cells that were pretreated with Leu, Phe, Gly or BCH. (D)-(F) Downregulation of LAT1 expression by CRISPR-Cas9 
in HeLa cells reduced the cellular uptake of LAAM TC-CQDs (F). The red arrows in b indicate the sgRNA-targeting sequences. Successful targeting of LAT1 was confirmed using 
Sanger sequencing (D) and western-blot analysis (E). Adapted with permission from [201], copyright 2020 Springer Nature. 

 
With these excellent performances in 

bioimaging, CDs exhibit great potentials for the 
diagnosis of cancer in clinic [173, 174]. In practical, 
Wang et al. have employed CDs in the clinical 
application and demonstrated their excellent 
performance for guiding the precision surgery of 
papillary thyroid carcinoma [173]. In their reports, 
researchers evaluated the application of CDs as 
lymphatic tracer in total thyroidectomy and bilateral 
Central District's thyroidectomy for papillary thyroid 
carcinoma. The related results confirmed the CDs can 
distinguish the thyroid tissue from the surrounding 
lymphoid adipose tissue and clearly mark the Central 
District lymph nodes, resulting in the decrease for the 
risk of parathyroid gland injury during the thyroid 
cancer. Therefore, the relevant research has confirmed 

the capability of CDs for targeted cancer bioimaging 
and approved their great potentials of CDs for clinic 
applications in future. 

4. Targeted Cancer Therapy 
As CDs accumulate specifically in tumors, they 

are ideal for further use in targeted cancer therapy [17, 
202-235]. Meanwhile, with CDs' excellent 
performance in various bioimaging techniques, it is 
possible to develop nanotheranostic strategies that 
can reveal simultaneous diagnosis and treatment of 
various cancers. At an early stage, CDs are 
demonstrated to be excellent nanocarriers to reunite 
with different drugs to enhance targeted therapeutic 
effect. As nanomaterials develop, CDs have also been 
used as a new class of nanocarriers for creating 
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nanocomposites with a series of functional 
nanoparticles such as Au NPs, Fe3O4 NPs, and some 
inorganic quantum dots, endowing them with 
additional characteristics, such as oxidative stress 
amplifier, magnetic functions and radioactivity, for 
advanced therapeutic applications. In addition, the 
special photophysical properties, such as strong 
absorbance of NIR light and/or excellent 
photothermal/photodynamic character, endow 
various CDs for light-active nanotheranostic of 
cancer. Compared with the traditional chemotherapy, 
the light-active nanotheranostic have received more 
and more attention due to its noninvasive and 
stimuli-responsive features and the promising 
characters to over drug-fast. In addition, several kinds 
of CDs have been observed distinctive cytotoxicity 
with novel metabolic pathway in cell growth and 
death, enabling their direct application for cancer 
therapy as nanomedicines. Finally, with the 
development of nanotechnologies, CDs also play 
important role in various advanced technologies and 
exhibit excellent applications in several kinds of 
cancer to overcome the limitation of common 
medicine.  

4.1. Drug delivery 
Chemotherapy is the most common strategy for 

diverse cancers. Nevertheless, the limitation such as 
potential drug resistance and ineffectiveness against 
metastatic disease and lack of an effective targeting of 
the classical drug for cancer therapy seriously restrict 
their therapeutic effect in living body. Thereupon, 
different nanotechnologies are developed to achieve 
enhanced targeted therapy for tumors. In the field, 
CDs also are employed as nanocarries to achieve 
precise drug delivery through their novel surface 
structures to load drugs or distinctive targeted release 
capability triggered by tumor microenvironment. 
Meanwhile, besides both excellent optical imaging 
quality and drug delivery efficiency, these CDs used 
for nanocarriers are demonstrated few or nontoxic 
effects with in vitro and in vivo studies. And these 
CDs-based nanomedicines illustrate excellent 
therapeutic effect (Table 2). The maximal drug 
loading capability of the CDs approach 96% with no 
noticeable cell growth inhibition, morphological 
damage or inflammatory injury. For example, Feng et 
al. designed a drug nanocarriers with the responsivity 
of tumor extracellular microenvironment based on the 
cisplatin(IV) prodrug-loaded CDs (CDs−Pt(IV)@PEG- 
(PAH/DMMA)) for bioimaging-guided drug delivery 
(Figure 10A-B) [207]. In their work, the anionic 
polymer of dimethylmaleic acid (PEG-(PAH/ 
DMMA)) on the CDs−Pt(IV)@PEG-(PAH/DMMA) 
could pass through charge conversion to the cationic 

polymer in the tumor extracellular microenvironment 
(pH∼6.8), enabling the strong electrostatic repulsion 
and release of positive CDs-Pt(IV). In addition, the 
nanocarrier with positive charge displayed high 
affinity to cancer cell membrane with negative charge, 
which resulted in the increase of internalization and 
effective activation of cisplatin (IV) prodrug. The in 
vitro experiments indicated that this promising 
exhibited the better therapeutic efficiency of the 
charge-convertible nanocarriers under tumor 
extracellular microenvironment than the normal 
physiological condition and the noncharge- 
convertible nanocarriers. The in vivo experiments 
further approved the high tumor-inhibition efficacy 
and low side effects of these charge-convertible CDs, 
implying their capability as promising drug 
nanocarriers in practical clinical application. On the 
condition, Feng et al. further developed the pH/redox 
dual-responsive CDs (CDsRGD-Pt(IV)-PEG) for 
tumor extracellular microenvironment responsive 
targeted bioimaging and enhanced anticancer drug 
delivery (Figure 10C-D) [208]. In their work, the 
CDsRGD-Pt(IV)-PEG were constructed with 
fluorescent CDs as drug nanocarriers, cisplatin(IV) as 
prodrug, and RGD peptide as active targeting ligand 
by the cover of monomethoxypolyethylene glycol 
(mPEG) via the pH responsive benzoic-imine bond in 
tumor extracellular microenvironment (6.5∼6.8). The 
drug nanocarriers could be tracked by the 
fluorescence of CDs and illustrated effective uptake in 
cancer cells via RGD-integrin αvβ3 (ligand-receptor) 
interaction after the hydrolysis of benzoic-imine bond 
in the tumor extracellular microenvironment to 
release the inner RGD peptide. Although these 
nanocarriers were promising to overcome the 
biological barriers in the process of drug delivery, the 
fibrosis in tumor sites could cause hypoxia, 
immunosuppression and limited immunocytes 
infiltration, thus reducing the antitumor curative 
effect of various nanosystems. Thereupon, Hou et al. 
designed one kind of honeycomb-like nanoassemblies 
of CDs with cancer associated fibroblasts (CAFs) 
responsivity to spatially program the delivery of 
therapeutics for enhanced antitumor efficiency 
(Figure 11A-B) [219]. In their work, the doxorubicin 
(DOX) and immunotherapeutic enhancer (Feions) 
were attached on the CDs, and the tumor 
microenvironment modifier (losartan, LOS) was 
encapsulated within the mesopores. Their 
experiments indicated the drug-loaded 
nanoassemblies could be disunited to release LOS to 
mitigate stroma and hypoxia with the responsivity to 
CAFs, and the individual CDs with DOX and Fe ion 
could efficiently penetrate into tumor sites to enhance 
immune responses. The in vitro and in vivo 
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experiments indicated that the nanoassemblies 
exhibited effective T-cells infiltration, tumor growth 
inhibition and lung metastasis prevention. These 

works provided the new therapeutic nanoplatforms 
for diverse tumors. 

 

 
Figure 10. CDs-based cancer therapy via drug delivery. (A) Schematic illustration for the preparation of charge-convertible CDs-based drug nanocarrier 
CDs-Pt(IV)@PEG-(PAH/DMMA). (B) Schematic illustration for the drug delivery process of CDs-Pt(IV)@PEG-(PAH/DMMA). Adapted with permission1 from [207], copyright 
2016, American Chemical Society. (C) Schematic illustration for the preparation of CD-based drug nanocarrier CDs-RGD-Pt(IV)-PEG with tumor-triggered targeting property. 
(D) Schematic illustration of the drug delivery process using CDs-RGD-Pt(IV)-PEG. Adapted with permission from [208], copyright 2016 American Chemical Society. 

 
Similarly, CDs may be used as nanocomposites, 

composited with other nanomaterials, so as to provide 
additional characteristics. For example, Gong et al. 
reported a mitochondrial oxidative stress amplifier of 
MitoCAT-g with CDs and indicated that the 
MitoCAT-g particles could selectively target 
mitochondria and deplete mitochondrial GSH with 
atomic economy, thus amplifying the ROS damage 
and resulting in apoptosis of cancer cells (Figure 12A) 
[221]. In their work, the MitoCAT-g was designed by 
CDs-supported atomically dispersed gold (CAT-g) 
with further surface modifications of 
triphenylphosphine (TPP) and cinnamaldehyde (CA) 
(Figure 12B). With the in vivo experiments, the 
capability and mechanism of MitoCAT-g to suppress 
tumor growth in a subcutaneous tumor model were 
proposed (Figure 12C-D). With the in vivo 
tumor-bearing mice models, all the group showed a 
significant change in body weight (Figure 12E) and 
the MitoCAT-g group exhibited a significant inhibited 
tumor growth compared with the saline, CDs, TPP 
and CDs-TPP treated groups. Meanwhile, the 
MitoCAT-d-treated group showed 87.5% survival and 

the antitumor effect was reversed in HepG-2 
(SOD2-mito-CAT) tumors. These results confirmed 
the effectiveness of CDs-based nanocomposites for 
antitumour application and represent a promising 
medicine for clinical anticancer applications. 

With these excellent optical properties and low 
toxicity (Table 2), CDs exhibit promising potential 
application in the nanotheranostics. Though most of 
CDs exhibit low toxicity, there are still widespread 
concerns about the risk of CDs for therapy 
applications. On the one hand, there have been 
various animal studies revealing that other carbon 
family nanomaterials like CNTs, can be internalized 
by macrophages and induce inflammation and injury 
in the respiratory system. So far, reports of CDs for 
therapy applications have employed in different 
tissues. There still are no reports about the 
inflammatory response or neoplastic lesions known 
about whether CDs exposure may eventually affect 
cancer progression via possible systemic effects on 
non-adjacent organs. On the other hand, there have 
been several reports about the novel cytotoxicity in 
some kinds of CDs, such as their ROS-generation 
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toxicity, dose-dependent toxicity, etc. Thereby, the 
risk of CDs for clinic therapy applications still needs 

more concerns and studies. 

 

 
Figure 11. CDs-based cancer therapy via drug delivery. (A) Schematic illustration for the preparation of drugs-loaded nanoassemblies of Pep-APCDs@Fe/DOX-LOS. (B) The 
transformation and enhanced antitumor immunity mechanism of Pep-APCDs@Fe/DOX-LOS. Adapted with permission from [219], copyright 2020 Wiley-VCH GmbH. 
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Figure 12. CDs-based cancer therapy via drug delivery. (A) Design and mechanism of MitoCAT-g to amplify oxidative stress in mitochondria and cause apoptotic cell death. (B) 
Schematic illustration of the synthesis process of CAT-g. (C) Schematic illustration of the establishment of the orthotopic PDX tumour model in NOD-SCID mice. (D) Scheme 
of the treatment schedule. (E) Effect of the different formulations on animal body weight. Adapted with permission from [221], copyright 2019 Springer Nature. 

 

Table 2. Summary of the types of CDs and their toxicity and drug loading capacity. 

Type Size of CDs Size of 
nanocarriers 

Surface Engineering Drug DLC, 
(wt%) 

Cell lines, Animal 
models 

Observation Ref 

Qucbl-CDs 5-7 nm 60-80 nm Covalently anchored Qucbl N/A Hela Qucbl-CDs: 0-50 μM, cellviability >90% [203] 
DOX-CDs 6.8±_1.3 

(D) 
8 (H) 

N/A Physisorbed through 
interactions such as π−π 
stacking, hydrophobic and 
van der Waals interactions 

DOX 6.0 A549 DOX-CDs: 400 μg mL-1, no growth inhibition [204] 

CA-CD N/A 220 ± 25.99 
um  

Hydrogen bonding  b-TC 77 N/A N/A [205] 

CDs-Oxa 2.28±0.42 
nm (D) 
0.34-1.4 nm 
(H) 

2.71 ± 0.43 
nm (D) 
2.5-4.2 nm 
(H) 

Condensation reaction 
between the amino groups 
and the carboxyl group  

Oxa(IV)- 
COOH 

4.2 L929; HepG2 CDs: 0.5 mg mL–1, survival rates > 75%; 
CD-Oxa: cytotoxic as oxaliplatin(II) (IC50 = 3.4 
µg mL–1) 

[206] 
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Type Size of CDs Size of 
nanocarriers 

Surface Engineering Drug DLC, 
(wt%) 

Cell lines, Animal 
models 

Observation Ref 

CDs−Pt(IV)@PEG- 
(PAH/DMMA 

7 nm 125 nm Intriguing charge conversion 
to a cationic polymer 

Pt(IV) 6.7  A2780 CDs: 3.125-400 μg mL–1, no toxicity (A2780); 
CDs−Pt(IV)@PEG-(PAH/SA): 0.18-11.44 μM, 
no toxicity to cancer cells at pH 6.8 or 7.4  

[207] 

CDsRGD-Pt(IV)- 
PEG 

5-8 nm 31 nm Intriguing charge conversion 
to a cationic polymer 

Pt(IV) 4.1 MDA-MB-231, 
MCF-7 cells  

CDs: 200 μg mL–1, negligible toxicity, 
CDs-RGD-Pt(IV)-PEG: at pH 6.8, much higher 
cytotoxicity 

[208] 

PNHCDs-DOX 5.8±0.1 nm 
(D) 
3.8 nm (H) 

N/A Interactions such as 
electrostatic attraction, π−π 
stacking, van der Waals force, 
and hydrophobic interaction 

DOX 35.43  HepG2, SiHa, 
MCF-7 

PNHCDs: no affect to cell survival; 
PNHCDs-DOX: 400 μg mL−1, 65−70%  

[209] 

CD–DOX 
conjugates 

2-6 nm N/A Amines bind with the 
carboxylic acid via 
electrostatic interactions or 
hydrogen bonding. 

DOX N/A HepG2 cells 
HL-7702 cells 

CD: 1.5625-100 mg mL-1, no influence; CD–
DOX: dose-dependent death 

[210] 

P-CDs/HA-Dox 1.4-3.2 nm 15-30 nm Electrostatic self-assembly DOX 6.3 HeLa, NIH-3T3  PCDs/HA-Dox: 50 μg/mL, 90% of NIH-3T3 
cells survive  

[198] 

IL-OCDs/Cur 7.2 nm N/A Hydrophobic interaction Cur 69.2 HeLa cells. IL-HCDs: 50 μg mL-1, 
cell viability of >80%, 

[211] 

DOX@ACD 119±207 
nm 

131 ± 3.7 nm Amphiphilic interaction DOX 14.2 ± 
0.003 
wt% 

A549 ACD@DOX: higher cell viability at low 
concentrations and lower viability at higher 
than DOX. 

[212] 

FA-Gd@CQDs/ 
DOX 

4.0 ± 0.7 
nm 

N/A π−π stacking and 
hydrophobic interactions. 

DOX 74.5 ± 
3.96  

HeLa, HepG2, and 
HeLung cell 

FA-Gd@CQDs: low cytotoxicity, 
FA-Gd@CQDs/DOX: greater cell growth 
inhibition toward HeLa cells than DOX 

[213] 

pCBMA(CD-D/ 
DOX) 

3 nm 183 ± 27 nm 
(D) 
200 nm (H) 

Electrostatic interactions and 
π−π stacking 

DOX·HCl 96.9 4T1 and HepG2 
cells 

CDs: 0.01−5 μg/mL−1, survival rates ~100%; 
pCBMA(CD-D/DOX): at low DOX dose (0.01, 
0.1 μg/mL), 4T1 cells incubation rates ~100% 

[214] 

CDs-epi 1.5 (D) 
1.7(H) 

2.6 (D) 
3.5 (H) 

Conjugated Epirubicin N/A SJGBM2, 
CHLA200, 
CHLA266, U87 

CDs-epi: 10 μM, 17–30% survival rates [215] 

p(CAT2-CD-BA1) 2.72 nm 3.79 nm Noninvasive adsorption DOX 84.28 HeLa p(CAT2-CD-BA1): 100 μg mL−1, cell viability 
unchanged  

[216] 

CD-PEI-DOX 2-8 nm (D), 
2-10 nm 
(H) 

222.5 ± 20.1 
nm 

Electrostatic interactions DOX 35.88  L02, MHCC-97L, 
Hep3B  

CD-PEI-DOX: (<10 μg mL−1, effective 
inhibition, far less cytotoxic to L02 than to 
cancer cells 

[217] 

DS-NA 5 nm 7235 ± 2.9 nm Hydrophobicity interaction DOX 23.5 MDA-MB-435S, 
4T1  

DS-NA: higher cytotoxicity to MDA-MB-435S 
cells (IC50 = 4.841 μg mL−1) than 4T1 cells 
(IC50=16.08 μg mL−1) 

[218] 

APCDs@Fe/ 
DOX-LOS 

9.4±0.62 
nm 

106 ± 1.5 nm π−π stacking interaction with 
large p-conjugated structure 
of APCDs 

DOX 
 

30.3 ± 
1.3 

4T1 tumorbearing 
mice 

Blood biochemical parameters: levels 
remained normal ranges, 
H&E staining: no noticeable morphological 
damage or inflammatory injury 

[219] 

Abbreviations: D—diameter; H—height; DLC—Drug loading capability 
 

4.2. Light-activated theranostic 
Beyond traditional drug delivery, light-activated 

nanotheranostics are considered as the most 
promising cancer therapy strategy in clinic [53, 118, 
222, 223]. As the important modalities of 
light-triggered treatment such as photothermal 
therapy (PTT) and photodynamic therapy (PDT), 
utilizing photoabsorbing molecules or nanoparticles 
to convert absorbed light energy to heat or generate 
reactive oxygen species (ROS), consequently 
achieving local hyperthermia for efficient cancer 
therapy. In the last ten years, the CDs and their 
composites are skillfully designed to satisfy the 
requirement of practical treatment, such high NIR 
absorbance, excellent biocompatibility and low 
nephrotoxicity. In the process, the intrinsic characters 
of CDs or the obtained properties of CDs-based 
nanocomposites combined with other assembled 
materials are gradually improved and perfected with 
various technologies. In these strategies, PTT is one 
kind of promising therapeutic strategy for diverse 
cancer while it is still a critical challenge in the rational 
design of photothermal agent with effective 

photothermal conversation for the therapeutic 
outcome. In general, the main differences of PTT 
properties from photothermal agents are based on the 
following three parameters: the photothermal 
conversion efficiency (PCT), absorption cross section 
and selectivity of light absorption. In these concepts, 
the PCT is the ratio of conversed thermal power to 
excited light power, which directly decides the 
treatment performance of PTT materials under same 
condition. The absorption cross section is based on the 
particles’ geometric cross section and light absorption 
efficiency, which determines the absorption capability 
of materials under the same powerful light. The 
selectivity of light absorption refers to the light 
absorption efficiency for different lights. Due to the 
scatter of tissues, the therapeutic window in the near 
infrared region from 650 to 1000 nm has a high tissue 
penetration depth in comparison to the visible light, 
which is benefited in the application of light-active 
treatment. The photothermal properties of CDs with 
different sizes have been summarized in Table 1. The 
maximum PCT of CDs can reach 78% under the 
excitation of 808 nm near-infrared light. And the 
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effective light absorption range has been extended to 
NIR-Ⅱ region with the light absorption greater than 
1000 nm. For the CDs with photothermal capability, 
researchers have designed and tuned the intrinsic 
photothermal conversation property by rational raw 
materials and chemical route for the preparation. For 
example, Ge et al. designed the CDs with intrinsic 
photothermal conversation by choosing precursor 
molecules of polythiophene derivatives (PT2) and 
then further carbonized the polymer of polythiophene 
phenylpropionic acid (PPA) (Figure 13A-B) [116]. The 
as-prepared CDs exhibited a broad absorption band 
from the visible to NIR region with a red emission 
(Figure 13C) and efficient photothermal conversion 
efficiency (Figure 13D-E). With the novel ability, 
researchers employed the CDs as simultaneous 
fluorescence, PA and thermal theranostics for cancer 
diagnosis and therapy in living mice and achieved 
excellent performance. In addition to the intrinsic 
PTT, CDs also are employed as nanoplatforms to 
assemble with other materials to enhance 
photothermal conversation. For example, Yu et al. 
rationally designed one kind of hollow-structured 
CuS nanoparticles composited with CDs to form 
CuSCDs and proved their high photothermal 
conversion efficiency with excellent biocompatibility 
and low toxicity (Figure 13F) [129]. With the coating 
of a macrophage membrane hybridized with T7 
peptide on the surface of the proteasome inhibitor 
loaded CuSCD, the obtained CuSCDB@MMT7 
illustrated selective specificity to cancer cells with the 
characteristics of immunity escaping and increased 
transferrin receptor-mediated endocytosis (Figure 
13G). Meanwhile, the CuSCDB@MMT7-triggered PTT 
showed the accumulation of the polyubiquitinated 
tumor suppressor protein that was heat stabilized 
under NIR induced hyperthermia, facilitating 
augmented tumor cell apoptosis and the attenuated 
metastasis. 

Compared with PTT, the PDT, which employ 
CDs as photosensitizers (PSs) to generate reactive 
oxygen species (ROS) and consequently ablate cancer 
cells or diseased tissue, is another light-activate 
nanotheranostic strategy with unique advantages. 
Under light excitation, part of the excited-state 
electrons in CDs can transfer to the ambient H2O or 
dissolved oxygen and in turn lead to the type I, type II 
and type Ⅲ photochemical ROS production of 
hydroxyl radicals or singlet oxygen. On the one hand, 
these ROS can fervently react with the protein, lipid, 
polysaccharide as well as other constituting members 
of bacteria membrane, leading to bacterial perforation 
and death. On the other hand, the in vivo generated 
ROS in cells can endow the apoptosis of tumor cells, 

thus enabling their application for cancer therapy. 
Therefore, the scope of PDT treatment with CDs can 
be extended from tumor treatment to other 
application fields, such as antibacterial treatment, 
wound healing, inflammatory treatment, plant 
preservation and so on. For example, Pang et al. 
designed one kind of CDs with both intrinsic 
nucleolus-targeting and ROS generation capability 
(Figure 14A) [224]. With more efficient tumor 
treatment induced by the ROS located within 
nucleolus and nucleolus from the CDs, the enhanced 
in vitro and in vivo PDT at a low dose of CDs and light 
irradiation were achieved. On the condition, various 
strategies such as functionalized CDs to targeted 
specific sub-cellular organelles were developed to 
further enhance the PDT effect of CDs. For example, 
owing to the limit therapeutic effects of 
oxygen-dependent PDT induced by the hypoxic 
tumor microenvironment and rapid consumption of 
oxygen in the PDT process, Jia et al. developed a novel 
CD as an in-situ tumor oxygenerator to overcome 
hypoxia and substantially enhance the PDT efficacy 
(Figure 14B) [225]. In their work, researchers firstly 
prepared magnetofluorescent Mn-CDs with 
manganese(II) phthalocyanine as a precursor. With 
the self-assembly of DSPE-PEG, the obtained Mn-CD 
nanoassemblies with both NIR fluorescence and 
T1-weighted magnetic resonance (MR) could 
effectively produce 1O2 and highly catalyze H2O2 to 
generate oxygen, enabling them as an acidic 
H2O2-driven oxygenerator to improve the oxygen 
concentration in hypoxic solid tumors for enhanced 
PDT.  

Similarly, Zheng et al. designed a carbon nitride 
(C3N4)-based multifunctional nanocomposites 
(PCCN) for light-driven water splitting to decrease 
the remarkably restriction of hypoxia in solid tumors 
for PDT (Figure 15) [226]. In their work, researchers 
developed CDs-doped C3N4 to enhance absorption 
ranged in red region for the process of in vivo water 
splitting, and then induced a polymer with the 
protoporphyrin photosensitizer, polyethylene glycol 
segment, and targeting Arg-Gly-Asp motif into the 
obtained CDs-doped C3N4, successfully achieving the 
PCCN. With the in vitro study, the nanocomposites of 
PCCN were indicated the capability to improve the 
intracellular O2 concentration and increase the 
generated ROS in the hypoxic and normoxic 
microenvironments upon light irradiation. The 
experiment of cell viability approved that the PCCN 
could reverse the hypoxia-triggered PDT resistance, 
enabling a excellent growth inhibition of cancer sites 
in an O2 concentration of 1% and exhibiting superior 
capability to overcome the hypoxia of cancer. 
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Figure 13. CDs-based cancer therapy by PTT. (A) Synthetic route of PPA. (B) Synthetic route of CDs. (C) The absorption of water-dispersible CDs. (D) Temperature elevation 
of pure water and the aqueous dispersion of CDs with different concentrations under laser irradiation. (E) Plot of temperature change over a period of 600 s versus the aqueous 
dispersion of CDs with different concentrations. Adapted with permission from [116], copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (F) Schematic 
illustration of the generation of proteasome inhibitor-encapsulated CuS/carbon dots nanocomposites (CuSCDB@MMT7). (G) Schematic illustration of the application of 
CuSCDB@MMT7 for enhanced PTT via heat-stabilization of various substrates in the ubiquitin-dependent proteasomal degradation pathway. Adapted with permission from 
[129], copyright 2020, American Chemical Society. 
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Figure 14. CDs-based cancer therapy by PDT. (A) Schematics of synthetic procedure of CDs and corresponding nucleolus-targeted photodynamic anticancer therapy. Adapted 
with permission from [224], copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Schematic illustration of the Mn-CD assembly as an acidic H2O2-driven 
oxygenerator to enhance the anticancer efficiency of PDT in a solid tumor. Adapted with permission from [225], copyright 2018 American Chemical Society. 

 
In addition, due to limitation of PSs’ side effects 

and singlet oxygen’s short half-life, Wu et al. designed 
a mitochondria-targeted nanosystem to improve the 
PDT efficacy by releasing a bioprecursor of PSs under 
two-photon irradiation [227]. In their work, 
researchers synthesized a phototriggerable coumarin 
derivative by linking 5-aminolevulinic acid (5-ALA, 
the bioprecursor) to coumarin; and then prepared the 
nanosystem (CD-ALA-TPP) by incorporating the 
coumarin derivative and mitochondria-targeting 
compound TPP on CDs (Figure 16A). With cellular 

internalization, the nanosystem exhibited selective 
accumulation in mitochondria; and could release 
5-ALA molecules to metabolize into protoporphyrin 
IX in mitochondria via the biosynthesis process under 
one- or two-photon irradiation. With the generated 
singlet oxygen induced by endogenously synthesized 
photosensitizer under light irradiation, the 
CD-ALA-TPP could cause oxidant damage to 
mitochondria and then induce the apoptosis of the 
cells. Similarly, due to the major obstacles of the 
current PSs and the tissue penetration limit of the 
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outer light source in PDT, Yang et al. developed the 
CL emission as an inner light source for the 
intracellular activation of CDs-based PDT (Figure 
16B-C) [228]. In their work, researchers carefully 
selected the nanocarriers of CDs, the inner light of CL 
from the reaction of luminol-H2O2-horseradish 
peroxidase, and the PDT agent of Ce6 to design an 
efficient and united system for the full use of light and 
enhancement of the overall PDT yield. With the 
observations of proliferating cell nuclear antigen 
(PCNA) and platelet/endothelial cell adhesion 
molecule-1 (PECAM-1 or CD31) results, researchers 
indicated the excellent performance of CL-induced 
y-CDs-Ce6 system in cancer therapy, providing a 
promising approach to achieve the selective PDT 
therapy (Figure 16D). 

As CDs exhibit excellent intrinsic PTT and PDT 
properties, simultaneous PTT and PDT therapy in a 
single nanoplatform may provide the best therapeutic 
impact. Generally, the photosensitizers (PS) 
functioning as PDT agent in tumor under light can 
generate different ROS, thereby achieving effective 
treatment. Generally, the ideal PS are employed with 
the following characters: (1) efficient energy transfer 
with high quantum yield of ROS, (2) low toxicity in 
dark, (3) excellent photostability, (4) water solubility, 
and (5) broad light absorption ranging in the 
therapeutic window. Nevertheless, current PS from 
CDs are always limited by their poor water solubility, 
low photostability, suboptimal excitation 
wavelengths, or low efficiency of ROS generation. 
Thereupon, the combination therapy of PDT with 
other therapies, such as PTT, can provide the unique 
advantages. On the one hand, the local hypoxia in 
tumor can seriously limit the therapeutic effect of PDT 
owing to the exhaustion of tissue oxygen and fracture 
of tumor blood flow. Thereupon, the combination 
therapy can resolve the hypoxia problem to achieve 
enhanced anticancer efficacy. On the other hand, the 
combination therapy can also solve the respective 
limitations of common PS based on the only PDT or 
PTT, such as low efficacy of ROS generation, and the 
requirement of high photoactive power density. 
Thereby, considerable efforts have been exerted to 
develop light-triggered combination therapy. For 
example, Ge et al. prepared one kind of CDs with 
intrinsic PTT and PDT properties with polythiophene 
benzoic acid as carbon source (Figure 17A) [119]. In 
their work, the obtained CDs with bright red 
fluorescence exhibited photodynamic capability with 
a singlet oxygen generation efficiency of 27% and 
photothermal effects with a photothermal conversion 
efficiency of 36.2%. On the condition, the CDs were 
successfully employed in the red-light-triggered 
photodynamic-photothermal simultaneous therapy in 

vitro and in vivo within the therapeutic window in the 
region from 600 to1000 nm. Similarly, Zhang et al. 
combined the action of starving therapy/PDT/PTT 
and checkpoint-blockade immunotherapy to improve 
cancer therapy [177]. In detail, the immunoadjuvant 
nanoagents (γPGA@GOx@Mn, Cu-CDs) were 
designed by integrating the gamma-glutamyl 
transferase (GGT) enzyme-induced cellular uptake 
polymer-poly (γ-glutamic acid) (γ-PGA), the 
glucose-metabolic reaction agent-glucose oxidase 
(GOx), the Mn, Cu-doped CDs as PSs and 
self-supplied oxygenator nanodots (Figure 17B). The 
obtained γPGA@GOx@Mn, Cu-CDs NPs illustrated 
long retention time at the tumor acidic 
microenvironment and targeted capability for cancer 
cells with both photothermal and photodynamic 
effects under laser irradiation of 730 nm. With the 
endogenous generation of H2O2 caused by the 
nanoreactors, tumor hypoxia and further the 
enhancement of in vivo PDT were significantly 
relieved, enabling the improvement of therapeutic 
effect. Moreover, Sun et al. developed another method 
to design one kind of nanoplatform for fluorescence 
imaging and synergistic cancer therapy with tumor 
microenvironment stimuli-responsivity [229]. With 
the assembling of Ce6 modified CDs (CDs-Ce6) and 
Cu2+ (Figure 17C), the as-obtained nanoassemblies 
(Cu/CC NPs) exhibited quenched fluorescence/PDT 
due to the aggregation of CDs-Ce6 and recovered 
fluorescence /PDT functions triggered by the 
stimulation of tumor microenvironment (Figure 17D). 
With the extra chemodynamic therapy (CDT) function 
through reaction with H2O2 and depletes GSH in 
tumors by aredox reaction introduced by Cu2+ in the 
Cu/CC NPs, the amplifier of the intracellular 
oxidative stress and enhanced PDT were achieved. 

As well as the common PDT generated by ROS 
under light excitation, nitric oxide (NO) is another 
gaseous signal molecule with multiple physiological 
functions in cancer therapy [230]. Due to the 
unsatisfactory anticancer effect of the O2-dependent 
production of NO, Fang et al. reported a NO-based 
phototherapeutic strategy mediated by 
photogenerated holes for hypoxic tumors (Figure 
18A) [231]. In their work, the phototherapeutic 
strategy was achieved with the NO generated by the 
poly-L-arginine modified CDs-doped graphitic 
carbon nitride nanomaterial (ArgCCN) under light 
excitation (Figure 18B-D). Mechanically, the holes 
generated by CCN could oxidize the arginine residues 
on poly-L-arginine to generate NO with the 
irradiation of 660 nm laser, thus subsequently 
resulting in tumor cell apoptosis. Meanwhile, 
regarding the large size distribution and conjugating 
with active tumor targeting ligands could improve the 
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enrichment of the phototherapy nanoplatform at 
tumor sites (Figure 18E-F). Thereupon, the capability 
of ArgCCN to generate NO without O2 consumption 
could overcome the therapeutic challenges of the 
hypoxic microenvironment in tumor sites, paving the 
new approaches to cancer therapy. 

4.3. Metabolism Effect 
Despite their low systemic toxicity in mice, CDs' 

metabolic pathway is unclear in both normal and 
tumor cell growth and apoptosis. In several recent 
reports, researchers have observed the novel 
cytotoxicity of some carbon-based nanomaterials, 
such as carbon nanotubes, graphene, and graphene 
oxide, which can cause DNA and lysosomal damage 
and mitochondrial dysfunction, resulting in the 
apoptosis or necrosis. With the similar chemical 
structure and physical property, several kinds of CDs 
have been observed the similar effect on the cell 
metabolism. For example, Li et al. synthesized one 
kind of cysteine-based chiral optically active CDs and 
indicated their influences to cellular energy 
metabolism, which was vital for essential cellular 
functions [232]. In their work, researchers developed a 
green and effective synthesis strategy for the chiral 
N-S-doped CDs (L-CDs and D-CDs) by hydrothermal 
treatment of L-or D-cysteine (Figure 19A-C). With 
more characterizations and experiments, the 

chirality-dependent enhancement of L-CDs in cellular 
glycolysis were observed while there were no 
influences on the cellular ATP levels of T24 cells 
(Figure 19D-E). The novel cellular energy metabolism 
performances indicated the potential applications of 
CDs in promising biomedicine for cancer therapy. In 
addition, Ding et al. observed the novel 
dose-dependent cytotoxicity of CDs (Figure 19F) 
[233]. In their work, researchers demonstrated the 
CDs-induced dose-dependent increase of ROS levels 
in Uveal melanoma (UM) cell metabolism, 
tumorigenicity of zebrafish and nude mouse 
xenograft model. In practice, the effect of 
CDs-induced ROS could promote the growth, 
invasiveness and tumorigenicity of UM cells at low 
concentration and result in the apoptosis of UM cells 
of at high concentration. More experiments indicated 
that the CDs at 25~100 µg mL−1 could activate 
Akt/mammalian target of rapamycin (mTOR) 
signaling and induced glutamine metabolism, 
providing a cascade that promotes UM cell growth 
(Figure 19G). With these novel cytotoxicity 
capabilities in the metabolism pathway of cells, CDs 
could be employed one kind of potential 
nanomaterials for the rational design of various 
promising nanomedicines in cancer therapy. 

 

 
Figure 15. Structure of PCCN and schematic diagram of 630 nm light-driven water splitting enhanced PDT. Adapted with permission from [226], copyright 2016 American 
Chemical Society. 
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Figure 16. CDs-based cancer therapy by PDT with two-photon irradiation or CL. (A) Schematic illustration for the photo-triggered release of ALA from CD-ALA-TPP and the 
subsequent proapoptotic action on a cancer cell. Adapted with permission from [227], copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Synthesis process 
of y-CDs and y-CDs-Ce6 conjugate. (C) Enhancement of therapeutic effect by optimization of CRET step to the PS in CL-induced y-CDs-Ce6 system. (D) Illustration of the PDT 
system in vivo. Adapted with permission from [228], copyright 2019 American Chemical Society. 

 

4.4. Advanced technology 
Except the above strategy to achieve cancer 

therapy, there are still other advanced nano-
technology to be developed with CDs for diverse 
cancer. For example, boron neutron capture therapy 
(BNCT) was a noninvasive radiation therapeutic 
modality for cancer therapy and Li et al. designed one 
kind of novel boron-containing carbon dots (BCDs) 
for the BNCT by tracking 10B in vitro and in vivo [234]. 
With the encapsulation of BCDs by exosomes (Exos), 
researchers designed the BCD-Exos which could 
internalize and distribute around the nuclei of 
U-87-MG glioma cells (Figure 20A-B). With the ability 
to cross the blood-brain barrier and significant 
accumulation in tumor sites of the orthotopic 

U-87-MG glioma tumor-bearing mice model (Figure 
20C), the BCD-Exos exhibited a prominent BNCT 
effect for the brain glioma in the mice model (Figure 
20D-E). The excellent curative effect of BNCT with 
BCD-Exos in the application of brain glioma therapy 
exhibited promising potential of CDs in various 
neutron capture therapy. 

Meanwhile, due to the scaffolds of DNA 
nanostructures for drug delivery, biosensing, and 
bioimaging by their vulnerability in physiological 
settings, less favorable of incorporating arbitrary 
guest molecules and other desirable functionalities, 
Wu et al. designed a DNA nanostructure 
self-assembly strategy mediated by nitrogen-rich CDs 
(NCDs) with the excellent PL and photodynamic 
properties and indicated the great potential of the 
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obtained DNA/NCDs nanocomplex in anticancer 
therapy (Figure 21A-B) [235]. In their work, 
researchers demonstrated the NCDs could mediate 
DNA nanoprism (NPNCD) self-assembly isothermally 
at a large temperature and pH range in a 
magnesium-free manner by polyacrylamide gel 
electrophoresis (PAGE) (Figure 21C-I). With excellent 
biocompatibility and high cellular uptake efficiency of 

NPNCD, the designed NPNCD with KRAS siRNA 
(NPNCDK) was further conjugated for KRAS-mutated 
nonsmall cell lung cancer therapy (NSCLC), 
illustrating excellent gene knockdown efficiency and 
anticancer effect in vitro. These advanced technologies 
could greatly expand the applications of CDs in an 
increasing range of significant precise cancer therapy. 

 

 
Figure 17. CDs-based cancer therapy by simultaneous PTT and PDT. (A) Synthetic route of PBA and CDs WITH simultaneous PTT and PDT capability by polymerization to 
carbonization. Adapted with permission from [119], copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Schematic illustration of starving and phototherapy 
mediated by γ-PGA@GOx@Mn,Cu-CDs NPs. Adapted with permission from [177], copyright 2020 Elsevier Ltd. (C) Illustration of the synthesis process of Cu/CC 
nanoassemblies. (H) Illustration of the features for enhancing tumor accumulation, TME stimuli-responses and synergistic therapy. Adapted with permission from [229], copyright 
2020 Wiley-VCH GmbH. 
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Figure 18. CDs-based cancer therapy by NO-based phototherapeutic. (A) The schematic diagram of microenvironment-independent NO-based phototherapeutic 
nanoplatform. (B) NO generation in hypoxia and normoxia; (C) ESR spectra of g-C3N4 (with O2) and ArgCCN (with or without O2) under irradiation. (D) NO generation in the 
presence of various scavengers. (E) CLSM images of intracellular NO generation. (F) Fluorescence images of intracellular O2 content probe in MCF-7 cells treated with PBS only 
or CCN+laser, poly-L-arginine+laser, ArgCCN and ArgCCN+laser. Adapted with permission from [231], copyright 2020 Wiley-VCH GmbH. 

 

5. Discussion and Conclusion 
In this paper, we have summarized and 

highlighted the current progress of CDs-involved 
nanotheranostic application in targeted bioimaging 
and cancer therapy. These results imply the various 
advantages to employ CDs as nanoplatforms to 
achieve targeted imaging and therapeutic functions 
for tumors. Through the diverse biodistribution in 
tumor sites and normal organism, charge and pH 
effect of CDs in tumor microenvironment, biomarker 
sensor and the self-targeting for some tumor, CDs 
illustrate excellent capability of in vivo targeted tumor 
cells or sites. Meanwhile, with the capability as 
nanocarriers for drug delivery, as agent for 
light-active theranostic, as interference to affect cell 
metabolism and as nanoplatforms for achieving 
advanced technology, CDs are employed to achieve 
precise cancer therapy. These recent progress of CDs 
in targeted bioimaging and cancer therapy approved 

the promising potential of CDs for the clinic diagnose 
and treatment for cancer in future.  

6. Future prospect and outlook  
In this paper, the recent progress of CDs-based 

nanotheranostic in targeted bioimaging and cancer 
therapy has been summarized. Although there have 
been various progresses in the nanotheranostic of 
CDs, there still remains various challenges to be 
resolved for the future biological applications. 

Firstly, the structures of CDs remain to be 
analyzed. Compared with the molecular probes, the 
structures of CDs and their corresponding 
luminescence mechanism are not clear, thereby 
restricting the improvement of structure and 
luminescent properties for the clinic requirement. 

Secondly, the metabolism of CDs in living body 
remains to be further analyzed. Compared with the 
classical medicine, the circulation of CDs in living 
body and organs is not clear and the interaction 
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between CDs and living molecular is complex, 
leading to the limitation of CDs in clinic applications. 

Thirdly, the risk of CDs for clinic therapy 
applications remains more studies. Though most of 
CDs exhibit low toxicity, there are still widespread 
concerns about the risk of CDs for therapy 
applications. On the one hand, there have been 
various animal studies revealing that other carbon 
family nanomaterials like CNTs, can be internalized 
by macrophages and induce inflammation and injury 
in the respiratory system. So far, reports of CDs for 

therapy applications have employed in different 
tissues. There still are no reports about the 
inflammatory response or neoplastic lesions known 
about whether CDs exposure may eventually affect 
cancer progression via possible systemic effects on 
non-adjacent organs. On the other hand, there have 
been several reports about the novel cytotoxicity in 
some kinds of CDs, such as their ROS-generation 
toxicity, dose-dependent toxicity, etc. Thereby, the 
risk of CDs for clinic therapy applications still needs 
more concerns and studies. 

 

 
Figure 19. CDs-based cancer therapy by cell metabolism effect. (A) Synthesis of chiral CDs by hydrothermal treatment of chiral cysteines. (B) PL excitation and emission 
spectrum of the L-CDs. (C) Circular dichroism spectra of the L-and D-CDs. (D) Basal Glycolysis from the extracellular acidification rate curves. (E) glycolytic capacity. Adapted 
with permission from [232], copyright 2018Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim. (F) Schematic of the opposing CDs-concentration-dependent effects on tumor cell 
progression and metastasis. (g) Heatmap depicting changes in metabolite concentration between control and 50 µg mL−1 CDs-treated Mum2B cells (p < 0.05). Adapted with 
permission from [233], copyright 2021 Wiley-VCH GmbH. 
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Figure 20. CDs-based cancer therapy by boron neutron capture therapy. (A) The preparation of BCD-Exos. (B) The ability of BCDs for bioimaging in the normal mice model. 
(C) The in vivo bioimaging of U87-Luc transplanted mice model treated with saline as the control, BPA, and BCD-Exos after BNCT. (D) Survival curves after BNCT. (E) Gross 
images of mice brains and microscopic images of H&E-stained tumor sections in each group. Adapted with permission from [234], copyright 2021 Wiley-VCH GmbH. 

 
 
Fourthly, the principle and mechanism about the 

novel properties of CDs, such as self-targeting, 
metabolism effect, etc. still remain to be further 
analyzed and developed for more applications. 

At last, more advanced nanotechnologies about 
CDs and their nanocomposites remain to be employed 
for overcoming the practical limitations in classical 
diagnosis and therapy. 



Theranostics 2022, Vol. 12, Issue 6 
 

 
https://www.thno.org 

2887 

 
Figure 21. CDs-based cancer therapy by DNA nanostructure. (A) The chemical route to synthesize NCDs. (B) NCDs-assisted DNA NP self-assembly. (C) Cellular uptake 
evaluation of NPNCD on KRAS-mutated NSCLC cell lines and CLSM imaging of NPNCD internalized by A549 and H23. (D) The formation of NPNCD showed by PAGE. (E) 
Self-assembly of NPNCD at various NCDs concentration. (F) NCDs-induced isothermal DNA NP self-assembly and corresponding formation of DNA NP at different temperature. 
(G) PAGE analysis of NPNCD formation under different pH values. (H) PAGE electrophoresis showing the serum stability of NPNCD and magnesium-assembled NP (NPMg). (I) 
PAGE analysis of the formation of CDs/NP conjugating with KRAS siRNA. Adapted with permission from [235], copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. 
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