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Abstract 

Many factors such as trauma and COVID-19 cause acute kidney injury (AKI). Late AKI have a very high 
incidence and mortality rate. Early diagnosis of AKI provides a critical therapeutic time window for AKI 
treatment to prevent progression to chronic renal failure. However, the current clinical detection based 
on creatinine and urine output isn’t effective in diagnosing early AKI. In recent years, the early diagnosis 
of AKI has made great progress with the advancement of information technology, nanotechnology, and 
biomedicine. These emerging methods are mainly divided into two aspects: First, predicting AKI through 
models construct by machine learning; Second, early diagnosis of AKI through detection of 
newly-discovered early biomarkers. Currently, these methods have shown great potential and become an 
attractive tool for the early diagnosis of AKI. Therefore, it is very important to discuss and summarize 
these methods for the early diagnosis of AKI. In this review, we first systematically summarize the 
application of machine learning in AKI prediction algorithms and specific scenarios. In addition, we 
introduce the key role of early biomarkers in the progress of AKI, and then comprehensively summarize 
the application of emerging detection technologies for early AKI. Finally, we discuss current challenges 
and prospects of machine learning and biomarker detection. The review is expected to provide new 
insights for early diagnosis of AKI, and provided important inspiration for the design of early diagnosis of 
other major diseases. 

Key words: Acute kidney injury, Machine learning, Reactive oxygen species and nitrogen species, Neutrophil 
gelatinase-associated lipocalin, kidney injury molecule-1, γ-glutamyl transpeptidase, miRNA-21, Early diagnosis. 

1. Introduction 
Acute kidney injury (AKI) is a common clinical 

syndrome characterized by a sudden dysfunction of 
the kidney. The kidney is an important metabolic 
organ of the human body. Many factors can cause 
AKI, including heart failure, sepsis, hemorrhage, 
nephrotoxic drugs, and COVID-19 etc.[1-8]. For 
example, Hirsh et al. reported the high prevalence 
among hospitalized patients with COVID-19 (36.6%) 

[9]. It is estimated that 20% of hospitalized patients 
deteriorate to AKI, and 10% of AKI patients require 
renal replacement therapy (RRT). The mortality rate 
of patients requiring RRT is as high as 50%. Patients 
recovering from AKI have a higher risk of chronic 
kidney disease and even end-stage renal disease 
[10-13]. The treatment options for AKI are very 
limited. Early diagnosis of AKI and taking 
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appropriate preventive measures can effectively 
recover from AKI. Currently, the diagnosis standard 
of AKI is based on the level of serum creatinine (SCR) 
and urine output (UO) according to the guidelines 
issued by Kidney Disease: Improving Global 
Outcomes in 2012 [14]. However, SCR and UO are 
non-specific and delayed for the early diagnosis of 
AKI. SCR can be affected by many non-renal factors. 
For example, individuals with normal renal function 
may experience the rise of SCR due to high muscle 
mass or intake of certain drugs (such as trimethoprim 
and cimetidine) [15]. In addition, only persistent 
oliguria is an effective signal of acute kidney injury. In 
this case, UO cannot diagnose AKI in time [16]. 
Moreover, the changes of SCR and UO have a 
long-time delay compared with the important 
structural changes of the kidney of AKI. When SCR 
and UO change significantly, renal function has been 
severely impaired, which easily makes AKI treatment 
miss the best time of intervention [17, 18]. 

Imaging diagnosis includes ultrasound, 
computed tomography etc. can assess kidney 
morphology and provide insights into the function, 
perfusion, and possible etiology for AKI [19, 20]. 
However, these methods have disadvantages such as 
low resolution, radiation damage, and the potential 
risk of increased nephrotoxicity caused by contrast 
agents, and is not suitable for the diagnosis of early 
AKI.  

In recent years, the early diagnosis of AKI has 
made great progress with the advancement of 
information technology, nanotechnology, and 
biomedicine [21, 22]. On the one hand, new functions 
of artificial intelligence in biomedicine are constantly 
being discovered [23-25]. Machine learning, as a 
branch of artificial intelligence, can effectively predict 
AKI by building predictive models based on 
analyzing large data sets related to medical 
treatments and outcomes [26]. On the other hand, 
more and more effective and potential early 
biomarkers have been discovered with the in-depth 
study of AKI pathology, such as neutrophil gelatinase 
associated lipoprotein (NGAL), γ-glutamyl 
transpeptidase (GGT), kidney injury molecule-1 
(KIM-1), microRNA (miRNA) and excess reactive 
oxygen species and nitrogen (RONS) [27-30]. The 
concentration of these biomarkers in the kidney or 
body fluid (like blood or urine) is significantly 
increased before the onset of renal organic and 
functional diseases. Therefore, these biomarkers are 
more sensitive for early AKI than SCR and UO. 
However, as clinical needs expand, traditional 
detection methods (such as ELISA and PCR) for these 
new biomarkers are no longer applicable. On this 
basis, many kinds of biosensor (like optical probes, 

electrochemical probes, and surface plasmon 
resonance (SPR) probes) based on advanced 
nanotechnology, deoxyribonucleic acid (DNA) 
technology, and synthesis technology have been 
developed to detect these markers with high 
sensitivity and selectivity (Figure 1). In this review, 
we introduce the key role of RONS and other 
biomarkers in the early progress of AKI, and then 
systematically summarize the application of emerging 
detection technologies in RONS (Figure 1A), NGAL 
(Figure 1B), GGT (Figure 1C), KIM-1 (Figure 1D) and 
miRNA (Figure 1E) for early detection of AKI. In 
addition, we systematically summarize the 
application of machine learning (Figure 1F) in AKI 
prediction algorithms and specific scenarios. Finally, 
we provide meaningful strategies for its further 
development in the clinic. 

2. Machine learning 
Currently, AKI is difficult to be diagnosed early. 

Even experienced clinicians cannot guarantee the 
accuracy of the diagnosis of AKI in patients because 
AKI involves a series of complex changes that vary 
from patient to patient. Machine learning focuses on 
algorithms capable of learning based on imitation of 
the behavior of human learning and offers promise for 
improving the accuracy of diagnosis of disease 
[31-33]. Theoretically, if sufficient biomedical and 
patient datasets are provided, machine learning can 
accurately diagnose early AKI by unlocking the 
potential of “ground truth” data, where the 
correlation between data and outcomes is known 
(Figure 2). However, data collection has become a 
critical bottleneck for machine learning [34]. On the 
one hand, the training effect of machine learning is 
limited by the size of the dataset capacity. Overfitting 
can occur with small datasets or simple features. 
When the dataset capacity is too large and has too 
many features, it will greatly increase the training 
burden and computational difficulty because there 
may be a linear correlation between some features. On 
the other hand, the way of data collection also 
depends on the specific situation. It is necessary to 
decide whether to use manual extraction of data 
features under the trade-off between the labeling cost 
of the detection results and the accuracy of the 
algorithm. Currently, with the widespread 
deployment of electronic health records (EHR), the 
problem of data collection has been properly solved 
and machine learning has had a profound impact on 
AKI prediction and patient monitoring. Many 
machine learning methods are widely developed in 
AKI prediction (as show as Table 1). 
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Figure 1. The latest applications of early diagnosis of AKI fall into three categories: optical probes imaging, biosensors and machine learning prediction models. The detected 
biomarkers involved are (A) RONS, (B) NGAL, (C) GGT, (D) KIM-1, and (E) miRNA21. (F) The algorithms involved in machine learning are logistic regression, deep learning, 
decision tree and so on. 

 

 
Figure 2. Flow chart of machine learning to predict AKI. First collect basic data, then organize the data and select the most suitable algorithm for modeling, and then continue 
to test and verify the model until the output is reasonable. The prediction results include the probability of patients with various grades of AKI (stage 1-3). 
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Table 1. Machine learning related concepts involved in this article 

Concepts Introduction 
Linear regression A simple algorithm for regression task which expects a hyperplane to fit the dataset (a straight line when there are only two variables) [36] 
Generalized additive model A method of constructing a non-monotonic response model within the framework of a linear or logistic regression model (or any other 

generalized linear model) [37] 
Decision Tree A simple but widely used classifier for classifying unknown data by building decision trees from training data [38] 
Support vector machine Transform classification problem into the problem of finding the classification plane and the classification is achieved by maximizing the 

distance between the boundary points of the classification and the classification plane [39] 
Logistic regression Deal with binary classification problems where the dependent variable is a categorical variable [40] 
Gradient boosting decison tree The purpose is to learn a series of weak classifiers or basic classifiers from the training data, and then combine them into a strong classifier 

[41] 
Neural networks Abstract the human brain neuron network from the perspective of information processing, establish a certain simple model, and form 

different networks according to different connection methods [42] 
Random forest Integrated algorithm composed of many decision trees [38] 
Genetic algorithm A computational model of searching for the optimal solution by simulating the natural selection and genetic mechanism of Darwin's 

biological evolution theory [43] 
Deep Taylor decomposition A method to explain the prediction results of the neural network to the individual; The result it produces is the decomposition of the 

function expressed by the neural network on the input variables [44] 
Principal component analysis Analyze the data to identify patterns and find patterns to reduce the dimensionality of the data set while minimizing information loss [45] 
Shap An interpretation technique based on the Shap value of each feature; A positive Shap value indicates that the feature causes a higher risk of 

disease, while a negative Shap value is the opposite [46] 
 
Area Under the Receiver Operating 

Characteristic curve (AUC) is defined as the area 
under the receiver operating characteristic curve 
(ROC). AUC is the probability that the machine 
learning algorithm can rank this positive sample (AKI 
patients) before the negative sample (non-AKI 
patients) [35]. AUC is statistically consistent and more 
discriminating than other performance metrics in the 
evaluation of classification problems. Although we 
cannot arbitrarily define whether the algorithm is 
good or bad because the data set and processing 
methods are generally different, AUC provides a 
reasonable reference for its predictive performance. In 
the past 5 years, machine learning has made great 
progress in predicting AKI, and some models based 
on machine learning have very high accuracy with 
AUC values exceeding 0.9. According to application 
scope of the model, these machine learning methods 
are divided into preoperative AKI risk prediction, 
AKI prediction during surgery, postoperative AKI 
real-time prediction, intensive care unit AKI 
prediction, and AKI prediction in all hospital wards 
(Table 2). 

2.1 Preoperative AKI Risk Prediction 
Preoperative data typically include many kinds 

of data relate to the occurrence of AKI, such as 
demographic characteristics (like age, race, and sex), 
medical history and acuity (e.g., Charlson 
comorbidity index, smoking, and heart failure), 
physiological measurements (e.g., blood pressure, 
pulse, and heart rate), and type of anesthesia etc. 
Machine learning easily summarize the association 
between preoperative data and AKI and make 
accurate AKI predictions through appropriate 
algorithms. For example, Bihorac et al. developed an 
automated analysis framework with generalized 
additive model and random forest methods for the 
preoperative risk algorithm (MySurgeryRisk) in a 

single-center cohort of patients undergone major 
operations [47]. Using the University of Florida 
Health Integrated Data Repository as Honest Broker, 
they have created a perioperative longitudinal cohort 
that integrated the EHR with public datasets. The 
number of basic features was 285, sample size was 
51457 and the maximum number of feature 
classifications was 10,000. MySurgeryRisk calculated 
the risk of morbidity and mortality of 8 kinds of 
postoperative complications including AKI, and 
automatically determined the optimal threshold for 
dividing patients into low-risk and high-risk AKI 
groups and the AUC for predicting AKI was as high 
as 0.88. The prediction of MySurgeryRisk was very 
intuitive and simple. A patient whose risk score 
exceeded the threshold was considered a high-risk 
patient, and the sector representing the disease was 
marked in red, otherwise it was marked in green. 
MySurgeryRisk was also adopted as an important 
part of the intelligent perioperative platform, for the 
real-time clinical workflow of automatic surgical risk 
prediction to achieve prediction of AKI. 

The addition of preoperative variables with close 
relation to AKI further improves the accuracy of 
machine learning model. For example, preoperative 
compound hemodynamic parameters such as 
pulmonary artery pulsatility index (PAPI) and right 
atrial pressure (RAP) are closely related to AKI after 
heart transplantation [48]. Very recently, Guven et al. 
established a model in 595 single-center cohorts with 
logistic regression to evaluate the effect of 
preoperative PAPI and RAP on AKI prediction within 
30 days after heart transplantation (Figure 3A) [49]. 
Patient data were obtained from the hospital 
database, electronic records, chart review and the 
catheterization reports in the Erasmus Medical 
Center. The results showed that the AUC of the model 
increased from 0.76 to 0.79 after adding the 
preoperative PAPI and RAP variables (Figure 3B-C). 
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Table 2. Methods of machine learning to predict AKI 

Category Modeling method Dataset source Limitations Optimal AUC  Refs 
Preoperative AKI Risk 
Prediction 

RF The University of Florida Health Integrated 
Data Repository 

Single-center study; no clear definition of features 0.88 [47] 

LR The hospital database, electronic records, 
chart review and the catheterization reports 
in the Erasmus Medical Center 

Single-center study; urine output was not considered 
when defining AKI. 

0.79 [49] 

AKI Prediction During 
Surgery 

SVM,LR, 
RF,GBDT, 
DNN 

The preoperative assessment record, 
anesthesia record and EHR 

Single-center study; ignoring some key features  0.85 [50] 

LR, 
Decision 
Tree,SVM,RF,GBDT 

Electronic medical records and records on 
intraoperative variables at Far Eastern 
Memorial Hospital 

Single-center research; manual input of features; data 
imbalance 

0.84 [51] 

DNN Perioperative Data Warehouse Single-center study; loss of creatinine value caused 
lots of cases to be lost. 

0.792 [52] 

Postoperative AKI 
Real-time Prediction 

RNN EHR at a tertiary care center for 
cardiovascular diseases 

The observation period for patients varies in length. 0.90 [56] 

Intensive Care Unit AKI 
Prediction 

RF The Multidisciplinary Epidemiology and 
Translational Research in Intensive Care Data 
Mart 

Unbalanced data sources; AKI was not manually 
reviewed; Incomplete AKI definition 

0.88 [57] 

RF The EPaNIC multicenter randomized clinical 
trial database 

NGAL is only measured in the verification queue 0.84 [58] 

Integrated 
classification 
learning 

the PICU and CTICU of three  
independent tertiary-care pediatric intensive 
care centers 

Urine volume standards were not considered when 
defining AKI; patients with uremia were not 
excluded. 

0.89 [59] 

AKI Prediction in All 
Hospital Wards 

RNN The U.S. Department of Veterans Affairs 
clinical database 

representative cases are uneven 0.92 [60] 

GBDT The Clinical Research Data Warehouse at the 
University of Chicago 

Urine volume standards were not considered in the 
definition of AKI; baseline SCR was inaccurate 

0.90 [61] 

LR The Yale-New Haven Health System The drug dose is not considered in the drug 
variables. 

0.81 [62] 

Interpretable AKI 
Prediction Model 

TCN HER of all 
residents of four Danish municipalities 

the definition of AKI need improvement 0.88 [66] 

Cross-site 
Transportability Model 
for AKI Prediction 

GBDT EHR data from a source healthcare system baseline SCR is inaccurate;miss the key variables of 
heart rate, blood oxygen saturation and Braden scale 
score 

0.92 [67] 

 

 
Figure 3. (A) Preoperative hemodynamic parameters≦30 days after heart transplantation and their relationship with postoperative right heart failure and AKI. (B) ROC curves 
of the clinical model (green) and clinical model + PAPI (blue) in predicting stage 3 AKI. (C) ROC curves of the clinical model (green) and clinical model + RAP (red) in predicting 
stage 3 AKI. Adapted with permission from [49], copyright 2018 

 

2.2 AKI Prediction during Surgery 
The predicting accuracy of AKI is further 

improved by importing the intraoperative data into 
the machine learning algorithm. Recently, Xue et al. 
modeled the preoperative, intraoperative, and 
composite data from 111888 operations performed in 
a single center to predict the incidence of 
postoperative AKI with logistic regression (LR), 
support vector machine (SVM), random forest (RF), 
gradient boosting decision tree (GBDT) and deep 
neural network (DNN) methods [50]. The optimal 

hyper parameters for RF were 300 base learners, 200 
maximum depth, and minimum 4 samples for splits. 
The optimal settings for DNN were choosing learning 
rate as 0.001 and batch size as 2048. Input data 
elements were extracted from the preoperative 
assessment record and anesthesia record, the target 
outcomes related to AKI were retrieved from EHR. 
For each preoperative variable, missing data were 
imputed using the dummy indication technique and 
were replaced by 0s. For each intraoperative variable, 
data were imputed using data-level or feature-level 
imputation. Among these models, the GBDT model 
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for composite data predicted AKI most accurately, 
and its AUC reached 0.848. The model with only 
preoperative data performed better than the model 
with only intraoperative data, and the model with 
combined data performed best (Figure 4A). The 
intraoperative dataset of these models didn’t include 
some key features, such as the description and time of 
the operation, blood transfusion data, urine output, 
and drugs. Tseng et al. considered the contribution of 
these intraoperative data to the predictive 
performance of model [51]. They established models 
to predict AKI in the first week after heart surgery 
operating on preoperative and intraoperative data 
with five single methods: logistic regression, decision 
tree, SVM, RF, extreme gradient boosting (XGBoost) 
and an integrated method (RF+ XGBoost) in a 
single-center cohort of 671 cases. The intraoperative 
time series features were collected within 240 minutes 
after the start of the operation, excluding data 
between the first 10 minutes (noise signal 
interference) and 50-100 minutes (cardiopulmonary 
bypass) (Figure 4C), and then reduced its dimension 
by the principal component analysis method. Among 
single models, RF performed best (AUC = 0.839), 
decision tree performed worst (AUC = 0.781), and the 
predictive performance of the integrated model was 

better than the single model (AUC = 0.843) (Figure 
4B). Intraoperative urine volume, intravenous 
infusion, blood transfusion products, and 
hemodynamic characteristics were found to be 
important factors ignored by traditional risk scoring 
models with shap diagram. 

Similarly, Hofer et al. also reported a DNN 
model for predicting postoperative AKI with objective 
data available at the end of the operation in a 
single-center cohort of 59,981 cases [52]. All data were 
extracted from the Perioperative Data Warehouse, 
which included a series of 800 distinct measures and 
metrics. The assessed hyperparameters were number 
of hidden layers (1-5), number of neurons (10-100), 
learning rate (0.01, 0.1), and momentum (0.5,0.9). The 
model evaluated the original feature set (OFS), 
OFS+minimum map feature (OFS+MAP) and 
simplified feature set (RFS) respectively. Among 
them, OFS+MAP had the best accuracy to predict AKI 
(AUC = 0.792). The multitask learning model was not 
superior to the single-outcome model, and the AUC 
value of the multitask learning model decreased even 
after the intraoperative hypotension duration feature 
was added. Even so, the predictive performance of 
DNN model was much better than the American 
Society of Anesthesiologists physical status score [53], 

 

 
Figure 4. (A) AUC when using preoperative data, intraoperative data, and combined data. Adapted with permission from [50], copyright 2021 (B) Comparison of prediction 
performance of machine learning models. (C) Time period series feature acquisition. Adapted with permission from [51], copyright 2020 
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Risk Stratification Index [54], and Risk Quantification 
Index [55]. 

2.3 Postoperative AKI Real-time Prediction 
Patients are often surrounded by instrument 

monitoring for 24 hours after surgery, and create 
deluge of data all times, which provide opportunities 
for machine learning to monitor patient dynamics and 
issue AKI warnings in time by evaluating these data. 
For example, Rank et al. developed a recurrent neural 
network (RNN) model with 15564 single-center 
cohort data to predicts AKI in real time within the first 

7 days after cardiothoracic surgery (Figure 5A), and 
reported the prediction results every 15 minutes [56]. 
They retrospectively analysed EHR time series data 
generated at a tertiary care center for cardiovascular 
diseases and selected 96 routinely collected clinical 
parameters (static features, dynamic features, and 
drugs). On normal wards AKI was only defined by 
the creatinine criterion whereas in the recovery room 
or the ICU both AKI criteria (creatinine and urine) 
were used.  

 

 
Figure 5. (A) Experimental design for comparing RNN model and doctor's prediction performance. (B) The ROC curve of the RNN model and the doctors. (C) RNN model 
and doctor's precision recall curve for predicting AKI. Adapted with permission from [56], copyright 2020 
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They used the Adam optimizer with a fixed 
learning rate of 0.001. The hyperparameter 
configurations with the highest overall AUC on 
cross-validation folds of the training set were chosen 
as final models. The accuracy of the RNN was much 
higher than that of clinicians for predicting AKI. The 
AUC of the model (0.851) was higher than that of the 
doctor (0.793) in the 2-6 hours before AKI. Moreover, 
the AUC of the RNN was still as high as 0.750 in the 
24-168 hours before AKI, while the AUC of the 
clinicians was only 0.387 (Figure 5B-C). 

2.4 Intensive Care Unit AKI Prediction 
AKI is one of the most common acute and critical 

illnesses in the intensive care unit (ICU). ICU patients 
are under rigorous round-the-clock instrument 
monitoring to spawn powerful data streams for 
machine learning. Recently, Chiofolo et al. developed 
an AKI prediction model with the random forest 
method with a single center cohort to monitor the 
development of AKI in ICU [57]. Data were abstracted 
from the Multidisciplinary Epidemiology and 
Translational Research in Intensive Care Data Mart. 
They used a previously validated AKI “sniffer,” an 
electronic tool that automatically detects AKI based 
on AKIN definition. The developed random forest 
model had 200 trees that adopted 19 different 
elements and sample size reached 6530. The AUC was 
able to reach 0.88, and AKI was detected more than 6 
hours earlier than SCR in 30% of patients, and even in 
53% of patients with stage 2-3. Moreover, the model 
provided a dynamic monitoring and nearly real-time 
information display for AKI in the ICU. Flechet et al. 
further evaluated the accuracy of diagnosis of AKI by 
the random forest analysis model and the method of 
detecting NGAL of AKI [58]. NGAL was obtained on 
account of arterial blood samples which were taken 
upon ICU admission. Logistic regression was adopted 
to evaluate the predictive performance of NGAL 
feature compared with the admission model. The 
combination of NGAL and admission information 
significantly increased the AUC of the prediction 
model, and the calibration performed well. However, 
the decision curve showed that the improvement only 
occurred in the high-risk group of AKI patients. The 
additional cost to measure NGAL make the predictive 
benefit not clinically meaningful in these high-risk 
patients, especially in the absence of effective 
treatment. Similarly, Dong et al. also reported an 
interpretable AKI prediction model for pediatric ICU 
[59]. The model was trained on an age-dependent 
ensemble machine learning model, which belonged to 
a class of models for classifications based on the sum 
of an ensemble of simpler ‘weak classifiers’. Four 
types of data elements including vital signs, 

laboratory values, medication history, and ventilation 
parameters led to a total of 250 candidate predictors, 
and a weak classifier was learned for each predictor. 
The model accurately predicted moderate to severe 
AKI (AUC = 0.89) 48 hours prior to AKI onset with 
EHR data from 16863 pediatric ICU patients aged 1 
month to 21 years. Remarkably, the model also 
provided information on the source of prediction and 
the intervention measures, such as “the recommended 
examination level and dosage for patients taking 
aminoglycoside drugs", which ensured clinicians to 
quickly intervene to reduce the risk of AKI. 

2.5 AKI Prediction in All Hospital Wards 
Recently, machine learning has also been 

extended to emergency departments and general 
wards to predict AKI. For example, Tomasev et al. 
developed a machine learning method with the U.S. 
Department of Veterans Affairs clinical database 
covering 1,239 medical institutions with more than 
700,000 people [60]. The clinical data were collected 
by the US Department of Veterans Affairs and 
transferred to DeepMind in a deidentified format. 
And they did not perform any imputation of missing 
numerical values. The embedding layer was of size 
400 for each of the numerical and presence input 
features (800 in total when concatenated). The 
best-performing RNN architecture used a cell size of 
200 units per layer and 3 layers. The AUC of the 
model was 0.92, and 55.8% of AKI cases were 
accurately predicted 48 hours in advance at the 
specified critical point. Each positive prediction was 
benchmarked against two wrong predictions, and less 
than 3% of inpatients were alert every day, which was 
suitable for low-cost but high-yield interventions. 
Koyner et al. also developed an AKI prediction model 
based on GBDT for all adult patients in the hospital 
[61]. Demographics, location data, vital signs, 
laboratory values, interventions, medications, nurse 
documentation, and diagnostic orders were accessed 
through the Clinical Research Data Warehouse at the 
University of Chicago. The GBDT model identified 
patients with severe AKI or even RRT 1-2 days earlier 
than detecting SCR, and the AUC was above 0.9. In 
addition, the GBDT method with SCR parameters 
doesn’t have higher accuracy for predict severe AKI 
than the algorithm without SCR, indicating that SCR 
was not always a reliable biomarker for severe AKI. 
Recently, Sandokji et al. reviewed 8473 EHRs in 
children younger than 18 years for pediatric early 
diagnosis of AKI, and they adopted a penalty level for 
selection of only ten variables to create a logistic 
regression model [62]. The model predicted the risk of 
AKI in pediatric patients 48 hours in advance and 
risked stratify the results with high AUC (0.76-0.81). 
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Figure 6. (A) Overview of XAI-EWS system. (B) The model was trained and evaluated at 0, 3, 6, 12 and 24 hours before the onset of AKI. Each model has a 24-hour 
retrospective observation window. The color gradation from green to red indicates continued deterioration to AKI. Adapted with permission from [66], copyright 2020 

 
Most of these models are black-box predictions 

that cannot readily be explained to clinicians. 
Transparency and interpretability are necessary for 
the widespread introduction of artificial intelligence 
models into clinical practice [63-65]. The 
above-mentioned weak classifier ranking and shape 
interpretation methods not consider the dependence 
between variables, which inevitably lead to the 
correlation bias. In order to better explain the AKI 
prediction machine learning model, Lauritsen et al. 
developed the AKI Early Warning Score (XAI-EWS) to 
provide a simple visual explanation for the 
predictions [66]. XAI-EWS consisted of a temporal 
convolutional network (TCN) prediction model and a 
deep Taylor decomposition (DTD) interpretation 
module (Figure 6A), in which TCN operated 
sequentially on individual EHRs with in the 
predictions range of 0-100%, and the DTD explanation 
module delineated the TCN predictions in terms of 
input variables by a decomposition of the TCN output 
on the input variables. The model was trained to 
optimize the crossentropy loss using the Adam 
optimizer with mini-batches of the size of 200, a 
learning rate of 0.001, and a dropout rate of 10%. The 
AUC and precision recall curve (PRC) of XAI-EWS 
performed well compared with sequential organ 
failure assessment scores, modified early warning 
score systems, and gradient boosting vital sign model 
models. The AUC of XAI-EWS ranged from 0.79 to 
0.88 during the 24 hours before the onset (Figure 6B) 

and XAI-EWS also were explained to the clinicians 
which relevant EHR data the prediction results were 
based on from a global perspective and a single 
patient perspective, respectively. 

Transportability is a very important aspect of 
model application. Recently, Song et al. developed an 
interpretable GBDT model with 153821 cases of EHR 
data from a source healthcare system to calculate AKI 
risk over the next 48 hours from admission to 
discharge for all hospitalized patients [67]. They 
tuned the hyperparameters (depth of trees: 2–10; 
learning rate: 0.01–0.1; minimal child weight: 1–10; the 
number of trees was determined by early stopping, 
i.e., if the holdout area-under-receiver-operating- 
curve had not been improved for 100 rounds, then we 
stopped adding trees) within training set using 
10-fold cross validations. The GBDT model was 
further externally verified by the Shap value (the 
difference in feature selection between different sites) 
from five other medical systems, and the source 
system model had reduced predictive performance in 
a new medical system, possibly due to demographic 
factors as well as differences in data description. A 
statistical tool adjMMD was developed to find the 
source of data heterogeneity for improving 
transportability. Other medical systems adjusted the 
input characteristics according to the statistical results 
of adjMMD, and more accurate prediction results 
were obtained by the source system AKI prediction 
model. 
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Figure 7. (A) Many factors (hemorrhage, heart failure, nephrotoxic drugs, sepsis and COVID-19) accumulate RONS burst in the early of AKI stage (B). RONS 
damages the lysosomal membranes of the proximal tubular cells, leading to an increase in the concentration of (C) NAG in the kidney. After the organelles are 
destroyed by RONS, the proximal tubular cells are necrotic, which leads to an increase in the concentration of (D) caspase-3 in the kidney and ultimately leads to 
the destruction of the metabolic function of the kidney, and changes of (E) SCR and UO. (F) Imaging depth of different RONS probes: visible light (~1mm) NIR-Ⅰ 
(~6mm) NIR-Ⅱ (~7mm) PA (~50mm). 

 

3. RONS Imaging Probes 
Oxidative stress plays a major role in the early 

progression of AKI caused by various factors (Figure 
7A). Here, we take drug-induced AKI as a typical 
example because drug-induced AKI is the most 
common clinically (accounting for about 20%). 
Moreover, the drug-induced AKI animal model is 
widely used at present, which is highly like human 
AKI lesions and is closer to the pathophysiological 
process of AKI. For example, cisplatin is very potent 
chemotherapeutics with strong nephrotoxicity, which 
are actively transported to the proximal tubular cells 
through the organic cation transporter 2 in 
cisplatin-induced AKI[68]. Cisplatin is hydrolyzed 
into positively charged electrophile molecules to 
destroy the mitochondrial respiratory chain complex 
to increase O2.− production in the proximal tubular 
cells [69-72]. In addition, cisplatin inhibits 
mitochondrial transcription factors through the 
up-regulation of miRNA-709, which also lead to the 
decline of mitochondrial function and ultimately 
increases the production of O2.− [73, 74]. O2.− can 
further generate other RONS, such as H2O2, .OH, 
ONOO- and hypochlorous acid (HOCl) [75, 76]. 

Furthermore, cisplatin decrease expression of 
endogenous antioxidant enzymes (e g. superoxide 
dismutase, and catalase) to increases intracellular 
accumulation of RONS (Figure 7B). Finally, excessive 
RONS lead to organelle membrane damage, DNA 
strand break and protein denaturation through direct 
oxidation of lipids, nucleic acids, and proteins [77-81]. 
In particular, RONS lead to an increase in the 
concentration of N-acetylglucosamine (NAG) and 
caspase-3 in turn by damaging the lysosomal 
membranes of the proximal tubular cells in the kidney 
[82] (Figure 7C-D). Last, many cell apoptosis in the 
kidney eventually leads to the destruction of the 
metabolic function of the kidney, and changes of SCR 
and UO [83] (Figure 7E). According to the above 
analysis, the sequence of biomarker changes in the 
early AKI process is RONS, NAG, and caspase-3. SCR 
and UO only change when renal organic performance 
changed, which is too late to lose the value of early 
diagnosis. Therefore, the accurate detection of renal 
RONS can achieve the early diagnosis of AKI, which 
is essential for promptly initiating renal protective 
interventions to prevent the transition to more serious 
complications. 
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Table 3. Methods of biomarkers detection for early diagnosis of AKI 

Category Probe/Method name Target biomarker Advantages Refs 
Near-infrared fluorescence imaging 
probe 

NIR-O2.− O2.− It is the first near-infrared fluorescent O2.− probe in AKI 
detection. 

[172] 

MRP1-3 caspase-3, NAG,O2.− HPβCD enhance its renal clearance rate [93] 
TA-TPABQ H2O2 raw nano-material enhance its renal clearance rate [94] 
KNP-1 ONOO− good renal targeting [95] 
KTP5-ICG-GNP ROS Realize long-term monitoring of renal dysfunction [99] 
Naph-O2.− O2.− Imaging depth up to 130μm [172] 
MUR1-3 GGT,AAP,NAG multiple optical analysis improve accuracy [145] 

Chemiluminescence Imaging Probe MRPD O2.− Dual channel detection is more reliable [93] 
NCR1 O2.− Higher resolution and less optical signal loss [106] 
NCR2 ONOO− Higher resolution and less optical signal loss [106] 

Photoacoustic Molecular Imaging 
Probe 

FDOCl-22 HOCl high renal clearance rate and deep imaging depth [108] 
SiRho-HD ONOO− self-calibrate and eliminate interference. [110] 
FPRR GGT High imaging depth [139] 

Electrochemical immunosensor Peptide-mediated sensor NGAL Good stability and short analysis time [127] 
Aptamer-mediated sensor NGAL Good stability and short analysis time; reusable [129] 
Homogeneous 
electrochemiluminescence biosensor 

miRNA-21 high sensitivity [170] 

Surface plasmon resonance biosensor Refreshable nanobiosensor NGAL Good stability, reusable [133] 
Surface enhanced raman spectroscopy SERS specific immunoassay NGAL Different molecular forms of NGAL can be distinguished [135] 
Fluorescence immunoassay Flamma675- CNRRRA KIM-1 In vivo imaging, earlier diagnosis [152] 
Nanoflare sensor Spherical nucleic acid-based mRNA 

nanoflares 
KIM-1 Direct detection of mRNA, earlier diagnosis [153] 

Point-of-Care Testing PGM miRNA-21 Real-time monitoring, portable [168] 
 
Traditional methods (like fluorescent probes, 

chemical analysis, electron spin resonance, etc.) 
[84-88] are difficult to detect RONS in the kidney 
because of their significant limitations such as poor 
tissue permeability and low kidney-specific 
distribution. The detection of RONS in the kidney 
must meet the following requirements. First, the 
detection signal of the probes can penetrate the tissue 
to achieve accurate quantitative measurement because 
the kidney is located deep inside the body (Figure 7F). 
Second, the probes must be effectively taken up by the 
kidney to avoid signal interference from other organs 
[89]. In recent years, many probes have been 
developed to detect RONS by overcoming the 
shortcomings of traditional methods. These methods 
are mainly divided into near-infrared fluorescence 
(NIF) imaging, chemiluminescence imaging and 
photoacoustic (PA) imaging (Table 3). Compared 
with traditional methods, these methods can achieve 
timely diagnosis, high imaging depth, high renal 
clearance, good biological safety, low background 
noise, and real-time detection. 

3.1 NIF Imaging 
Conventional fluorescence imaging generally 

adopts visible light as the excitation light source, and 
the generated fluorescence is usually located in the 
visible light region [90]. The high absorption and 
scattering of these lights by human tissues lead to a 
short penetration depth of conventional fluorescence 
imaging [91]. NIF imaging can overcome the 
penetrability limitations of deep tissue imaging 
because the near-infrared light (650-2000nm) have 
much lower absorption and scattering than visible 

light in the human tissues(Figure 7F) [92]. In addition, 
the NIR probe must be highly hydrophilic to prevent 
it from being captured by the reticuloendothelial 
system to increase the specificity of the kidney. These 
highly specific NIF probes have been adopted for 
imaging of O2.−, H2O2, and ONOO− in the AKI site. For 
example, Pu et al. developed a series of near-infrared 
optical imaging probes (MRPs1-3) based the cyanine 
fluorescent dye (CyOH) for imaging of O2.−, NAG and 
caspase-3 in kidney respectively [93]. MRPs1-3 
consisted of three parts, namely a renal clearance 
functional group ((2-hydroxypropyl)-β-cyclodextrin, 
HPβCD), a fluorescent substrate CyOH and a specific 
recognition group. A good kidney probe usually 
needed a high renal clearance rate that was, probe 
molecules avoided entering other organs, enriched in 
the kidney, and finally was excreted through the 
urinary system. HPβCD had a suitable molecular 
weight for glomerular filtration and high 
hydrophilicity for promoting renal clearance 
efficiency. The 24h renal clearance rate of 
HPβCD-substituted CyOH was 97±2.7%, which was 
much higher than that of methyl-substituted CyOH 
(about 5%). In order to realize the specific imaging of 
O2.−, NAG and caspase-3 in kidney, the hydroxyl 
group on the benzene ring of CyOH was connected 
with diphenyl phosphine, N-acetyl-β-d-glucosamine 
and tetrapeptide sequence (Asp-Glu-Val-Asp) 
respectively. After these specific groups on the 
phenolic hydroxyl group was specifically cleaved by 
O2.−, NAG, and caspase-3, the fluorescence in the 
near-infrared region (720nm) increased about 20 
times. MRPs 1-3 were effectively enriched in the 
kidney to achieve the imaging of O2.−, NAG and 



Theranostics 2022, Vol. 12, Issue 6 
 

 
https://www.thno.org 

2974 

caspase-3. Imaging of O2.− by MRP1 could be very 
effective in diagnosing early AKI. The O2.−-based 
imaging had the best results, and identified AKI 4, 36 
and 60 hours earlier than NAG, caspase-3 and clinical 
methods(SCR/UO), respectively. 

In addition to O2.−, other RONS are also used for 
early diagnosis of AKI through NIF imaging, like 
H2O2 and ONOO−. Recently, Xu et al. developed a NIF 
nanoprobe (TA-TPABQ) to detect H2O2 in ischemic 
AKI [94]. TA-TPABQ was composed of a hydrophobic 
photosensitizer (1-(3-boronbenzyl)-4-(2-(4'-(diphenyl 
amine)-[1,1'-biphenyl]-4-Base) vinyl) quinoline-1-salt, 
TPABQ) and hydrophilic natural polyphenol tannic 
acid (TA). H2O2 cleaved the borate bond formed by 
the reaction of TPABQ and TA specifically, then 
activated the probe to obtain the activated product 
(4-(2-(4'-(diphenylamine)-[1,1'-biphenyl]-4-yl) vinyl)- 
1-(3-hydroxybenzyl) quinoline-1-salt, TPAQ-OH). 
TPAQ-OH had the feature of aggregation-induced 
emission, and could emit NIF at 725nm. After 
TA-TPABQ was injected intravenously into ischemic 
AKI mice, the fluorescence signal of ischemic kidney 
had a significant increase compared with a healthy 
kidney. In addition, cell activity was not affected even 
when the nanoprobe’s concentration reached 60 μM. 
Recently, Wang et al. designed a kidney-targeting NIF 
probe (KNP-1) to detect ONOO− for early diagnosis of 
AKI [95]. KNP-1 had two key building blocks, a Nile 
red derivative fluorophore and an ONOO− 
recognition group. The Nile red derivative was 
selected as the NIF because it was quickly distributed 
in the kidney, but almost no signal in other tissues. 
KNP-1 was rapidly distributed in the kidney, and its 
renal clearance rate exceeded 90% at 3 hours after 
injection, and was almost 100% after 24 hours. High 
concentration ONOO− restored the fluorescence 
(679nm) of Nile red derivatives by oxidizing 
p-hydroxy aniline in AKI. 

Very recently, near-infrared zone II (1000- 
1700nm, NIR Ⅱ) probes and multiphoton probes with 
deeper penetrating ability have also been developed 
for RONS imaging of AKI sites. Fluorescent probes in 
the near-infrared zone II (1000-1700nm, NIR Ⅱ) have 
lower background interference than the probes in the 
near-infrared zone I (750-900 nm, NIR I) (Figure 7F) 
[96-98]. Chen et al. developed a kidney targeting 
peptide coupled NIR Ⅱ probe (KTP5-ICG-GNP) to 
diagnose AKI early with low spontaneous 
fluorescence background [99]. The KTP5-ICG-GNP 
probe was composed of three parts: the kidney 
targeting polar peptide (KTP5), the NIR Ⅱ fluorescent 
signal molecule indocyanine green (ICG) and the 
fluorescence quencher gold nanoparticles (GNP). 
RONS oxidized the Au-S bond between GNP and 
ICG-KTP5 to restore ICG fluorescence at site of AKI. 

The KTP5-ICG-GNP probe detected the AKI 48 hours 
earlier than SCR in the cisplatin-induced AKI mouse 
model. Multiphoton fluorescence is anti-stocks shift 
fluorescence method, which emits short- 
wavelength visible light by near-infrared light as the 
excitation light source. Therefore, multiphoton 
fluorescence has deeper tissue penetrating ability than 
traditional fluorescence imaging [100, 101]. Lv et al. 
developed a mitochondrial-targeted two-photon 
fluorescent probe Naph-O2.− to diagnose AKI by 
detecting renal O2.−. The Naph-O2.− probe was 
composed of three parts, h-hydroxynaphthalimide as 
the two-photon fluorophore, trifluoromethane 
sulfanote as the O2.− response group, and 
triphenylphosphous as the mitochondrial targeting 
group. Naph-O2.− were activated by O2.− to emit 
strong fluorescence (500-550nm) under the excitation 
of 800nm illuminant, and the detection limit was as 
low as 0.39μmol. Naph-O2.− detected AKI induced by 
cisplatin in mice 48 hours earlier than SCR, with an 
imaging depth of 130μm. In addition, the probe 
exhibited low cytotoxicity to live HepG2 cells when 
evaluated by MTT assays. 

3.2 Chemiluminescence Imaging  
Different from NIF imaging, chemiluminescence 

imaging directly emit light through chemical 
reactions with little tissue scattering and no 
interference from self-luminescence. Therefore, 
chemiluminescence imaging is more sensitive and 
deeper tissue penetration depth than NIF [102-105]. 
For example, Pu et al. developed a dual-channel 
molecular optical imaging probe (MRPD) with 
chemiluminescence and NIF groups for O2.− imaging 
in early AKI[93]. MRPD contained trifluoromethane 
sulfonate substituted phenoxy dioxane as a 
chemiluminescent signal. O2.− specifically cleaved the 
trifluoromethanesulfonic acid of MRPD to form a 
phenate dioxane unstable intermediate, which 
spontaneously emitted 540nm light. In addition, 
MRPD contained a non-shell heptamethine cyanine 
dye as a fluorophore with a NIF at 760nm, which 
enabled MRPD to detect changes in glomerular 
filtration rate (GFR). The dual-channel molecular 
optical imaging endowed MRPD to analyze the 
correlation between renal O2.− and GFR changes. 
MRPD detected the occurrence of AKI before the GFR 
decreased. In DTZ and cisplatin-induced AKI, MRPD 
detected AKI 16 hours and 60 hours earlier than the 
SCR method, respectively. Recently, Huang et al. 
further developed a near-infrared-based chemi-
luminescence imaging (NCR1-2) for the diagnosis of 
early AKI [106]. NCR1-2 contained two functional 
groups, namely HPβCD to improve renal clearance 
efficiency and dicyanomethylene-4-hydro-pyran 
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modified with sap dioxane as the near-infrared 
chemiluminescence moiety. NCR1was linked to 
trifluoromethanesulfonate ester that specifically 
cleaved by O2.−, and NCR2 was linked to formate that 
specifically cleaved by ONOO−. After cleavage, the 
remaining unstable intermediate emitted 
chemiluminescence at 700nm. After tail vein injection 
of NCR1-2 into mice, NCRs were effectively enriched 
in the kidney to achieve the imaging of O2.− and 
ONOO−. The O2.− based NCR1 was very sensitive in 
the early detection of AKI, and detected 
cisplatin-induced AKI 16 hours and 60 hours earlier 
than the ONOO− based NCR1 and immuno-
fluorescence and H&E staining, respectively. 

3.3 PA Imaging  
PA imaging as a mixed-mode imaging method 

based on the photoacoustic effect, has better spatial 
resolution and higher penetration depth than optical 
imaging (Figure 7F) [97, 107]. Recently, Tao et al. 
developed a PA and NIF molecular probe (FDOCl-22) 
to detect HOCl in drug-induced AKI [108] (Figure 
8A). FDOCl-22 had two special functional modules: 
methylene blue as a near-infrared light absorber and 
near-infrared fluorophore, and a short chain of 
hydrophilic polyethylene glycol as the renal clearance 
part [109]. HOCl specifically cleaved the amide bond 
in FDOCl-22 and caused the methyl bromide 
fluorophore to be released, which restored the light 
(at 680nm) absorption and the NIF (640-800nm) of 
methyl bromide fluorophore (Figure 8B-C). Based on 
the principle, the FDOCl-22 could perform 
dual-modal imaging of NIF and PA for early AKI by 
detecting HOCL. Specially, the PA signal (excitation 
illuminant at 680nm) in the kidney was detected 10 
minutes after FDOCl-22 injection, and the PA signal 
intensity gradually increased within 40 minutes. 
Moreover, FDOCl-22 detected cisplatin-induced AKI 
at least 24 hours earlier than the SCR-based method. 
Biocompatibility studies indicated that FDOCl-22 had 
no toxic effects on RAW264.7 cells and did not induce 
any obvious pathological damage to major organs.  

Zhang et al. further developed a SiRho-HD probe 
that combined ratiometric NIF and PA to ONOO− 
imaging for the early diagnosis of AKI [110]. 
Ratiometric NIF self-calibrated through the two 
emission peaks of NIF to obtain more reliable results. 
SiRho-HD was prepared by connecting homodimer 
dyes (HD) and Si-rhodamine with a short 
piperazine-based flexible carbon chain. Si-rhodamine 
had good fluorescence brightness and a high renal 
clearance rate due to its excellent water solubility and 
small molecular weight. ONOO− specifically cleaved 
HD dye to break Förster resonance energy transfer 
(FRET) between HD dye and Si-rhodamine, and then 

the ratio between Si-rhodamine fluorescence (at 
680nm) and HD dye fluorescence (at 750nm) changed. 
Moreover, the light absorption (at 719nm) of HD 
disappeared, and the PA signal (exciting with 715nm 
light) of SiRho-HD also decreased [111]. A MTS assay 
result suggested good biocompatibility of SiRho-HD. 
After intravenous injection of SiRho-HD into 
cisplatin-induced AKI mice, the ratio of 
680nm/750nm NIF intensity was higher than in 
healthy mice. More importantly, the PA signal was 
reduced by 1.95 times in AKI mice, while healthy mice 
did not change. The significant reduction of PA signal 
and change of the NIF intensity ratio ensured very 
accurate detection of early AKI. 

4. NGAL 
NGAL is expressed at low levels in renal tubular 

epithelial cells under normal physiological conditions. 
The level of NGAL in blood increases significantly 
within 2-6 hours after AKI [112, 113]. In a prospective 
study, Chui et al. demonstrated that the AUC of 
NGAL was ≥ 0.73 to detect AKI at 3 days before AKI 
onset [114]. Jahaj et al. also proved NGAL was more 
accurate for predicting AKI development than 
creatinine[115]. Currently, NGAL is still measured by 
the classical ELISA method. However, ELISA have 
many shortcomings for NGAL detection, such as 
complicated sample preparation and detection 
process, long analysis time, high cost and unstable 
antibody, and false positive results [116-118]. In recent 
years, innovative materials and new detection 
principles have been developed to improve the 
stability, and convenience of NGAL detection. These 
emerging NGAL detection methods are mainly 
divided into three categories: electrochemical 
immunosensor, SPR biosensor and Raman 
spectroscopy specific immunoassay. 

4.1 Electrochemical Immunosensor 
Electrochemical immunosensor have the 

advantages of simplicity and short detection time, and 
was especially suitable for AKI detection [119-122]. 
Traditional electrochemical immunosensors adopt 
enzyme-labeled NGAL antibodies and electrodes 
modified with nanomaterials to improve the 
sensitivity and selectivity of NGAL detection 
[123-126]. However, the NGAL antibodies are 
susceptible to inactivation due to changes in 
environmental temperature, pH and other conditions. 
Recently, Cho et al. developed an NGAL 
electrochemical immunosensor with the specific 
affinity peptide NGAL BP1 (amino acid sequence is 
DRWVARDPASIF) instead of NGAL antibodies as 
biomolecular recognition elements [127] (Figure 9A). 
NGAL BP1 exhibited stronger stability than NGAL 
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antibodies, and further introduced cysteine at the 
C-terminus of the peptide to form a thiol 
self-assembled monomolecular membrane at the 
surface of the gold electrode. The combination of 
NGAL and NGAL BP1 significantly increased the 
impedance of the gold electrode. The quantification of 
NGAL was achieved according to the linear change of 
electrochemical impedance and NGAL concentration. 
The detection limit of the sensor was 1.74 ng/mL, 
which was comparable to commercial ELISA 
detection kits. Importantly, the method took only 
about 2 h to analyze and was significantly shorter 
than ELISA. 

Nucleic acid aptamer also has higher stability 
compared with NGAL antibody, and specifically bind 
to NGAL through its own reversible conformational 
change [128]. Recently, Parolo et al. developed an 
electrochemical sensor EAB based on the NGAL 
aptamer placed on the patient [129]. The EAB sensor 
not only was reused many times, but also 
continuously measured NGAL for 12 hours. The 5'end 
and 3' end of the aptamer were modified with 
methylene blue (as a signal transducer) and thiol (as a 
linker to the gold electrode), respectively. The 
conformational change of the NGAL aptamer caused 
by the combination of NGAL and the aptamer 
promoted methylene blue closer to the gold electrode, 
and generate electrochemical signals by increasing the 

electron transfer rate (Figure 9B). The response time 
of the EAB sensor was only about 1 minute. The EAB 
sensor monitored the NGAL in real urine samples 
with a time resolution of sub-minute (Figure 9C). 

4.2 SPR  
SPR method has the advantages of real-time, 

fast, and high sensitivity for NGAL detection 
compared with the traditional ELSA method 
[130-132]. Recently, Gupta et al. developed reusable 
SPR biosensor based on the NGAL antibody [133] 
(Figure 10A). NGAL antibody was modified on gold 
nanorods, and then adopted silica shell to maintain 
the stability of the NGAL antibody by 
copolymerization of (3-aminopropyl)- 
trimethoxysilane and trimethoxy (propyl) silane 
around the NGAL antibody. The local SPR (LSPR) 
wavelength of Au NRs red-shifted because of the 
increasing refractive index of the surrounding 
medium when NGAL was captured by the NGAL 
antibody (Figure 10B). The silicone-coated antibodies 
still maintained nearly 80% biorecognition ability 
after undergoing 16 capture / release cycles, in sharp 
contrast to the uncoated antibodies that maintained 
less than 20% recognition ability after only 3 capture / 
release cycles (Figure 10C-D). The SPR biosensor had 
a very high sensitivity, and its minimum detection 
limit was 40 ng/mL. 

 

 
Figure 8. (A) Structure of FDOCl-22 and its detection mechanism. (B) Absorption spectra of FDOCl-22 before and after adding HOCl (10 μM). (C) Fluorescent images of the 
kidney of a series of mice intraperitoneally injected with cisplatin of varying concentrations for different time periods and then intravenously injected with FDOCl-22 (200 μL × 
0.5 mM) and average fluorescence intensity output of the groups (2.5 μM) to ONOO-(0-20 μM). Adapted with permission from [108], copyright 2020. 
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Figure 9. (A) A schematic illustration of the electrochemical sensor showing the principles of peptide sensors. Adapted with permission from [127], copyright 2019 (B) The EAB 
sensor uses aptamers combined with NGAL to induce folding to generate easily measurable, fast and reversible electrochemical signals, without the need for external reagents 
or washing steps, so as to achieve continuous and real-time molecular monitoring. (C) Monitor the NGAL concentration within 3 hours with a resolution of 3 minutes. Adapted 
with permission from [129], copyright 2020 

 

4.3 Surface Enhanced Raman Spectroscopy 
(SERS) 

NGAL has three molecular forms: monomer 
(~25kDa), disulfide bond-linked homodimer 
(~45kDa) and heterodimer NGAL/MMP-9 
(~135kDa). Among them, only the NGAL monomer is 
the specific biomarker of AKI [134]. However, most of 
the current methods can’t effectively distinguish these 
molecular NGAL forms and easily lead to false 
positives in the AKI diagnosis. Recently, Jiang et al. 
established a NGAL molecular form-specific detection 
method by SERS [135]. The SERS method adopted the 
NGAL antibody modified 4-mercaptobenzoic acid 
(MBA)-Ag nano-monolayer film as the SERS 
enhancing substrate. After the monomeric NGAL was 
captured by the SERS enhancing substrate, typical 
Raman peak of MBA (1075 cm-1) was red-shifted by 
relaxing MBA to a certain extent, while the 
homodimer NGAL caused the blue shift of the MBA 
Raman peak by stretching of MBA. The SERS method 
effectively distinguished the molecular form of NGAL 
and reduced the false positive detection of AKI. The 

detection limit of the two forms of NGAL was as low 
as 10 ng/mL. 

5. GGT 
GGT is a renal tubular brush border enzyme 

anchored on the outer surface of the cytoplasmic 
membrane, and the concentration of GGT in human 
serum is less than 50μm/L under normal 
physiological conditions. Many GGTs are released 
into the urine or blood from the damaged renal 
tubular epithelial cells through exocytosis or leakage 
when AKI occurred [136]. The concentration of GGTs 
raises earlier than SCR and UO. Therefore, GGT is 
adopted as early diagnostic biomarker of AKI. For 
example, Zhou et al. found GGT increased the 
accuracy of AKI prediction of postoperative AKI in 
patients with hepatocellular carcinoma [137]. 
Rethinam et al. also used GGT as an indicator of AKI 
in the renal protective effect of sphaeranthus 
amaranthoides [138]. Traditional GGT imaging 
methods cannot accurately diagnose AKI early due to 
lack of kidney specificity. Currently, GGT is detected 
with high specificity by fluorescence method through 
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the specific enzyme catalytic properties of GGT. For 
example, Cheng et al. developed a fluoro- 
photoacoustic polymeric renal reporter (FPRR) for 
detecting GGT [139]. FPRR consisted of three parts: 
renal scavenger (dextran), NIRF/PA signal substance 
(CyOH) and GGT reaction site (γ-glutamate). The 
hydroxyl group of CyOH was connected to 
γ-glutamic acid through p-aminobenzyl alcohol to 
weaken the electron donating ability of oxygen atoms. 
The amide bond of γ-glutamic acid was specifically 
cleaved by GGT to generate dextran instead of CyOH 
(Dex-CD) with strong fluorescence and PA signal. 
FPRR was very sensitive to the detection of GGT. GGT 
increased the NIRF signal by 33 times and the PA 
signal by 6 times of the FPRR detection system. More 
importantly, FPRR detected AKI 48 hours earlier 
compared with creatinine detection in 
cisplatin-induced AKI mouse model (Figure 11A-C). 
And FPRR cytotoxicity test by MTS assay in HK-2 and 
NDF living cells confirmed its low cytotoxicity. 

GGT concentration also increases in the early 
stages of hepatobiliary disease and certain tumors 
[140-144]. Testing GGT alone leads to false positive 

results to diagnose AKI. Recently, Cheng et al. 
developed a testing strategy to improve the accuracy 
of early diagnosis of AKI for simultaneously detecting 
multiple interrelated biomarkers with a multiple 
optical analysis system MUR1-3 [145]. MUR1-3 
contained linking groups that were specifically 
cleaved by GGT, alanine aminopeptidase (AAP) and 
NAG, respectively. AAP was also an enzyme released 
from damaged tubular cells upon AKI and was often 
used as an indicator of renal function evaluation [146]. 
MUR1 was composed of GGT response group 
L-glutamic acid γ-(7-amino-4-methylcoumarin) for 
GGT, MUR2 had an alanine linker for AAP, and 
MUR3 had the N-acetyl-β-glucosamine for NAG. 
MUR1-3 had weak fluorescence in their inherent state. 
After being activated by GGT, AAP and NAG, their 
blue, orange, and near-infrared fluorescence signals 
with small spectral overlap were increased dozens of 
times (Figure 11D-E). MUR1-3 diagnosed AKI 48 
hours earlier than current clinical diagnostic methods, 
and had better diagnostic accuracy in the 
cisplatin-induced AKI mouse model. 

 
 

 
Figure 10. (A) Schematic illustration of the steps involved in the organosilica-based biopreservation of bioconjugates to realize refreshable biosensors. (B) Extinction spectra 
corresponding to each step involved in the polymer encapsulation strategy of AuNRT−NGAL antibody bioconjugates. The inset shows zoomed-in spectra highlighting the shifts 
in the LSPR wavelength. (C) LSPR shift upon exposure of polymer-encapsulated AuNRT−NGAL antibody bioconjugates to different concentrations of NGAL before and after 
SDS treatment. (D) Retained biorecognition capability of biosensors with and without polymer encapsulation over multiple capture/release cycles of NGAL. Adapted with 
permission from [133], copyright 2020 
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Figure 11. (A) Timeline for development of cisplatin-induced AKI and bimodal imaging. (B) Representative NIRF images of living mice 60 min after intravenous injection. (C) 
Representative PA images of mice transverse section at 120 min after i.v. injection of FPRR in different treatment groups (700 nm). Adapted with permission from [139], copyright 
2020 (D) Fluorescence spectra of MURs cocktail in the absence or presence of all three biomarkers GGT, AAP, and NAG. (E) Multiplex fluorescence images of human primary 
dermalfibroblasts (NDF) and kidney proximal tubule epithelial cells (HK-2) after incubation with MUR1-3. Adapted with permission from [145], copyright 2020 

 

6. KIM-1 
KIM-1 is a potential early biomarker of AKI 

because KIM-1 is almost not expressed in healthy 
kidney epithelial cells [147-149]. KIM-1is highly 
expressed in proximal tubule cells 2 hours after AKI. 
The extracellular domain of KIM-1 formed a 90kDa 
soluble protein under the hydrolysis of 
metalloproteinases during AKI. Elevated KIM-1 levels 
correlated with a decline in eGFR in a study including 
4750 patients followed for more than 10 years [150]. 
Manuel J et al. also found KIM-1 in patients with 
COVID-19 might provide additional value in 
recognizing AKI at an early stage of disease in a 
cohort of 80 patients with COVID-19 [151]. However, 
AKI is serious when the concentration of KIM-1 in 
blood or urine increased. Therefore, the traditional 
ELISA method of detecting KIM-1 in serum or urine 

can’t provide early diagnosis of AKI. 
Recently, Kwon et al. developed an in vivo KIM-1 

NIF imaging probe for early diagnosis of AKI [152]. 
The KIM-1 probe was composed of fluorescent 
molecule Flamma675 and the peptide CNRRRA with 
high affinity for KIM-1 (Figure 12A). The probe 
specifically recognized KIM-1 to emit NIF at proximal 
tubule cells in the damaged kidney tissue. The probe 
effectively imaged the kidney tissue two hours after 
the kidney injury (Figure 12B). In addition to KIM-1, 
KIM-1 mRNA is also an effective biomarker for early 
diagnosis of AKI. Recently, Wiraja et al. reported a 
gold nanoflare (NF) sensor with oligonucleotide 
modification to monitor KIM-1 mRNA [153] (Figure 
12C). The probe adopted NFs as an efficient 
fluorescence extinguishing agent. The surface of NFs 
was connected by Au-S bonds to a DNA 
double-strand consisting of a long strand with the 
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complementary sequence of KIM-1 mRNA and a 
short strand labeled with a fluorophore. KIM-1 
mRNA promoted the release of short-stranded DNA 
from the surface of NF by pairing with long-stranded 
DNA to restore fluorescence. KIM-1NF effectively 
detected renal tubular damage induced by 
nephrotoxic drugs 24-72 hours later. The probe 

showed strong fluorescence in cisplatin-induced 
nephrotoxic renal tubular epithelial cells (Figure 
12D). The increase of KIM-1 mRNA expression in in 
renal tubular cells should be earlier than the increase 
of KIM-1 expression. Therefore, the probe 
theoretically had great potential for early diagnosis of 
AKI. 

 

 
Figure 12. (A) Peptide-displaying phage clones selected through biopanning bind selectively to the recombinant KIM-1 protein. The binding efficiencies of the peptide-displaying 
phage clones (selected through biopanning) with KIM-1 recombinant protein were determined using ELISA. (B) In vivo imaging for the detection of drug-induced kidney damage 
using the labeled CNRRRA peptide. Adapted with permission from [152], copyright 2021 (C) Schematic illustration showing KIM-1 NF-assisted nephrotoxicity assessment. (D) 
Representative images showing aristolochic acid-treated, cisplatin-treated, and vehicle-treated tubuloids. Adapted with permission from [153], copyright 2021 
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7. miRNA-21 
miRNAs are a type of short endogenous 

non-coding molecules with about 18-25 nucleotides 
[154]. The dysregulation of miRNAs is closely related 
to the pathophysiological process of AKI [155-165]. 
For example, the level of miRNA-21 in AKI patients is 
more than five times higher than that in healthy 
persons. miRNA-21 has a protective effect on renal 
ischemia-reperfusion injury by regulating the PDCD4, 
PTEN and Akt apoptosis signaling pathways. 
Therefore, miRNA-21 has been adopted as a 
biomarker for early AKI [166]. Young et al. found that 
urinary exosomal miRNA-21 level was higher in the 
AKI group than in the non-AKI group and the 
miRNA-21 level correlated inversely with the 
estimated glomerular filtration rate, which 
demonstrated miRNA-2 was a surrogate biomarker 
for scrub typhus-associated AKI diagnosis [167]. The 
traditional detection methods of miRNA-21 like 
quantitative reverse transcription polymerase chain 
reaction (qRT-PCR) lacke the convenience and 
effectiveness. Recently, Huang et al. proposed an 
instant detection method for miRNA-21 based on a 

personal blood glucose meter (PGM) [168] (Figure 13). 
As a widely used personal diagnostic equipment, 
PGM was lightweight, easy to operate, and reliable for 
quantitative detection [169]. A dual signal 
amplification strategy of invertase and RNA cleaving 
DNA enzyme was adopted to improve detection 
sensitivity of miRNA-21. Magnetic beads (MB) were 
functionalized with two DNA double strands: a 
substrate chain linked with invertase and a locking 
double strand. The locking double strands were 
composed of a single strand with DNA enzyme 
function (DNase) and its complementary paired 
strands. miRNA-21 hybridized with the 
complementary strand of DNase and released the 
DNase single strand to cut the substrate chain in the 
presence of Mn2+. In this case, the invertases were 
detached from the MB. After magnetic separation of 
the undetached invertase, the invertases converted 
sucrose into glucose which was detected by the PGM. 
Thanks to the dual-enzyme amplification effect and 
the convenience of PGM, the method efficiently 
detected miRNA-21 in urine samples with a detection 
limit as low as 68.08fM/L. 

 

 
Figure 13. Schematic diagram of constitution of MBs-DNA-Inv and mechanism for the detection of miRNA-21 based on PGM and dual signal amplification. Adapted with 
permission from [168], copyright 2020 
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In order to further improve the detection 
sensitivity and stability, Xu et al. developed an 
electrochemiluminescence biosensor for miRNA-21 
by signal amplification technology with targeted 
induction hybridization chain reaction (HCR) [170]. 
HCR didn’t require the participation of enzymes and 
complicated temperature changing apparatus, and 
was an effective and stable signal enhancement 
strategy [171]. The magnetic bead capture probe 
complex (SAMBs-CPH1) was formed by the 
combination of streptavidin-modified magnetic beads 
(SAMBs) and biotin-modified capture probe H1 
(CPH1). miRNA-21 specifically opened the neck loop 
structure of CPH1 through base complementary 
pairing to expose its sticky ends to continuous 
synthesis Double-stranded DNA (dsDNA) by 
triggering the HCR. Tris(1,10-phenanthroline) 
ruthenium (II) chloride hydrate (Ru(Phen)32+) was 
further inserted into the groove of dsDNA to form 
dsDNA-Ru(Phen)32+ to enhance electrochemilumine 
scence signal. The electrochemiluminescence sensor 
detected miRNA-21 in the urine of AKI patients with 
high sensitivity, stability, and accuracy, with a 
detection limit of 0.14fM/L. 

8. Summary and Prospects 
In this review, we summarize the latest advances 

of imaging probes, biosensors and machine learning 
to diagnose early AKI. These methods showed a 
superior prospect for AKI early diagnosis due to 
many unique advantages, including deep penetration, 
high speed, good biocompatibility, high renal 
clearance rate, high accuracy and so on. However, 
these methods still face some challenges for early 
diagnosis of AKI in clinical application.  

First, the machine learning models for AKI 
prediction have made a lot of progress, but there are 
still some problems to be solved. The classification 
criteria of AKI have a greater impact on the clinical 
prediction results. However, these models vary in 
their classification criteria for AKI and mostly don’t 
consider UO criteria, potentially rendering some cases 
missed. And kinds of indicators are hard to be 
quantified, for example, mental status of patients and 
the color of mucous. Further, the databases 
established by many models come from a single 
medical center, which easily overfit and lead to poor 
cross-site transportability. In addition, many 
organizations prefer to perform model on site to avoid 
leaking sensitive information to others due to privacy 
concerns. Therefore, the application of these models 
also requires powerful real-time computing 
capabilities. 

Secondly, the optical and PA imaging probes of 
RONS are still in the laboratory research stage. These 

probes adopt NIR as the excitation light source and 
have a deeper penetrating ability than visible light, 
which are highly effective in early diagnosis of AKI in 
mouse models. However, there are huge species 
differences between mice and humans. For example, 
the body weight of humans is much heavier than that 
of mice. The kidney is generally located about 10-20 
cm deep in the skin of a human body, while the 
mouse is usually only 0.5-1 cm. Therefore, these 
imaging probes face big problems of insufficient 
penetration and weak signal when transplant into 
clinical applications. Here, a new type of kidney 
RONS response imaging probe with the deeper 
penetration capability is the future development 
direction, such as RONS-responsive magnetic 
resonance imaging and positron emission 
tomography imaging probes. 

Third, the detection of early AKI specific 
biomarkers such as NGAL, KIM-1 and miRNA-21 in 
blood or urine don’t have the problem of tissue 
penetration. These methods are easier to translate into 
clinical applications. However, these biomarkers are 
usually only a few hours earlier than the detection of 
SCR and UO, which not only put forward very 
stringent requirements for detection, but also make 
the intervention time window for AKI very short. In 
addition, some biomarkers also exist in other diseases 
and cause false positives. Therefore, the development 
of more rapid and accurate detection methods is the 
future direction. In addition, it is necessary to conduct 
an in-depth study of the early pathological 
characteristics of AKI to find new earlier and more 
specific biomarkers. 

Finally, we believe that more and more accurate 
methods for diagnosing early AKI will be developed 
and translated into clinical applications with the 
deepening of interdisciplinary research. These 
accurate methods for early diagnosis of AKI can be 
very effective in reducing the incidence and mortality 
of AKI. 
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