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Abstract 

Rationale: Subsets of patients with early-stage lung adenocarcinoma (LUAD) have a poor post-surgical 
course after curative surgery. However, biomarkers stratifying this high-risk subset and molecular 
underpinnings underlying the aggressive phenotype remain unclear.  
Methods: We integrated bulk and single-cell transcriptomics, proteomics, secretome and spatial 
profiling of clinical early-stage LUAD samples to identify molecular underpinnings that promote the 
aggressive phenotype.  
Results: We identified and validated THBS2, at multi-omic levels, as a tumor size-independent 
biomarker that robustly predicted post-surgical survival in multiple independent clinical cohorts of 
early-stage LUAD. Furthermore, scRNA-seq data revealed that THBS2 is exclusively derived from a 
specific cancer-associated fibroblast (CAF) subset that is distinct from CAFs defined by classical markers. 
Interestingly, our data demonstrated that THBS2 was preferentially secreted via exosomes in early-stage 
LUAD tumors with high aggressiveness, and its levels in the peripheral plasma associated with short 
recurrence-free survival. Further characterization showed that THBS2-high early-stage LUAD was 
characterized by suppressed antitumor immunity. Specifically, beyond tumor cells, THBS2+ CAFs mainly 
interact with B and CD8+ T lymphocytes as well as macrophages within tumor microenvironment of 
early-stage LUAD, and THBS2-high LUAD was associated with decreased immune cell infiltrates but 
increased immune exhaustion marker. Clinically, high THBS2 expression predicted poor response to 
immunotherapies and short post-treatment survival of patients. Finally, THBS2 recombinant protein 
suppressed ex vivo T cells proliferation and promoted in vivo LUAD tumor growth and distant 
micro-metastasis.  
Conclusions: Our multi-level analyses uncovered tumor-specific THBS2+ CAFs as a key orchestrator 
promoting aggressiveness in early-stage LUAD. 
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Introduction 
Adenocarcinoma is the most common 

histological subtype of lung cancer. The lung cancer 
screening program greatly facilitates the early 
detection of lung adenocarcinoma (LUAD), leading to 
an improved prognosis over the years [1]. 

For early-stage LUAD patients without lymph 
node (N) metastasis (pathological [p] N0 stage), 
surgical resection can achieve a high curative rate, and 
adjuvant therapies are generally not recommended 
afterward. However, up to 20%∼30% of these 
early-stage patients have a poor prognosis with a 
significantly compromised 5-year overall survival 
(OS) and recurrence-free survival (RFS) [2], defining a 
high-risk subset who may need additional adjuvant 
therapies after curative surgery. 

In view of the presence of high-risk subsets, it is 
crucial to identify specific biomarkers that can stratify 
pN0-stage LUAD patients for subsequent precise 
management and facilitate the development of novel 
targeted strategies. To achieve this, extensive studies 
have been conducted to uncover potential 
classification models. Currently, a well-established 
and widely used model is the new IASLC 
(International Association for the Study of Lung 
Cancer)/ATS (the American Thoracic Society)/ERS 
(the European Respiratory Society) classification 
system [3], which displays significant prognostic and 
predictive values regarding tumor recurrence and 
death [4]. According to this model, early-stage LUADs 
predominant with mucinous, colloid, solid, or 
micropapillary components are characterized by 
dismal prognosis, thus defining a histological 
subtype-based model to identify high-risk subsets. 
Apart from that, previous studies also demonstrated 
other predictive clinicopathological biomarkers to 
determine the high-risk subsets [5, 6], e.g., tumor size, 
well-/moderately-/poorly differentiated histological 
status, visceral pleural involvement, lymphovascular 
invasion, despite the presence of heterogeneous 
conclusions [7]. However, the majority of these 
predictive models are histology- and phenotype- 
based only, but lack the underlying molecular 
underpinnings that drive this aggressive subtype. 
Given the absence of molecular characterization, it is 
still unknown about the optimal management for this 
high-risk subset, in that it remains controversial 
whether conventional adjuvant chemotherapy could 
generate benefits [8-11]. 

Besides, the above models are highly restricted 
to the availability of tumor tissue, which involves 
invasive procedures and difficulties to obtain serial 
samples. By contrast, liquid biopsy, e.g. cell-free DNA 
(cfDNA), circulating tumor cells (CTCs) and plasma 
exosomes, can overcome these disadvantages [12]. 

Among these, exosomes represent a more interesting 
liquid biomarker from the perspective of 
pathobiological roles in tumors [13]. An increasing 
number of studies have revealed that exosomes, 
which are ~40 to 100 nm vesicles secreted by a wide 
range of cell types, mediate the cross-talk among cells 
within or outside the tumor microenvironment 
(TME), promote cancer drug resistance and create a 
metastatic niche to facilitate tumor recurrence/ 
metastasis [14].  

Accumulating evidence has revealed the critical 
role of TME in promoting disease progression and 
treatment resistance [15]. The TME comprises various 
cell types, including stromal cells (predominantly 
cancer-associated fibroblasts (CAFs)), immune cells, 
and extracellular matrix (ECM) components. Among 
those, CAFs are the most abundant cell type in a 
variety of carcinomas, mediating the production of 
ECM components, such as collagens, glycosamino-
glycans and glycoproteins, enhancing the invasive 
activity of cancer cells, and suppressing anti-tumor 
immunity [16]. Particularly, CAFs also represent one 
of the major sources secreting exosomes in cancer [17]. 
Nevertheless, the role of TME in the progression of 
early-stage LUAD is still unclear. 

Here, by integrating multi-omic analyses of 
independent datasets, we provided the first evidence 
that THBS2, an exosome protein secreted by a specific 
subset of CAFs, serves as a robust biomarker for 
predicting OS and RFS as well as clinical treatment 
response in patients with pN0-stage LUAD. 
Functionally, CAFs-derived THBS2 promoted the 
aggressive phenotype by presumably modulating 
both cancer cells and tumor immunity, identifying 
THBS2+ CAFs as a candidate therapeutic target in 
early-stage LUAD.  

Methods 
Study design 

The training dataset was based on The Cancer 
Genome Atlas (TCGA) LUAD cohort (Figure 1). 
Patients who had primary LUAD at pathologically 
confirmed pN0/M0-stage after radical surgery and 
reached the endpoints (cancer-related death or tumor 
recurrence) were included. Weighted gene co-expres-
sion analysis (WGCNA) was then performed by 
correlating the transcriptomic data (treatment-naïve) 
with clinical survival data (cancer-specific OS and 
RFS).  

The most negatively correlated cluster (module) 
with RFS and OS was then selected to identify 
potential gene candidates whose high expression 
predicts poor prognosis of patients with early 
pN0-stage LUAD. Subsequently, the prognostic 
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capacity of the selected gene candidates was 
evaluated in the training cohort and independent 
external (at the transcriptomic and proteomic levels) 
and internal (at the protein level) cohorts. Finally, 
single-cell transcriptome and multiplexed 

immunohistochemistry staining analyses, as well as in 
vitro and in vivo functional experiments were 
performed to decipher the major cellular subsets that 
contribute to the aggressive phenotype in pN0-stage 
LUAD (Figure 1). 

 

 
Figure 1. Study design. Early pN0-stage lung adenocarcinoma (LUAD) with complete survival endpoints (recurrence-free survival (RFS) and overall survival (OS) from The 
Cancer Genome Atlas (TCGA) database) was used as a training cohort. Following this, WGCNA (weighted gene co-expression analysis) analysis is used to identify molecular 
clusters that correlate with RFS and OS, which were then validated using multiple external and internal resected pN0-stage LUAD cohorts. Finally, the potential molecular 
networks and biological functions of the candidate molecules were deciphered with multi-dimensional evidence. 
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WGCNA and Function Enrichment Analyses 
To identify the gene expression profiles 

associated with the protein levels of RFS and OS in 
pN0-stage LUAD, we applied the R package 
“WGCNA” to whole-genome transcriptomic data. In 
WGCNA, genes were clustered according to their 
co-expression patterns [18-20], with which a gene 
co-expression network was then constructed. Genes 
were grouped into different modules (clusters) using 
the dynamic tree cut algorithm, according to 
topological overlap matrix (TOM)-based dissimilarity. 
The module eigengene (ME) was calculated based on 
the first principal component of each module. The ME 
values were correlated (Pearson) with sample traits 
(RFS and OS). Here, we set the soft-thresholding 
power at 12 (scale-free R2 was approximately 0.9), cut 
height at 0.25, and minimal module size to 30 to 
identify key modules. The module significantly 
correlated with sample traits was selected to explore 
its biological functions, such as Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Reactome pathway enrichment analyses, using 
the R package “clusterprofiler” [21, 22]. Hub genes 
were defined as the top 30 intramodular connected 
genes. 

Patient samples (tissue and blood) 
The treatment-naïve samples of lung cancer 

patients for the present study were all taken from 
hospitalized patients in the Department of Thoracic 
Surgery at Shanghai Chest Hospital. 

Peripheral blood samples were collected from 
treatment-naïve LUAD patients and healthy donors. 
Samples were centrifuged at 4 °C for 10 min at 1000 g 
to separate plasma from blood cells. Supernatants 
were collected, divided into aliquots and stored at −80 
°C until use. 

This study was approved by the institutional 
review board (#KS(Y)21316). All patients had signed 
informed consent for inclusion of their clinical data 
and specimens in our Lung Biobank and use in 
research projects, according to the recommendation of 
the ethical committee of Shanghai Chest Hospital. 

Follow-up 
RFS was defined as the interval between surgery 

and recurrence; if recurrence was not diagnosed, the 
date of death or last follow-up was recorded. OS was 
defined as the interval between surgery and death. 

Immunotherapy response assessments 
After completion of two cycles of 

immunotherapy, positron emission tomography/ 
computed tomography (PET/CT) or CT scans were 
performed to evaluate the therapeutic response. The 

response was assessed based on the Response 
Evaluation Criteria in Solid Tumors (RECIST) (version 
1.1) [23]. 

Preparation of single-cell suspensions from 
surgically resected samples 

Sample preparation 
Two paired (primary lung tumor [pT1N0M0] 

and matched normal lung tissue) lung samples were 
collected and immediately transferred for single-cell 
isolation. Tumor tissues and tumor-adjacent normal 
lung tissues were obtained during surgery at 
Huadong Hospital (Shanghai, China). Tumor samples 
were collected from three different sites of the tumor 
bed. Normal lung tissue was separated from the 
malignant region by at least 5 cm. The tissues were 
rinsed with cold PBS (Cytiva, SH30256.01) to wash out 
the blood and dead cells. Then, they were put in 1.5 
mL cooled tissue storage solution (Miltenyi, 
130-100-008) and transferred to the laboratory on ice. 
The tissues were minced into small pieces (smaller 
than 1 mm3) within 5 min, subjected to digestion 
buffer (4.7 mL DMEM (Cytiva, SH30243.01) + 325 μL 
enzyme mix (Miltenyi, 130-095-929)) and incubated at 
37 ℃ for 30 min on a shaker. The samples were passed 
through a 70 μm filter (Miltenyi, 130-095-823) and 
centrifuged at 300 g at 4 ℃ for 7 min. The remaining 
blood cells and the dead cells were removed using red 
blood cell lysis solution (Miltenyi, 130-094-183) and 
Ficoll-Paque PLUS (Cytiva, 17144002-1) separation. 
The cell pellets were finally resuspended in DMEM + 
10% FBS (Thermo Fisher Scientific, 10099141C) before 
microscopic inspection and scRNA-seq library 
construction. 

Single-cell RNA library construction, sequencing and 
data processing 

Single-cell suspensions (1 × 106/mL), of which 
the viability was higher than 80%, were submitted to 
10X genomics Chromium Controller to generate 
single-cell gel beads in emulsion (GEMs). The library 
was constructed by Chromium Next GEM Chip G 
Single Cell Kit, Single Cell 3’ GEM, Library & Gel 
Bead Kit v3.1, Library Construction Kit v3.1, and i7 
Multiplex Kit (10X genomics) following the 
manufacturer’s instruction. Briefly, the captured cells 
were lysed, and the released RNA was barcoded via 
reverse transcription in individual GEMs. Reverse 
transcription was performed at 53 °C for 45 min, 
followed by 85 °C for 5 min, after which the 
temperature was held at 4 °C. Complementary DNA 
amplification and quantification were performed to 
build the 3’ gene libraries, whose quality was assessed 
by a 2100 Bioanalyzer (Agilent). Then, libraries were 
sequenced by Illumina Nova-seq 6000 with a 
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paired-end 150–base pair (PE150) reading strategy. 

scRNA-seq data processing 
Raw gene expression matrix was generated for 

each sample using the 10X genomics Cell Ranger 
toolkit (version 4.0.0) and mapped to the GRCh38 
human reference genome. After that, the output was 
analyzed by R software (version 3.6.3) with the Seurat 
package (version 3.2.0) for quality control and 
downstream analysis [24]. In brief, genes expressed at 
a proportion >0.1% of the data were selected for 
further analyses. Low-quality cells were removed if 
they met the following criteria: (1) < 500 unique 
molecular identifiers (UMIs), (2) < 200 or > 10000 
genes, (3) > 10% unique molecular identifiers (UMIs) 
derived from the mitochondrial genome, (4) > 10% 
UMIs derived from the red-cell genome, or (5) 
predicted doublets by the Scrublet package (version 
3.7.3) [25].  

scRNA-seq data normalization, dimensional 
reduction, and clustering 

After the removal of low-quality cells, the 
datasets collected from different samples were 
integrated using FindIntegrationAnchors and 
FindIntegrateData function with default parameters 
to remove the batch effect [26]. The gene expression 
matrix was normalized by the NormalizeData 
function, and 2000 features with high cell-to-cell 
variation were calculated using the 
FindVariableFeatures function. To reduce the 
dimensionality of the datasets, the RunPCA function 
was conducted with default parameters on scaled 
data generated by the ScaleData function. During this 
process, we implemented Clustree algorithm 
(“clustree” R package; https://cran.r-project.org/ 
web/packages/clustree/vignettes/clustree.html) to 
increase gene representation and achieve optimal 
cluster separation [27]. Next, the ElbowPlot, 
DimHeatmap, and JackStrawPlot functions were used 
to identify the true dimensionality of each dataset, as 
recommended by the Seurat developers. Last, the first 
20 principal components were applied to clustering 
by FindNeighbors and FindClusters functions, and 
RunTSNE function was performed with default 
settings for nonlinear dimensional reduction. For all 
43,779 cells, the clustering results were visualized 
with the UMAP (Uniform Manifold Approximation 
and Projection) scatter plot. 

Cell type annotation and cluster marker identification 
The annotations of cell identity on each cluster 

were defined by the expression of known marker 
genes, which were identified using the 
FindAllMarkers function provided by Seurat. The 
fibroblasts were identified according to the known 

markers: DCN, LUM, COL1A1, COL1A2. Clusters 
were also confirmed by identifying significantly 
highly expressed marker genes in each cluster and 
then comparing them with the known 
cell-type-specific marker genes. By implementing the 
Clustree algorithm (“clustree” R package), the 332 
CAFs were further categorized into 10 clusters. 

Gene set enrichment analysis 
We conducted the gene set enrichment analysis 

(GSEA) for differentially expressed genes between 
THBS2+ (positive) and THBS2– (negative) 
cancer-associated fibroblasts using clusterProfiler 
(version 4.0.5) and GSEABase (version 1.54.0) R 
toolkit with default settings [28]. Gene set used was 
hallmark gene set from the Molecular Signatures 
Database (MSigDB) [29]. 

Cell-cell interaction network in lung cancer samples 
Cell-cell interaction network was determined by 

the CellChat R toolkit (version 1.1.2, https://github. 
com/sqjin/CellChat), an intercellular interaction 
analysis tool that studies ligand-receptor action in 
specific signaling pathways [30]. To explore the 
intercellular interaction in the tumor micro 
environment, gene expression matrices and metadata 
with major cell annotations from cancer samples were 
used as input for the CellChat software. Briefly, the 
cell-cell interaction was measured by quantification of 
ligand-receptor pairs among different cell types. 

Transwell assay 
The migration assay was performed using 

Transwell plates (24-well chamber with 8.0 µm pore 
size; Corning, NY, USA). Cells were starved overnight 
in media containing only 1% FBS. Briefly, 105 LUAD 
cells (incubated with PBS or 50 ng/mL THBS2 
recombinant protein) were resuspended in the upper 
compartment (containing 200 µL FBS-free medium), 
with the lower compartment supplied with 10% 
FBS-containing media (800 µL). All of the results were 
obtained from three independent experiments. 

Exosome isolation, purification and 
characterization 

LUAD (pN0M0; N = 5) and normal adjacent 
tissue (NAT; N = 5), as well as blood plasma samples 
(2 mL; pN0M0-LUAD, N = 5; healthy controls, N = 5), 
were obtained freshly from Shanghai Chest Hospital. 
Combination of size-exclusion chromatography (SEC) 
(Echo9101A-30 mL, Exosupur kit, Echobiotech) and 
ultracentrifugation was used to purify exosomes in 
plasma [31] and tissue [32, 33].  

For isolating exosomes from blood plasma, fresh 
peripheral blood samples from individuals were 
collected in EDTA tubes following a regular 
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venipuncture procedure. After centrifugation at 3,000 
×g for 15 min at 4 °C, the plasma was aspirated and 
stored at −80 °C before use. samples were filtered 
through a 0.22 μm filter and added to the SEC column, 
2 mL collected plasma fractions were centrifuged at 
150,000 × g, 4 °C for 4 h to further pellet the exosomes 
[31]. The pellet was resuspended in PBS and 
centrifuged again 150,000 × g, 4 °C for 2 h. Finally, the 
supernatant was removed and resuspended in 100 μL 
PBS. The quantities of isolated exosomes were 
determined using a BCA Protein Assay Kit (Beyotime, 
Shanghai, China). Concerning the comparison of 
exosomal THBS2 levels in the plasma of LUAD 
patients, we used the same volume (2 ml) of plasma 
(stored at -80 °C within 1 year). 

For isolating exosomes from lung tissue, human 
pN0M0-stage LUAD and the normal adjacent lung 
tissues were gently dissociated into small pieces (~2 × 
2 × 2 mm) and frozen at −80 °C. Exosomes were 
separated from tissue using the protocol established 
previously by Vella, et al. [32], with minor 
modifications. The dissociation mixture was based on 
the Miltenyi Human Tumor Dissociation Kit (Miltenyi 
Biotec, cat. no. 130-095-929). Before starting, enzymes 
H, R and A were resuspended according to the 
manufacturer’s instructions. Dissociation mix 
containing 2.2 mL RPMI, 100 μL enzyme H, 50 μL 
enzyme R and 12.5 μL enzyme A was prepared 
immediately before use. A small (~200 mg) piece of 
tissue was weighed and briefly sliced on dry ice and 
then incubated in the dissociation mixture for 10-15 
min at 37 °C. The dissociated tissue was filtered 
through a 70 μm filter gently twice to remove residual 
tissues. Then the suspension was spun at 300 × g for 
10 min at 4 °C, and the supernatant was transferred to 
a fresh tube and spun at 2000 × g for 10 min at 4 °C. 
Cell-free supernatant was spun at 10,000 × g for 20 
min at 4 °C and filtered through a 0.22 μm filter gently 
and slowly for further depletion of cell debris. The 
collected suspension was then processed by 
ultracentrifugation (UC) at 150,000 × g for 2 h at 4 °C. 
The pellet was resuspended in 1ml 
phosphate-buffered saline (PBS) and further purified 
using Exosupur® columns (Echobiotech, China). 
Fractions were concentrated to 200 μL by 100 kDa 
molecular weight cut-off Amicon® Ultra spin filters 
(Merck, Germany). Regarding the comparison of 
exosomal THBS2 levels in the LUAD tumor tissue, we 
used the same weight (0.5 g) of frozen (-80 °C) tumor 
tissue (removing the adjacent normal tissue). 

The morphology of purified exosomes was 
identified by transmission electron microscopy 
(H-7650, Hitachi Ltd., Tokyo, Japan); briefly, 10 μL 
exosomes solution was placed on a copper mesh and 
incubated at room temperature for 1 min. After 

washing with sterile distilled water, the exosome was 
contrasted by uranyl acetate solution for 1 min. The 
sample was then dried for 2 min under incandescent 
light. The copper mesh was observed and 
photographed under a transmission electron 
microscope. The size and purity of exosomes were 
measured by Nanoparticle Tracking Analysis (NTA) 
using ZetaView PMX 110 Nanoparticle Analyzer 
(Particle Metrix, Meerbusch, Germany); the identity of 
exosomes was validated using three positive 
exosomal markers (CD9, TSG101 and HSP70) and one 
negative marker (Calnexin) by western blot. 

Exosome protein quality and enzyme-linked 
immunosorbent assay (ELISA) 

Total Protein Extraction 
The exosome samples isolated and purified at 

the same conditions were lysed with lysis buffer 
containing 100 mM NH4HCO3, 6M Urea and 0.2% 
SDS, followed by ultrasonication on ice. The lysate 
was centrifuged at 12, 000 g for 15 min at 4 ℃ and the 
supernatant was collected. Each sample was reduced 
with 10 mM DTT for 1 h at 56 ℃ and alkylated with 
iodoacetamide for 1 h at room temperature in the 
dark. Then samples were mixed with 4 times volume 
of acetone and incubated at -20 ℃ for 2 h. After 
centrifugation, the precipitation was collected and 
washed by cold acetone. The pellet was dissolved by 
0.1 M TEAB and 6 M Urea. 

Protein Quality Test 
The protein quality of samples was calculated by 

the BSA standard protein solutions curve with 
PierceTM BCA Protein Assay Kit (Product No. 23,225, 
Thermo Scientific, USA). 10 μL standard samples 
were pipetted into 96-well plates, then added 200 μL 
BCA kit to each well. Then the plate was covered and 
incubated at 37 ℃ for 30 min. The absorbance was set 
at 562 nm on the plate reader, and the standard curve 
was used to measure the protein concentrations of 
each isolated sample. Each sample solution with 
different dilution multiples was repeated three times. 

20 μL protein sample was loaded to 12% 
SDS-PAGE gel electrophoresis. The concentrated gel 
was performed at 80 V for 20 min, and the separation 
gel was performed at 120 V for 90 min. The gel was 
stained by coomassie brilliant blue R-250 and 
decolored until the bands were visualized clearly. 
assessed using a microplate reader (Bio-Rad 
Laboratories, Hercules, CA, USA). 

Proteinase K Assay 
To determine the location (membrane or inside 

of exosomes) of exosomal THBS2 protein, proteinase 
K assay was performed, as described previously [34]. 
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20 mL plasma of 6 LUAD patients were used to purify 
exosomes (500 μL; concentration: 1062 ng/μL), and 
were incubated in (1) PBS (control), (2) 1.2 μg/mL 
Proteinase K (Promega, Catalog Number: V3021; in 
PBS) alone, (3) 0.5% Triton X-100, or (4) combined 
Proteinase K and Triton X-100. The samples were then 
subjected to immunoblot to test TSG-101 (exosomal 
intra-membrane protein; as positive control), CD9 
(exosomal trans-membrane protein; as positive 
control), THBS2. 

Common IHC, multiplexed IHC, tissue 
microarray (TMA) and quantitative analysis 

Immunohistochemistry (IHC) was performed on 
6-μm thick sections as previously described [35]. 
Antibodies for common or multiplexed IHC were 
listed in Table S1.  

For multiplexed IHC, three groups were set. 1) 
multiplexed IHC of THBS2, FAP, S100A4 and αSMA 
was performed according to the manufacturer’s 
instructions (Absin, 5-Color Multiple IHC Kit; 
#abs50013; 2) multiplexed IHC of THBS2, CD19, CD8, 
FOXP3, CD68 and CD56 were performed according to 
the manufacturer’s instructions (Absin, 7-Color 
Multiple IHC Kit; #abs50015; 3) multiplexed IHC of 
CD4, CD8, CD19 and PD-1 was performed according 
to manufacturer’s instruction (Absin, 5-Color 
Multiple IHC Kit; #abs50013), as previously described 
[36]. Briefly, slide sections of formalin-fixed 
paraffin-embedded (FFPE) block were deparaffinized 
in xylene and rehydrated in ethanol. After microwave 
antigen retrieval in heated citric acid buffer (pH 6.0) 
for 10 mins, endogenous peroxidase activity was 
blocked by 3% H2O2 for 10 mins, and nonspecific 
binding sites were blocked by goat serum for 10 mins. 
Primary antibodies were incubated for 1 h in a 
humidified chamber at room temperature, followed 
by incubation with the corresponding secondary 
horseradish peroxidase-conjugated polymer. 
Visualization of each target was accomplished using 
fluorescein TSA Plus (1:100). Then, the slide was again 
placed in a heated citric acid buffer (pH 6.0) using 
microwave antigen retrieval to remove redundant 
antibodies before the next step. Finally, nuclei were 
subsequently visualized with DAPI (Absin Bioscience 
Inc., 5 µg/mL), and the sections were coverslipped 
using antifade mounting medium (Absin 1:50). 

For TMA construction, we retrospectively 
analyzed data from 93 patients who underwent 
surgery for lung cancer between 2004 and 2009 at the 
Department of Thoracic Surgery, Shanghai Chest 
Hospital. TMA slides were constructed as previously 
described in a protocol by Fedor HL et al. [37]. 

Image acquisition and data quantification 
For common IHC and TMA sections, whole slide 

images were acquired using Grundium Ocus® 
microscope scanners. The THBS2 staining intensities 
of cancer and stromal cells in the images of full tissue 
sections were automatically analyzed and quantified 
using QuPath open-source software (version 0.2.4), 
where the DAB channel intensity of THBS2 
(membrane and cytoplasm OD value) was extracted 
for each section [38]. For the classification of cancer 
cells, stromal cells, and necroptosis, multiple training 
regions representing typical morphologies of cancer 
and stromal cells as well as necroptotic regions are 
annotated first. Based on this, the unique parameters 
of each cell type were generated, which were then 
applied to the whole slide images. 

For multiplexed IHC, slides were scanned and 
imaged using the Pannoramic MIDI® platform and 
were analyzed in batches using HALO® and R scripts 
for the quantification of positively stained cells as 
previously described [36]. Consequently, we were 
able to quantify the positively-stained cells with one 
or combination markers. With this, we know how 
many cells are positive for single (e.g. THBS2+ only), 
double (e.g. THBS2+S100A4+), or triple (e.g. THBS2+ 
S100A4+FAP+), quadruple (e.g. THBS2+S100A4+ 
FAP+αSMA+) staining. 

Public Data acquisition and bioinformatic 
analysis  

LUAD patient datasets 
Transcriptomic and proteomic profiles as well as 

clinical parameters of primary LUAD patients from 
multiple public cohorts, including 9 microarray 
datasets (GSE10072 [39]; GSE32863 [40]; GSE63459 
[41]; GSE68571 [42]; GSE72094 [43]; GSE30219 [44]; 
GSE29013 [45]; GSE14814 [46]; GSE121841 [47]) from 
GEO (Gene Expression Omnibus; https://www.ncbi. 
nlm.nih.gov/geo/), 1 RNA-sequencing dataset from a 
high-quality East Asian LUAD cohort [48], 3 
transcriptomic and proteomic profiles from three 
recent publications in Cell [49-51], and 1 RNA-Seq 
dataset from TCGA, as well as a dataset from the KM 
plotter portal (https://kmplot.com/analysis/) [52]. 
Only patients who met the following three criteria 
were included: i) detailed TNM (8th) staging 
information containing stage I, IA, IB or T1-3N0M0 
[53]; ii) overall survival information incorporating 
follow-up time and vital status; and iii) appropriate 
sample size. Of note, of the 5 datasets (GSE10072; 
GSE30219; GSE32863; GSE63459; GSE68571), there 
were only transcriptomic data of early-stage LUAD 
and matched normal lung but without the survival 
data in GSE10072 and GSE32863. Although the 
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survival data in GSE63459 were available, the 
cancer-related death only occurred in 5 patients in the 
entire cohort, leading to the fact that there are no 
sufficient endpoint events for analysis. For GSE68571, 
the survival data were provided, but our analysis (not 
shown) suggested a dramatical survival difference 
between the THBS2-high vs. THBS2-low pN0-stage 
LUAD, although the significance was not reached, 
which is largely due to the short follow-up in this 
study cohort and thus the median survival in the two 
subgroups was not reached. In addition, concerning 
the proteomic profiles from three recent publications 
in Cell [49-51], only one [51] but not the other two 
datasets [49, 50] provided the survival data. However, 
in the former dataset [51], there was no data of the 
matched normal lung tissue available. As such, we 
were only able to show the association between 
THBS2 protein level and survival with the former 
dataset, whereas comparing the difference in the 
THBS2 protein level between the pN0-stage LUAD 
and matched normal lung tissue with the latter two 
datasets. The clinical information could be found in 
Supplementary Table 1 of each publication. Raw CEL 
files, the corresponding chip platform and metadata 
were downloaded and normalized. The R packages 
“limma” and “edgeR” were used to normalize the 
data and identify the differential gene or protein 
expression, respectively [35]. 

Reverse phase protein array (RPPA) dataset 
The level 4 RPPA data (normalized and batch 

effects removed) of LUAD patients were obtained 
from The Cancer Proteome Atlas (TCPA) [54]. 
Normalization of RPPA data was processed as 
follows: 1) calculate the median of each protein across 
all samples; 2) subtract the median (from step 1) from 
values of each protein in all samples; 3) calculate the 
median of all proteins in each sample; 4) subtract the 
median (from step 3) from values of each sample. The 
detailed information could be found at the TCPA 
portal: tcpaportal.org/tcpa/faq.html.  

Immunotherapy datasets 
Datasets with immunotherapy response data 

were downloaded and reanalyzed through 
GSE135222 (human lung cancer [55]), GSE78220 
(human melanoma [56]), and GSE63557 (mouse 
mesothelioma [57]). 

Gene signatures 

Immune subtype models 

C1-6 immune subtype models were generated 
according to a previously curated dataset [58]. Briefly, 
C1 (wound healing) subtype had elevated expression 
of angiogenic genes and a high proliferation rate; C2 

(IFN-g dominant) subtype had the highest M1/M2 
macrophage polarization, a strong CD8 signal and, 
together with C6, the greatest TCR diversity, and also 
showed a high proliferation rate; C3 (inflammatory) 
subtype was characterized by elevated Th17 and Th1 
genes and low to moderate tumor cell proliferation; 
C4 (lymphocyte depleted) subtype displayed a more 
prominent macrophage signature, with Th1 
suppressed and a high M2 response; C5 
(immunologically quiet) subtype exhibited the lowest 
lymphocyte and highest macrophage responses, 
dominated by M2 macrophages. The C6 (TGF-b 
dominant) subtype displayed the highest TGF-b 
signature and a high lymphocytic infiltrate with an 
even distribution of the type I and type II T cells. 

TME subtype models 

TME subtype models were established by 
integrating multiple immunotherapy-associated 
dataset collections. The curated annotation and 
transcriptomic data of different cohorts were 
downloaded directly from the supplementary files of 
the corresponding publication [59]. 

Immune infiltrates estimation 

QuanTIseq, an algorithm that was specifically 
developed for RNA-sequencing data, was used to [60] 
estimate immune cell infiltrates. Briefly, normalized 
expression data (as transcripts per millions (TPM)) of 
pN0-stage LUAD tumors of TCGA cohort were used 
as inputs and then quantified via deconvolution the 
proportions of six different immune cell types (CD8+ 
T cells, non-regulatory CD4+ T cells, B cells, M1 
macrophages, M2 macrophages natural killer [NK] 
cells) using the “quantiseqr” package in R. 

Tumor purity evaluation 
We implemented the ABSOLUTE-algorithm- 

based estimation of tumor purity, which could be 
directly downloaded from the UCSC portal 
(https://xenabrowser.net/datapages/, TCGA LUAD 
dataset). 

T cell proliferation 
T cell proliferation and activation assay were 

described previously [61, 62]. Briefly, peripheral 
blood mononuclear cells (PBMCs) were isolated from 
patient donors using Ficoll-PaqueTM Plus (GE 
Healthcare Life Sciences) density gradient centrifu-
gation. Then, purified CD3+ T cells were isolated from 
the PBMCs using the EasySep™ Human T Cell 
Isolation Kit (StemCell Technologies; catalog No. 
#17751) according to the manufacturer’s instructions. 
Single cells were expanded using an expansion media 
(Immunocult, StemCell Technologies; catalog No. 
#10981) consisting of 10 ng/mL of recombinant 
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human IL-2 (StemCell Technologies; catalog #78036.1) 
and anti-CD3/CD28 beads (StemCell Technologies; 
catalog No. #10971). Cells were grown in tissue 
culture-treated 12-well plates, fresh media changes 
were made every 3-4 days until cell colonies were 
evident. Then the same number of PBMCs were 
cultured in the expansion media containing 0, 100, 200 
or 500 ng/mL THBS2, respectively, for 96h.  

Animal experiments  
Female BALB/c nude and C57BL/6 mice (6 

weeks old) purchased from JSJ-lab (Shanghai, China) 
were used for animal experiments with the human 
LUAD cell line (A549) and mouse LUAD cell line 
(Lewis LLc cells), respectively. For A549 or LLc 
xenografts, tumor cells 1:1 mixed with Matrigel 
(356231; Corning) were subcutaneously inoculated in 
the left and right flanks (105 cells/injection). Mice 
were divided into 2 groups: 1) PBS group (N = 7) and 
2) THBS2 (50 µg/mL, human recombinant THBS2, 
Catalog #1635-T2-050, Bio-Techne China Co. Ltd.; 
mouse recombinant THBS2, Catalog #ABIN3011848, 
Atlas antibodies, Germany) group (N = 5). Tumor 
size/volume was calculated by the formula: (D × 
d2)/2, where “D” refers to the long tumor diameter 
and “d” the short tumor diameter [35, 63]. 

Statistical analyses 
Data are presented as the mean ± s.d., with the 

indicated sample size (n) representing biological 
replicates. Comparisons between two groups were 
carried out using parametric Student’s two-tailed 
unpaired t-test for normally distributed data. If data 
were not distributed normally, a nonparametric 
Wilcoxon rank-sum test (for unpaired) was used 
between the two groups. Comparisons among three 
groups were determined by one-way/two-way 
analysis of variance (ANOVA) and Bonferroni’s 
multiple comparison test. Statistical significance was 
determined by using GraphPad Prism 8 or R software 
(version 4.0.3, http://www.r project.org). Survival 
analysis was performed using the “survminer” and 
“survival” R packages. Tumor samples within all 
datasets were divided into two groups based on the 
best-separation cut-off value of THBS2 (mRNA or 
protein level) to plot the Kaplan–Meier survival 
curves and perform multivariate Cox regression 
(forest plot) analysis to evaluate the risk significance 
of each variable for RFS and OS. p < 0.05 was 
considered statistically significant. 

Results  
Gene clusters correlated with survival of 
patients with pN0-stage LUAD 

Our discovery cohort revealed several gene 

modules that were significantly correlated with RFS 
(Figure S1A; Figure 2A) and OS (Figure S1B; Figure 
2B) in pN0-stage LUAD. Genes in the positively 
correlated modules indicate that their abundance 
(co-expression) correlates with longer survival, while 
the negatively correlated modules signify that their 
abundance (co-expression) correlates with shorter 
survival. Notably, the correlation of these gene 
clusters with RFS and OS was independent of the 
pathological T (tumor size) stage (Figure 2A, 2B). 

We then focused on the negatively correlated 
black (corresponding to RFS, p-value = 0.03) and pink 
(corresponding to OS, p-value = 8x10–4) modules, 
given that their high expression predicts poorer 
prognosis (Figure 2A, 2B), thus making them better 
biomarker candidates concerning clinical applica-
tions. GO biological functional analysis revealed that 
genes in the black (N = 168) and pink (N = 259) 
modules were mainly enriched for ECM/stromal 
signature (Figure 2C, 2D; Figure S2A, 2B).  

Of note, there was a high overlap (27 out of 30) of 
the top 30 most connected genes between the black 
and pink modules (Figure 2E), thereby identifying the 
genes whose high expression was consistently related 
to tumor relapse and poor survival of patients with 
pN0-stage LUAD. Since the association of the 
ECM/stromal gene signature with prognosis could be 
due to the difference in stromal abundance between 
tumors from patients with poor and good prognosis, 
we then compared the tumor purity from the two 
groups (poor vs. good prognosis), and found out that 
there was no difference (Figure 2F). Collectively, we 
identified a set of genes whose expression correlated 
with post-surgical survival in patients with pN0-stage 
LUAD. 

Discovery of candidate biomarker protein 
THBS2 

Among the top10 best-connected genes 
correlating with poor prognosis (both OS and RFS) 
(Figure 2E), integral membrane glycoprotein THBS2 
(thrombospondin 2) was particularly interesting for 
the following reasons: 1) it is the top connected genes 
within RFS/OS (first/second-ranked); 2) it is a 
secreted glycoprotein that mediates cell-cell and 
cell-matrix interactions and plays a potentially critical 
role in cancer cell-stroma communications (Figure 
S3A); 3) like many other glycoproteins that have been 
routinely used as cancer diagnostic biomarkers in 
clinic, e.g. carcinoembryonic antigen and 
carbohydrate antigen 125, THBS2 can also be secreted 
by LUAD tumors (Figure S3B), and detected in 
peripheral blood of patients [64-66], highlighting its 
promises as a liquid biopsy marker for early-detection 
or tumor recurrence survilence of lung cancer; 4) 



Theranostics 2022, Vol. 12, Issue 7 
 

 
https://www.thno.org 

3113 

More importantly, compared with THBS2 alone, 
combining the top 5 genes (THBS2, COL3A1, COL5A2, 
COL1A2 and COL5A1) did not significantly improve 
the predictive ability for RFS and OS (Figure 2G), 
which is due to the highly mutual positive correlation 
among these genes (Figure S3C). This analysis 
highlights the rationale for using a single marker 
THBS2 instead of a combined gene-signature as a 
predictive biomarker; 5) Previous evidence has 
revealed THBS2 as a prognostic biomarker (either 
good or poor) in several cancer types [67-69]; 6) 
However, little is known about its role in promoting 
the aggressiveness of early-stage LUAD. Together, 
these characteristics make THBS2 a highly interesting 
candidate from the perspectives of cancer detection 
and prognostic biomarkers, as well as a potential 
therapeutic target [70].  

In the TCGA training cohort, separate univariate 
and multivariate Cox survival analyses confirmed 
that high expression of THBS2 was associated with 
poor OS (Figure S3D) and RFS (Figure S3E) in 
pN0-stage LUAD. Additionally, we investigated the 
factors that potentially influence the expression of 
THBS2 in early-stage LUAD, and intriguingly, we 
identified that smoking history was significantly 
associated with THBS2 expression (Table S2), which 
requires further investigations. Moreover, compared 
to normal lung tissues, pN0-stage LUAD had a higher 
expression of THBS2, which was much higher in the 
recurrent LUAD samples (Figure S3F). Collectively, 
the above data suggest THBS2 as a potentially desired 
biomarker predicting the poor prognosis in pN0-stage 
LUAD. 

Cross-validation of THBS2 in multiple 
independent datasets 

To evaluate the reliability of our findings, 
multiple independent, external and internal datasets 
were then included. Overall, clinical pN0-stage LUAD 
tumor samples had significantly higher expression of 
THBS2 across all datasets compared to the matched 
normal lung tissue, despite the presence of its 
heterogeneous distribution among individual 
primary lung tumors (Figure S4A). 

Mining multiple datasets revealed that high 
expression of THBS2 was linked with poor OS and 
RFS in pN0-stage LUAD patients (Figure S4B-D). 
Recent real-world evidence supports the management 
of adjuvant chemotherapy in high-risk early-stage 
LUAD patients, despite the presence of 
heterogeneous conclusions [8-11]. More recently, 
adjuvant epidermal growth factor receptor (EGFR) 
tyrosine kinase inhibitors (TKIs) were also 
recommended in IB-IIIA stage LUAD after surgery 
[71]. In a recent resource dataset [48], we were able to 

evaluate the association between THBS2 and the 
survival of pN0-stage LUAD patients treated with 
adjuvant chemotherapy or EGFR-TKIs after surgery. 
Interestingly, we observed that in pN0-stage I LUAD 
patients treated with chemotherapy or EGFR-TKIs, 
high expression of THBS2 was also significantly 
associated with poor OS (Figure S4B), suggesting that 
THBS2 might mediate resistance to chemotherapy or 
EGFR-TKIs in LUAD patients. In agreement, analysis 
of an independent public RNA-seq dataset obtained 
from biopsies of EGFR-mutant LUAD treated with 
osimertinib (a third-generation of EGFR-TKIs) further 
confirmed that THBS2 gene expression significantly 
increased in the post-osimertinib (resistance) biopsies 
(Figure S4E) [72]. Previous evidence showed the 
failure of chemotherapy to provide additional 
survival benefits for patients with pN0-stage IB lung 
cancer after surgery [8], which was likely due to the 
absence of stratification biomarkers. 

Given that the high mRNA level of THBS2 is 
predictive of prognosis, we next sought to determine 
whether there is a correlation between the mRNA and 
protein levels of THBS2 in LUAD samples. Based on 
two recent high-quality multi-omics datasets that 
represent Western and Asian LUAD populations [49, 
50], we observed that there was a high consistency 
between the mRNA and protein levels of THBS2 in 
both Western and Asian LUAD cohorts (Figure 3A). 
Interestingly, this correlation does not exist in the 
matched normal lung tissue (Figure 3B), suggesting a 
LUAD-specific pattern. Along the same lines, at the 
protein level, pN0-stage I LUAD had significantly 
higher THBS2 protein expression than matched 
normal lung tissue (Figure 3C). Importantly, the high 
THBS2 protein level was linked with short OS and 
RFS in pN0-stage LUAD (Figure 3D) and poor 
differentiation status (marking a more aggressive 
state) of early pN0-stage LUAD samples (Figure 3E).  

Furthermore, as an internal validation, we 
randomly selected (from a prospectively established 
lung tumor biobank by a pathologist) pN0-stage 
LUAD patients who survived less (N = 5) or more (N 
= 5) than 5 years, demonstrating that THBS2 protein 
expression was significantly higher in pN0-stage I 
LUAD patients with shorter OS than in those with 
longer OS (p=0.0024) (Figure 3F). Finally, in an 
independent, prospectively-established, internal 
LUAD cohort (tissue microarray data; N = 93), the 
THBS2 protein level was identified as an independent 
influencing factor of OS (Figure S5A, B; Table S3). 
Notably, in line with the public datasets (Figure 3; 
Figure S4), the THBS2 protein level is significantly 
higher in the tumors, compared to the matched 
normal lung tissue (Figure S5A; Table S3).  
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Figure 2. WGCNA analysis identifies THBS2 as a candidate biomarker predictive of RFS and OS in early pN0-stage LUAD. A, B, WGCNA analysis. Consensus 
network modules correlated with RFS and pathological (p) T-stage (tumor size) in the TCGA LUAD (lung adenocarcinoma) cohort using the eigenmodule (the first principal 
component of the module). Pearson correlation coefficient along with p-value in parentheses underneath; color-coded according to correlation coefficient (legend at right). The 
blue color indicates a negative correlation, while the red color represents a positive correlation. C, D, Reactome pathway enrichment analyses of genes in black (related to poor 
RFS; C) and pink (related to poor OS; D) modules. E, Top 30 connected genes in black (negatively correlated with RFS) and pink modules (negatively correlated with OS). Lower 
panel: Venn plot showing the overlap between RFS- and OS-related top 30 connected genes. F, The difference in tumor purity between pN0-LUAD patients with good and poor 
overall survival (OS). The ABSOLUTE-algorithm was used for the estimation of tumor purity, which was directly downloaded from the UCSC portal 
(https://xenabrowser.net/datapages/, TCGA LUAD dataset). P-value was calculated by two-sided student`s t-test. G, Comparison of the difference between the receiver 
operating characteristic (ROC) curves of two predictive models derived from THBS2 alone and the top 5 genes (THBS2, COL3A1, COL5A2, COL1A2, COL5A1), respectively. 
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Figure 3. Multiple external and internal validation of THBS2 as a prognostic biomarker. A, B, Genome-wise mRNA-protein correlation (Spearman) analysis in lung 
adenocarcinoma (LUAD) tumors (A) and matched normal lung tissue (B). The blue color indicates a significantly negative correlation (adjusted p < 0.01), while the red color 
represents a significantly positive correlation. Data were downloaded and reanalyzed from Gillettle M, et al. Cell. 2020 and Chen Y, et al. Cell. 2020. C, Violin plots showing the 
protein level of THBS2 in pN0-stage LUAD compared with matched normal lung tissue. D, The association between THBS2 protein levels and OS and RFS in pN0-stage LUAD. 
Data were downloaded and reanalyzed from Xu J, et al. Cell. 2020. Of note, only one (Xu J, et al. Cell. 2020) but not the other two datasets (Gillette M, et al. Cell. 2020 and Chen 
Y, et al. Cell. 2020) provided the survival data. However, in the former dataset (Xu J, et al. Cell. 2020), there was no data of the matched normal lung tissue available. As such, 
we were only able to show the association of THBS2 protein level with survival with the former dataset, whereas comparing the difference in the THBS2 protein level between 
the pN0-stage LUAD and matched normal lung tissue with the later two datasets. The clinical information could be found in the Supplementary Table 1 of each publication. E, The 
association between THBS2 protein level and tumoral differentiation state in pN0-stage LUAD. Data were downloaded and reanalyzed from Xu J, et al. Cell. 2020. Of note, the 
differentiation stage of tumors is a critical histopathological classification of solid tumors, and is strongly associated with tumor behavior. Generally, tumors with poorer 
differentiation are more aggressive than their more differentiated counterparts.  F, Internal immunohistochemistry (IHC) data showing the location of THBS2 expression in the 
samples from LUAD patients with short and long survival. **p < 0.01 by two-sided Welch`s t-test. Scale bar: 200 μm. G, Representative IHC showing the positive (upper panel: 
strong staining; middle/lower panel: moderate/weak staining) staining of THBS2 in three LUAD cases with regional lymph node metastasis. Scale bar: 100 μm. 
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Additionally, we retrospectively examined 
LUAD samples with pathological confirmation of 
regional lymph node metastasis, which is closely 
associated with (regional or distant) tumor recurrence 
and metastasis. Strikingly, we observed that 6 out of 
10 tumor-draining lymph nodes samples had 
proportions, albeit heterogeneous, of metastatic 
LUAD cancer cells that were THBS2 positive (Figure. 
3G), in agreement with our findings showing the 
association of high THBS2 expression with tumor 
relapse (Figure 2; Figure S3). Notably, the lymph 
node represents a critical meeting point of immune 
cells where adaptive immunity is induced. These lines 
of evidence support the idea that THBS2 might 
facilitate tumor recurrence and metastasis, in part, by 
promoting the escape of immune surveillance in 
LUAD. 

Taken together, the above data reproducibly 
demonstrated THBS2 as a robust biomarker in 
predicting the poor prognosis of patients with early 
pN0-stage LUAD, and high THBS2 expression marks 
an aggressive phenotype of LUAD. 

THBS2 is highly secreted via exosomes by 
aggressive LUAD tumors 

The above evidence revealed THBS2 as a 
secreted protein (Figure S3B) and also a predictive 
marker for patients’ prognosis and treatment 
response (Figure 2; Figure 3; Figure S3-S5), which 
was reminiscent of exosomes that are important 
mediators of cell-to-cell communication and are 
associated with drug resistance, as well as tumor 
recurrence/metastasis [14].  

We thus purified exosomes from the tumor 
tissues and plasma samples of pN0-stage LUAD (N = 
5) and healthy controls (N = 5), respectively (Figure 
4A, B; Figure S6A, B), and then performed the 
quantifications of THBS2 exosomes (Figure 4C, D). 
The data in Figure S6A, B validated the purity of 
isolated exosomes, based on characterizations of the 
morphology (transmission electron microscopy), and 
the size measurement (Nanoparticle Tracking 
Analysis), and classical exosomal markers (western 
blot). Our data confirmed the abundance of 
tissue-derived total (Figure 4B) and THBS2 (Figure 
4C) tumor exosomes in lung tumors, compared to the 
matched normal lung tissue. Particularly, its level was 
much higher in tumors from patients with short RFS 
(Figure 4B, C). In parallel, we also detected a higher 
level of THBS2 exosomes in the plasma of patients 
with pN0-stage LUAD, compared to that of the 
healthy controls (Figure 4C). By contrast, there is no 
difference in the non-exosomal THBS2 or the total 
THBS2 in the plasma between pN0-stage LUADs and 
the healthy controls (Figure 4D), highlighting the 

promises of the exosomal form of THBS2 in defining 
an aggressive subset of early-stage LUAD. Besides, 
we also dissected the specific location of exosomal 
THBS2, which is closely related to the way it interacts 
with its target cells (see the discussion). The data 
demonstrated that THBS2 is located on the membrane 
rather than inside of LUAD-derived exosomes (Figure 
4E). 

scRNA-seq analysis reveals subsets of CAFs as 
a cellular source of THBS2 expression in 
pN0-stage LUAD 

Next, we sought to identify the cellular source of 
THBS2 expression. Immunohistochemistry (IHC) 
analysis demonstrated that THBS2 was detectable in 
cancer cells but prominently in peritumoral stromal 
cells (Figure S3A; Figure 5A). In our WGCNA 
analysis, we noted that THBS2 was mostly 
co-clustered with fibroblast activation protein (FAP) 
(Figure 2E), a typical marker of fibroblasts, prompting 
us to hypothesize that CAFs might be a major source 
of THBS2 production. 

Previous evidence highlighted the heterogeneity 
CAFs, defining distinct CAF subsets characterized by 
different molecular profiles, biological functions, and 
tumor immunological signatures [73, 74]. To 
investigate whether CAFs are the major source of 
THBS2 expression and to identify the specific subsets 
of CAFs, we applied the single-cell RNA sequencing 
(scRNA-seq) analysis, a powerful tool deconvolving 
the cell-type composition within tissues and 
deciphering the transcriptomic profiles of each cell, to 
two surgical cases with early-stage lung cancer 
(pT1N0M0) and adjacent normal lung tissues (Figure 
S7A, B). Notably, in these samples, scRNA-seq data 
showed a small proportion of CAFs but a large 
proportion of immune cells (Figure 5B). These 
observations were partially due to the bias introduced 
during tissue dissociations, leading to overestimating 
the immune cell proportions in comparison to the 
stromal and epithelial cell types [75]. 

The results demonstrated that THBS2 was 
mainly expressed by fibroblasts (Figure 5B; Figure 
S7B), and more importantly, fibroblasts from tumors 
(CAFs) had significantly higher expression of THBS2 
than matched normal lung-derived fibroblasts (Figure 
5C). Given the heterogeneity of CAFs [73, 74], we 
further divided CAFs into 7 subclusters, based on the 
Clustree algorithm that is used to increase gene 
representation and achieve optimal cluster separation 
(Figure S7C) [27], we found that in the two studied 
lung tumor samples, THBS2 was mainly expressed by 
four CAF subclusters (2, 3, 4, 5, particularly 2) (Figure 
S7D, E), suggesting the presence of heterogeneity 
within THBS2+ CAFs. Furthermore, the top 10 
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upregulated genes in THBS2+ CAFs, compared with 
THBS2– CAF subclusters, were (from top 1 to top 10):  
THBS2, COL3A1, BGN, COL5A2, COL1A1, COL6A3, 
FAP, CTHRC1 and SULF1 (Figure 5D).  

CAFs are comprised of highly heterogeneous 
populations [73, 74], and can be generally defined 
using a panel of typical markers, e.g. FAP, αSMA+ 
(myofibroblast-like; encoded by ACTA2), etc. We then 
sought to know whether THBS2+ CAFs represent a 
unique population that is different from CAFs defined 
by classical markers. Strikingly, based on the 
scRNA-seq data of CAFs, we observed that THBS2+ 

CAFs appear to have a drastically different 
distribution from ACTA2+ or S100A4+ CAFs (Figure 
5E), and THBS2+ CAFs have significantly lower 
expression of ACTA2 or S100A4 than THBS2– CAFs 
(Figure 5F). Furthermore, co-expression analyses 
demonstrated that FAP-high CAFs are largely not 
overlapping with THBS2-high CAFs, and that there is 
a significant but a weak correlation between FAP and 
THBS2 across individual CAFs (Figure 5G), although 
overall THBS2+ CAFs have higher expression of FAP 
than THBS2– CAFs (Figure 5F).   

 

 
Figure 4. Identifying secreted THBS2 as an exosome protein. A, Exosome isolation, purification and characterization. In A, lung tissue (primary lung adenocarcinoma 
(LUAD, N = 5); normal adjacent lung (NAT, N = 5)) and blood plasma samples (from LUAD, N = 5; from healthy controls, N = 5) were included. B-D, The quantitation of purified 
total (B) and THBS2 (C) exosome proteins of lung tissue and plasma samples; P-value (*p < 0.05) was calculated using two-sided paired (left panel) or unpaired (right panel) t-test. 
(D), The difference in the amount of non-exosomal (left panel) and total (exosomal plus non-exosomal; right panel) THBS2 protein between plasma from LUAD and healthy 
controls (N = 5 for each group). P-value was calculated using two-sided unpaired t-test. E, Dissecting the specific location of exosomal THBS2 using proteinase K assay. 20 mL 
plasma of 6 LUAD patients were used to purify exosomes (500 μl; concentration: 1062 ng/μL), and were then incubated in PBS (control), proteinase K alone, Triton X-100, or 
combined proteinase K plus Triton X-100, respectively. These samples were then subjected to immunoblot. TSG-101, a typical exosomal intra-membrane protein, and CD9, a 
classical exosomal trans-membrane protein, were used as positive controls. Notably, THBS2 was detected only in the membrane but not inside of the exosomes. 
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Figure 5. scRNA-seq analysis reveals subsets of CAFs as the major source of THBS2 production. A, Immunohistochemistry/hematoxylin staining showing the 
expression of THBS2 in LUAD samples from TCGA and this study. Of note, THBS2 was detected in cancer and more predominantly in peritumoral stromal cells. Scale bar: 100 
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μm. B, UMAP (Uniform Manifold Approximation and Projection) plot showing the expression of THBS2 across different cellular subpopulations from lung tumors (pT1N0M0, N 
= 2) and matched normal lung tissue (N = 2). Of note, high THBS2 expression was from fibroblasts based on annotation (see Figure S7B). C, Volcano plot (left panel) showing the 
differentially expressed genes between fibroblasts from lung primary tumors and normal adjacent lung tissue. Of note, THBS2 was listed as the top genes upregulated in from 
fibroblasts from lung primary tumors, compared with those from matched normal lung tissue. In the right panel, the violin plots showing that THBS2 was upregulated in lung 
primary tumors compared to normal adjacent lung tissue across two individuals. The significance was determined using two-sided Student’s t-test. D, The upper panel showing 
the top 10 genes of THBS2+ compared with THBS2- CAFs across the 7 CAF subclusters. The lower panel showing the String interaction network of the top 10 genes. In the 
String network, the interactions were clustered (N = 3; represented by 3 colors) based on kmeans clustering algorithm. E, Violin (left) and UMAP (right) plots showing THBS2, 
ACTA2, S100A4, or FAP expression across different CAF subclusters. Of note, THBS2 was mainly expressed by cluster 2-, 5-, 3 and 4-annotated CAFs. F, Violin and UMAP plots 
showing the difference in the expression of ACTA2, S100A4, or FAP between THBS2+ and THBS2- CAFs. P-value calculated by two-sided unpaired t-test. G, UMAP plots showing the 
co-expression of THBS2 and FAP across individual single CAFs. Red/green dots represent CAFs expressing THBS2+ only/FAP+ only (upper left/middle panels), respectively, and 
yellow dots indicate CAFs co-expressing THBS2 and FAP only (upper right panel); lower left panel showing the co-expression matrix across CAFs with different expression of 
FAP and THBS2; lower right panels showing the correlation (Pearson) between THBS2 and FAP across THBS2+ CAFs. (1) Strong correlation: Pearson`s r ≥ 0.8; (2) Moderate: 
0.5 ≤ Pearson`s r < 0.8; (3) Weak: 0.3 ≤ Pearson`s r < 0.5; (4) No correlation: Pearson`s r < 0.3). The darker the color, the higher the expression level of the indicated markers. 
Of note, only a minority of CAFs co-express high THBS2 and FAP. 

 
Additionally, we mined public datasets relating 

to scRNA-seq analysis of non-small cell lung cancer 
(NSCLC) samples from TISCH, a comprehensive web 
resource enabling interactive single-cell transcriptome 
visualization of the TME [76]. The analyses also 
revealed that THBS2 was consistently expressed by 
CAFs (Figure S7F). Moreover, these observations also 
held true in other organs-derived tumors (e.g., breast 
invasive carcinoma [BRCA], Head and Neck 
squamous cell carcinoma [HNSCC], ovarian serous 
cystadenocarcinoma [OV], pancreatic adenocarci-
noma [PAAD], Bladder Urothelial Carcinoma [BLCA] 
sarcoma [SARC]) that are generally characterized by a 
high ECM/stromal signature and poor response to 
immunotherapy (Figure S8) [77]. The above evidence 
suggested that THBS2 expression is mainly derived 
from CAFs, which is independent of organ lineage.  

Collectively, these data indicated that THBS2+ 
CAFs represent a unique subpopulation that did not 
co-cluster with CAFs defined by typical markers. 

THBS2-high LUAD is characterized by a high 
ECM/stromal signature together with 
suppressive tumor immunity 

To investigate the biological functions of THBS2 
in LUAD, we analyzed the molecular features of 
THBS2-high LUAD samples. Based on the 
RNA-sequencing data of TCGA pN0-stage LUAD, we 
observed that THBS2-high LUAD tumors were 
characterized by enrichment for PI3K-AKT, focal 
adhesion, proteoglycan ECM-receptor interaction, 
and protein/collagen metabolic pathways/process, 
positive regulation of cell motility, and stromal 
signature (Figure 6A-C). Similarly, reverse phase 
protein array (RPPA) data (including 216 
tumorigenesis-associated proteins) of TCGA 
pN0-stage LUAD showed that THBS2-high LUAD 
tumors are mostly characterized by a high level of 
fibronectin, a typical mesenchymal marker, and low 
level of several classical epithelial biomarkers, 
E-cadherin, ERBB3 and Claudin-7 (Figure 6D). These 
analyses THBS2-high LUAD is characterized by a 
high ECM/stromal signature that marks a 
mesenchymal-like phenotype and is typically 

associated with tumor metastasis and therapy 
resistance. 

In comparison with the scRNA-seq profilings of 
THBS2– CAFs, gene set enrichment analysis (GSEA; 
Hallmark module) revealed that THBS2+ CAFs were 
significantly enriched for signatures of the 
epithelial-to-mesenchymal transition (EMT), immune- 
inflammatory response (e.g., TNFα-NFκB, IL6-JAK- 
STAT3, IL2-STAT5, inflammatory response; comple-
ment, interferon-gamma response, allograft rejection), 
hypoxia, TGF-β and glycolysis signaling pathways 
(Figure S9), suggesting a pleiotropic role and an 
immune-inflammatory phenotype of THBS2+ CAFs. 

Considerable evidence has revealed that tumors 
with a high stromal signature are prone to immune 
evasion and resistance to immunotherapy and that 
tumor-derived glycoproteins endow immunosup-
pressive functions [78]. Intriguingly, based on curated 
immune subtype models [58], our analysis showed 
that pN0-stage LUAD tumors with high THBS2 gene 
expression were enriched for TGF-beta Dominant and 
Wound Healing immune subtypes but reduced for 
Inflammatory subtypes (Figure 6E). In support of this, 
based on the proteomics data of pN0-stage LUAD 
tumors [50], THBS2 protein level was significantly 
negatively correlated with the antitumor immune 
score (Figure 6F). These lines of evidence reinforced 
the notion that THBS2-enriched TME might facilitate 
immune escape (Figure 3G). 

Multiplexed IHC (mIHC) staining analysis 
revealed the spatial expression of THBS2 and 
its interaction with TIME 

Next, we investigated the interaction between 
THBS2 and tumor immune microenvironment (TIME) 
by implementing mIHC staining analysis that enables 
simultaneous multiparametric readouts at the 
single-cell level from a single tissue section. First, to 
confirm the spatial expression of THBS2 (Figure 
5E-G), we performed mIHC analysis by co-staining 
THBS2 and three typical CAF markers (FAP, αSMA 
and S100A4 [also known as FSP-1]) (Figure 7A), the 
results confirmed that THBS2 and the three classical 
CAF markers were mainly expressed in peritumoral 
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stromal compartments (Figure 7B). Overall, in the 
tested LUAD (pT2bN0M0) samples, the percentage of 
THBS2+ CAFs was much higher than that of FAP+, 
αSMA+ or S100A4+ CAFs in the peritumoral stromal 
compartments (Figure 7B, C). Notably, only a 
minority of THBS2 overlapped with the three classical 
CAF markers (Figure 7D-E), supporting that THBS2+ 
CAFs represent a unique subset, which was in line 
with the above scRNA-seq data (Figure 5E-G). 

In parallel, our findings were examined in a 
resected sample with lung squamous cell cancer 
(LUSC, pT2bN0M0) that has the same histological 
grade (moderate) and similar genetic backgrounds 
(no common oncogenic mutations in NSCLC) (Figure 
S10A-E), given that there is a dramatic difference in 

the TME between LUAD and LUSC [79]. In contrast to 
LUAD, the percentage of THBS2+ CAFs in the LUSC 
sample was much lower than that of FAP+, αSMA+ or 
S100A4+ CAFs in peritumoral stromal compartments 
(Figure S10C). Similar to LUAD, only a few THBS2 
overlapped with the three classic CAF markers in the 
LUSC sample (Figure S10D, E). Based on the TCGA 
NSCLC cohort, pN0-stage LUSC tumors have 
significantly higher THBS2 than the LUAD 
counterparts (Figure S10F). Concerning patient 
prognosis, high THBS2 expression also predicted poor 
survival in pN0-stage LUSC after surgery (Figure 
S11). Whether the biological functions of THBS2 in 
LUAD differ from those in LUSC warrants further 
study. 

 

 
Figure 6. LUAD tumors with high THBS2 expression are characterized by an enriched ECM/stromal signature and dysregulated tumor immunity. A-C, 
Pathway enrichment in THBS2-high LUAD compared with THBS2-low LUAD. A, Volcano plot showing the upregulated genes in THBS2-high LUAD. Data were from TCGA 
pN0-stage LUAD. B, C, KEGG (Kyoto Encyclopedia of Genes and Genomes; B), and GO-BP (Gene Ontology Biological Processes; C) pathway analyses were performed based 
on A. D, Differentially expressed proteins between THBS2 (mRNA)-high and THBS2-low LUAD based on A. The blue color indicates the significantly downregulated proteins 
(adjusted p < 0.01), while the red color represents the significantly upregulated proteins in THBS2-high LUAD. Data were downloaded and reanalyzed from the TCGA LUAD 
RPPA (reversed-phase protein array) dataset (see the details in Methods). E, Difference in the distribution of immune subtypes (C1-C6) between THBS2-high and THBS2-low 
LUAD based on A. The genes contained in each signature were evaluated using model-based clustering by p the “mclust” R package. Each sample was finally grouped based on 
its predominance with the C1-C6 signature. The immune subtype models were based on Thorsson V et al. Immunity. 2018 (See the methods). F, The correlation between the 
antitumor immune score and THBS2 protein level across pN0-stage LUAD. Data of antitumor immune score and THBS2 protein level were downloaded and reanalyzed from 
the Supplementary Tables published in Gillettle M, et al. Cell. 2020. 
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Figure 7. Multiplexed IHC shows the spatial association between THBS2 and typical CAF  markers in LUAD. A, B, THBS2 co-staining with three classical CAF 
markers (αSMA, FAP, S100A4 [FSP1]) in a resected LUAD (lung adenocarcinoma) (pT2bN0M0) sample. The image acquisition of all markers occurred simultaneously. Panel A 
shows the whole slide scan; panel B shows the representative regions (200x). Scale bar: 50 μm. C-E, Individual or selected combinations of THBS2 and three classical CAF 
markers (αSMA, FAP, S100A4 [FSP1]) markers (whole slide and 10 randomly selected regions) were quantified and shown. Single-staining (THBS2, αSMA, FAP, or S100A4; C), 
double-staining (THBS2/αSMA, THBS2/FAP, or THBS2/S100A4; D), triple-staining (THBS2/αSMA/ FAP, THBS2/FAP/S100A4, or THBS2/αSMA/S100A4; E) were quantified by 
using HALO® software (Please see the detailed description in the Methods section “Image acquisition and data quantification”). *p < 0.05; **p < 0.01; ****p < 0.0001 by paired 
ANOVA test. F, G, Indicated combinations markers (whole slide [left] and 10 randomly selected [under 50x magnification] regions [middle and right]) were quantified and shown. 
The upper panel (F) showed the representative regions (400x). In tumor and stromal compartments within the 10 different regions, the expression of indicated markers was 
quantified and compared, respectively.  **p < 0.01; ****p < 0.0001 by two-sided student`s t-test. Scale bar: 20 μm. H, Ratio of CD8+PD1+ to total CD8+ T cells in 10 randomly 
(5 tumoral and 5 stromal regions) selected regions of a LUAD tumor from A (related to Figure S15C). We performed multiplexed IHC with CD4, CD8, CD19 and PD-1 (5-Color 
Multiple IHC Kit) from a serial slide of the same tumor as Figure 7A-G. p-value was calculated using paired student`s t-test. 
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Our above evidence revealed a potential link of 
THBS2 with TIME. CD36 and CD47 are two 
well-characterized receptors of secreted THBS2 [80]. 
Interestingly, recent studies demonstrated that CD36 
was selectively upregulated intratumoral regulatory T 
(Treg) cells [81] and promoted intratumoral CD8+ T 
cell dysfunction [82]. Thus, targeting CD36 could 
enhance the response to immunotherapy [81, 82]. 
Similarly, CD47, which promotes immune evasion by 
engaging signal-regulatory protein alpha (SIRPα) and 
serves as an inhibitory receptor on macrophages, is 
emerging as a novel macrophage immune checkpoint 
for cancer immunotherapy [83]. Our scRNA-seq 
profiling together with the mining data showed that 
CD36 was mainly expressed by monocytes/ 
macrophages while CD47 was broadly expressed 
particularly by cancer cells (Figure S12A, B). More 
intriguingly, inferring cell-cell communication using 
the CellChat algorithm revealed THBS2+ CAFs have 
more profound interaction weights with both tumor 
and immune cells compared with THBS2– CAFs 
based on our scRNA-seq of two pT1N0M0 lung 
cancer samples (Figure S13A). Further, the ligand- 
receptor analysis showed THBS2-CD47 was likely to 
contribute mostly to the ligand-receptor-based 
interactions (Figure S13B). Among the top enriched 
signaling pathway network (Figure S13C), the 
interactions between THBS2+ CAFs and other cells 
within the tumor micro-ecosystem were most 
mediated by THBS, followed by stromal/immune 
signaling pathways, e.g. THY-1, FN-1, TGF-β, IL6/4, 
MHC-I, VEGF, CD40, or TIGIT. These data suggest a 
pleiotropic role of THBS2 in the TME of early-stage 
LUAD. Since our above evidence demonstrated that 
THBS2 could be shuttled in the form of non-exosome 
and exosomes, thus supporting that THBS2 can 
interact with immune cells via ligand-receptor 
recognition or vesicle uptake, consequently affecting 
their respective functions.  

We further co-stained THBS2 with markers of 
cytotoxic T (CD8), Treg (FoxP3) and B (CD19) 
lymphocytes, as well as tumor-associated 
macrophages (CD68) [84] and nature killer (NK) cells 
(CD56) [85], which showed that immune cells were 
mainly located at the stromal compartment (Figure 
7F; Figure S14A). Strikingly, among the biomarkers 
examined, CD19, followed by CD68 and CD8, were 
the most co-stained markers with THBS2 (Figure 7F, 
G), suggesting that THBS2 mainly impacts B cells, 
macrophages and CD8+ T cells within TIME, thus 
potentially modulating tumor immunity via 
interacting with these immune cells. Additionally, 
THBS2-expression high compartments were 
associated with elevated percentage of CD8+PD1+ 
(p=0.03), CD4+PD1+ (p=0.07), and CD19+PD1+ 

(p=0.14) lymphocytes (Figure 7H; Figure S14B; 
Figure S15D), indicating that THBS2 might promote 
exhaustion of these infiltrated immune cells. 
Furthermore, quantification of immune cell infiltrates 
revealed a significant decrease in CD8+ T cells (Figure 
8A-C; Figure S15A, B), to a less extent in CD19+ B 
cells accompanied by high THBS2 expression (Figure 
8B, C; Figure S15B, C). In agreement, estimation of 
the immune cell infiltrates, using quanTIseq, an 
algorithm specifically developed for RNA-sequencing 
data [60], showed a significantly negative correlation 
between CD8+ T cell infiltrates and THBS2 expression 
across TCGA LUAD samples (Figure 8D). There is 
also a correlation, albeit to a less extent, between 
THBS2 expression with other immune cell infiltrates 
(Figure 8D). Together, these data support a 
suppressive role of THBS2 in modulating TIME; 
however, how THBS2 exactly affects these immune 
cells remains to be further elucidated.  

THBS2-high LUAD displays a poor response to 
clinical immunotherapy 

The above evidence revealed a suppressive 
TIME in THBS2-high LUAD, prompting us to 
investigate the association between THBS2 expression 
and the response to clinical immunotherapy.  

First, we performed integrative analyses of the 
transcriptomic and therapeutic response data of 20 
BALB/c mice inoculated subcutaneously with 
AB1-HA cells and treated with anti-CTLA4 therapy 
(GSE63557) [57], and intriguingly, tumors from 
non-responders had significantly upregulated THBS2 
expression (Figure 9A). Second, along the same line, 
mining two independent datasets that contain lung 
cancer (GSE135222) or melanoma (GSE78220) patients 
treated with anti-PD1/PD-L1 immunotherapies, we 
observed that higher THBS2 expression was 
associated with poor response and short PFS/OS after 
immunotherapy (Figure 9B, C). Additionally, we 
retrospectively reviewed THBS2 expression in the 
pre-immunotherapy biopsies of LUAD patients (N = 
13) who subsequently received anti-PD-1 
immunotherapy after the failure of first-/second-line 
treatment. Remarkably, low expression of THBS2 was 
significantly associated with a better response to 
immunotherapy (Figure 9D). Finally, we integrated 
the recently established four TME subtypes that 
deciphered the abundance of both malignant and 
non-malignant cell subpopulations and the activity of 
tumor-promoting and tumor-suppressive processes 
occurring within a tumor [59]. This new classification 
model demonstrated robustness in identifying subsets 
responding to immunotherapy. We applied the four 
TME subtypes to the above lung cancer patient cohort 
receiving immunotherapy (GSE135222) and observed 
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that THBS2 expression was significantly positively 
correlated with Angiogenesis-Fibrosis subtype 
(mainly derived from the CAF signature) and EMT 
signature (Figure S16). In contrast, THBS2 expression 
was significantly negatively correlated with the 

antitumor immune microenvironment (specifically 
effector T cells and NK cells) (Figure S16). 
Consistently, in TCGA pN0-stage LUAD, high THBS2 
expression was associated with more Fibrotic but less 
Immune-enriched TME subtypes (Figure 9E). 

 

 
Figure 8. The association between THBS2 expression and immune infiltrates in LUAD. A, B, Panel A showing the representative images of THBS2 co-staining with 
CD8 T lymphocytes in two regions (THBS2-high and -low) of a resected LUAD (lung adenocarcinoma) (pT2bN0M0) sample. The image acquisition of all markers occurred 
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simultaneously with the representative regions were shown (200x). Panel B showing the quantification (absolute number of the indicated positive cells) of 5 random regions 
(under 50x). The quantification of THBS2 level in the first barplot was shown to confirm the difference in the expression of THBS2 between THBS2-high and -low groups *p < 
0.05; ****p < 0.0001 by two-sided student`s t-test. ns, not significant. Scale bar: 20 μm. C, An independent pN0-stage LUAD cohort (N = 6) was used to compare the difference 
in immune cell infiltrates between THBS2-high (N = 3) and -low (N = 3) groups. Left upper panels showing the tumor (T, in red) and stromal (S, in blue) cells (100X), which were 
used for training to recognize the differential features between tumor and stromal cells (using QuPath software, version 0.3.2). Then the established unique parameters of tumor 
and stromal cells were applied to the entire slide (left lower). Left lower panels showing the representative IHC images (200x, left). The right panels showing the quantifications 
of the indicated protein markers. *p < 0.05; **p < 0.01 by two-sided student`s t-test. ns, not significant. Scale bar: 50 μm. D, Correlation between THBS2 expression and immune 
infiltrates across p-N0 stage LUAD from TCGA cohort. 

 
Figure 9. THBS2 expression effectively predicts the response to immunotherapy in clinical patients. A, Differentially expressed genes between the tumors that 
respond and do not respond to anti-CTLA4 immunotherapy. A barplot was shown to the right specifically illustrating the difference between the responders and non-responders. 
Of note, THBS2 was significantly highly expressed in tumors that did not respond to anti-CTLA4 immunotherapy. Data were downloaded and reanalyzed from the GSE63557 
dataset. B, C, External cohorts validating the association between THBS2 expression in pretreated tumor samples and anti-PD1/PD-L1 therapy from non-small cell lung cancer 
(NSCLC) (GSE135222; B) and melanoma (GSE78220; C) cohorts. The left panel showed the difference in THBS2 expression between the responders and non-responders; the 
right panel shows the association of THBS2 in pretreated samples with PFS of patients in this cohort. In the melanoma cohort, the data of patient 16 were excluded because of 
the on-treatment biopsy. Of note, in the left panel of B, the dashed line was used to highlight that in this studied cohort, the tumors whose baseline expression of THBS2 > 50 
all belong to the non-responders group. However, in the right panel, the THBS2 expression in the survival plot was grouped based on the optimal cutoff value determined by R 
software (see the Methods), but not the dashed line. Likewise, a similar group strategy was used in the two panels of Figure 9C. D, The workflow showing the evaluation of 
responses to immune checkpoint inhibitors (ICIs) in LUAD patients. After at least two cycles of ICIs, the therapeutic response was evaluated by using computed tomography 
(CT) scans based on the guideline of RECIST 1.1 (see the Methods). Immunohistochemistry-based quantifications (using Qupath software, see the methods) showing the 
association between THBS2 expression in pretreated LUAD biopsies and therapeutic response to anti-PD1 immunotherapy. PR: partial response; SD: stable disease; PD: 
progressed disease. Of note, we acquired a total of 16 patients` samples (middle panel), of which, 3 samples from the PR group could not be evaluated due to the small size and 
poor quality of the biopsies. As a result, we could not collect the quantification data from these 3 samples, and only 13 samples were finally included for analysis. Scale bar: 20 μm. 
E, Difference in the distribution of the tumor microenvironment signature (from Bagaev A, et al. Cancer Cell. 2021) between THBS2-high and THBS2-low tumors based on 
pN0M0-stage TCGA LUAD. 

 

Together, these lines of evidence suggested that 
LUAD tumors with high expression of THBS2 are 
prone to immune escape and resistance to 
immunotherapies. 

THBS2 suppresses ex vivo T cell proliferation 
and promotes tumor growth and metastasis in 
LUAD xenografts 

Because THBS2 is a protein secreted by CAFs 
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into the tumor microenvironment and correlates with 
tumor recurrence, we treated cancer cells with 
exogenous recombinant THBS2 protein to mimic the 
effect of THBS2 on LUAD cancer cells and T cells 
isolated from a LUAD patient. In vitro transwell 
migration assays showed that the presence of THBS2 
(50 ng/mL, the average level in the serum of patients 
with early-stage lung cancer [64]) dramatically 
facilitated the migration of LUAD cells (Figure 10A; 
Figure S17A), although THBS2 does not promote 
their proliferation (Figure S17B). Besides, 
co-incubation with THBS2 for 96h (200-500 ng/mL, 
lower than the maximum level secreted by aggressive 
LUAD tissue (Figure 4C)) suppressed the ex vivo 
proliferation of isolated and activated CD3+ T cells 
from a LUAD patient (Figure 10B). In addition, we 
subcutaneously co-injected THBS2 recombinant 
protein together with human LUAD A549 cells into 
immune-deficient nude mice (Figure 10C) and mouse 
LLc cells into immune-competent C57BL/6 mice 
(Figure S17C), which promoted a significant increase 
in tumor growth and distant micro-metastasis to the 
lung, compared with the control group (Figure S17D). 
The potentially pleiotropic roles of THBS2 in the 
micro-ecosystem of LUAD were summarized in 
Figure 10D. 

Discussion  
pN0-stage LUAD represents a heterogeneous 

population. Although the primary tumor is radically 
resected at an early stage, a subset of patients has a 
high incidence of tumor relapse, resulting in 
compromised survival [86]; however, little is known 
about the underlying molecular underpinnings. 
Furthermore, there is little knowledge about the best 
strategy, e.g., chemotherapy, radiotherapy, targeted 
therapy or immunotherapy, to manage this high-risk 
subset following surgery, and whether additional 
therapeutic interventions are needed remains 
controversial [8-11]. These dilemmas underscore the 
need to understand the cellular and molecular 
mechanisms in primary lesions that are prognostic for 
recurrence and as biomarkers as well as potential 
targets for intervention. Here, based on the integrated 
multi-omics data, our study demonstrated that 
THBS2, preferentially secreted via exosomes by a 
specific subset of CAFs within lung tumors, 
represents a promising molecular biomarker to 
stratify the high-risk subset of patients with 
pN0-stage LUAD after curative surgery. Besides, our 
evidence revealed a major role of THBS2+ CAFs in 
modulating the TIME, consequently conferring an 
aggressive phenotype. 

THBS2 is a disulfide-linked homotrimeric 
glycoprotein that mediates cell-to-cell and cell-to- 

matrix interactions. It has been reported that THBS2 is 
a prognostic biomarker, either poor or good, in a 
variety of human cancers, including lung cancer 
[67-69]. THBS2 has been largely described as a serum 
diagnostic biomarker, particularly in pancreatic 
cancer, which is characterized by high stromal 
compartments [66]. Furthermore, recent evidence 
detects THBS2 as a cancer-specific exosome protein 
[87]. Additionally, previous evidence revealed the 
promise of THBS2 as a candidate diagnostic 
biomarker for early-stage lung cancer [64]. In this 
study, we particularly showed that THBS2 was 
preferentially secreted via exosomes by the lung 
tumors displaying a high aggressive phenotype 
(Figure 4; Figure S6), thereby suggesting exosomal 
THBS2 as a biomarker defining the high-risk subset of 
LUAD patients at an early stage. Besides, our data 
also showed that high expression of THBS2 predicts 
poor survival in pN0-stage LUAD patients treated 
with adjuvant chemotherapy or EGFR-TKIs, 
suggesting that this high-risk subset might not be able 
to benefit from conventional treatment strategies and 
that novel treatments are needed. Collectively, the 
evidence from the literature and our study highlights 
the promise of THBS2 in the early detection of LUAD, 
dynamically monitoring tumor recurrence and 
predicting prognosis, as well as facilitating the 
decision-making of adjuvant therapy management 
after curative surgery. 

Previous evidence did not dissect which exact 
cellular subtypes within the tumor micro-ecosystem 
contribute to the production of THBS2. We provided 
the first evidence showing that THBS2 was mainly 
derived from specific subsets of CAFs, informed by 
the scRNA-seq data, which were different from 
subsets defined by canonical CAF markers (Figure 
5E-G; Figure S7). CAFs are the major player 
promoting therapy resistance and tumor progression. 
Recently, mounting evidence has highlighted the high 
heterogeneity of CAFs [73, 74], which play tumor- 
promoting roles or tumor-restraining functions, 
highlighting the need to design subtype-specific 
therapies. Notably, no single marker can define the 
full CAF populations. A growing list of markers, e.g., 
αSMA, S100A4/fibroblast specific protein 1 (FSP‐1), 
FAP and so on, have been used to define activated 
CAFs. Thus, different markers defined distinct CAF 
subsets with their unique gene signatures and 
functions [73, 74]. In this study, our work supports 
that THBS2+ CAFs are mainly expressed in a few 
subclusters of CAFs and might represent a unique 
CAF subset that is different from classical CAFs 
defined by FAP, FSP-1 and αSMA. Whether THBS2+ 
CAFs have different biological functions remains to be 
defined.   
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Figure 10. THBS2 plays a pleiotropic role in modulating cancer cells and immune cells. A, In vitro Transwell assays showing the effect of THBS2 on the migration of 
human A549 and H838 LUAD (lung adenocarcinoma) cells. Representative images (10x) of H838-Transwell assays were shown in the middle.  ****p < 0.0001 by two-sided 
student`s t-test. B, Ex vivo T cell proliferation assay showing the effect of THBS2 (96h) on the proliferation of activated CD3+ T cells. The representative image on the top is under 
the treatment 500 ng/mL THBS2 recombinant protein. C, In vivo LUAD xenografts showing the effect of THBS2 on subcutaneous tumor growth (upper panel) and 
micro-metastasis to the lung (lower panel), with the quantifications shown to the right. Human-specific KU80 antibody was used to detect human-derived A549 LUAD cells. To 
make the analysis comparable, the number of positive cells was normalized to the scanned area (per μm2). ***p < 0.001 by two-way ANOVA test (tumor volume). **p < 0.01; 
***p < 0.001 by two-sided student`s t-test. D, A hypothetical model illustrating the pleiotropic roles of THBS2 in the micro-ecosystem of LUAD. 1) Secreted THBS2 can be 
detected in peripheral blood, thus as a promising liquid biomarker; 2) THBS2 promotes tumor recurrence/metastasis/treatment resistance; 3) THBS2 promotes an 
immune-suppressive microenvironment by interacting with immune cells, thereby facilitating the immune escape of LUAD tumor cells. Figures were created with BioRender.com. 
TIME: tumor immune microenvironment. CAF: cancer-associated fibroblasts. 
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We further revealed the potential functions of 
THBS2+ CAFs, indicating that this subset possesses a 
potential capacity to modulate the cancer cells and, in 
particular, TME. Our findings were in line with 
previous evidence demonstrating that glycoproteins 
played a role in modulating immunity [78] and that 
subsets of CAFs are a major source of immuno-
suppressive activity in the TME [73, 74]. Concerning 
its implications for clinical immunotherapy, we 
observed a negative association of THBS2 expression 
with the response to immunotherapy. As such, 
strategies targeting THBS2+ CAFs might be a 
potential treatment strategy for this aggressive subset. 
Recent attempts to therapeutically target CAFs 
(specifically depleting αSMA+ CAFs) failed in 
preclinical models of pancreatic cancer and even 
potentially worsened patients` prognosis [88], which 
was, in part, due to an incomplete understanding of 
CAF heterogeneity. Targeting other populations of 
CAFs instead of αSMA+ in a specific context might 
provide benefits. Together, we provided the first 
evidence that targeting THBS2+ CAFs might have 
promises to improve the patients` prognosis and 
response to multiple therapeutics. 

Beyond defining an aggressive subset of 
early-stage LUAD, we also observed that a high 
expression of THBS2 predicts poor prognosis in 
LUAD patients treated with clinical chemotherapy, 
EGFR-TKIs-targeted therapy or immunotherapy 
(Figure S4B, S4E; Figure 9), which warrants further 
validations with large clinical cohorts. Nevertheless, 
these observations suggest a potential role of THBS2+ 
CAFs in promoting treatment failure, which is in line 
with the increasingly essential role of CAFs in therapy 
resistance [74, 89]. Further, it remains to be defined 
whether THBS2 itself or other proteins/components 
secreted by THBS2+ CAFs contribute to that 
phenotype. 

Our evidence has shown that THBS2 has been 
shuttled via exosomes (Figure 4; Figure S6) [87], and 
exosome-mediated intercellular communication 
predominantly occurs in three ways [90]: 1) exosome 
membrane protein can directly bind to the membrane 
protein of target cells, leading to activating the 
signaling pathway; 2) in the extracellular matrix, a 
protease can cleave the exosome membrane protein, 
and then bind to receptors on the cell membrane of 
target cells, consequently activating the downstream 
signaling pathway; 3) the exosome membrane can 
directly fuse with the cell membrane of target cells, 
releasing its contents (e.g., proteins, RNA or DNA) 
into the target cells. Our data indicated that exosomal 
THBS2 resides on the surface membrane rather than 
inside of the secreted exosomes, implying that it is 
likely to function through directly binding to the 

membrane protein of its target cells, which is similar 
to that of non-exosomal THBS2. Also, the above three 
ways might occur simultaneously. As such, it remains 
to define whether the released contents contained in 
exosomes, e.g. DNA, RNA, or other proteins beyond 
THBS2, exert effects on the target cells. Specifically 
and selectively delivering THBS2 by means of 
engineering exosomes may provide valuable insights 
[91]. Collectively, our results indicate THBS2 is likely 
to function through exosomal and non-exosomal 
forms, and whether these two forms of THBS2 play 
different roles in promoting the progression of LUAD 
requires systematic investigations.   

Of note, CD36 and CD47 are two well- 
characterized receptors of THBS2 [80]. Recent 
evidence demonstrated that CD36 was selectively 
upregulated in intratumoral Treg cells [81] and also 
promoted intratumoral CD8+ T cell dysfunction [82]. 
Thus, targeting CD36 could greatly enhance 
antitumor responses with anti-PD-1 therapy [81, 82]. 
CD47, a ‘marker-of-self’ protein that is broadly 
overexpressed across tumor cells, is also emerging as 
a novel macrophage immune checkpoint for cancer 
immunotherapy [83]. Interestingly, our mIHC data 
showed that THBS2 potentially predominantly 
affected B, CD8+ T cells and macrophages, and 
THBS2 expression was inversely associated with 
CD8+ T cell infiltrates (Figure 7F-H; Figure 8; Figure 
S14). Functionally, THBS2 suppressed the 
proliferation of CD3+ T cells infiltrates (Figure 10B), 
which in line with a previous study showing that the 
peptide 4N1K, conserved in all thrombospondin 
isoforms and mimics the activity of the 
COOH-terminal cell-binding domain, induces the 
death of activated, but not resting T cells, via a 
CD47-dependent mechanism [92]. Nevertheless, 
detailed mechanistic insights into how THBS2+ CAFs 
shape tumor immunity and modulate the 
immunotherapy response warrant further study. 
Intriguingly, recent evidence shows that 
TGF-β1-THBS2 feedback circuit plays a key role in 
promoting the progression of pancreatic ductal 
adenocarcinoma (PDAC) [93]. Mechanistically, cancer 
cell-secreted TGF-β1 activated CAFs to induce THBS2 
expression through the Smad2/3 pathway. Then, 
CAF-derived THBS2 binds to its cognate receptors 
integrin αvβ3/CD36, leading to the activation of 
MAPK pathway to promote tumor growth. 

Limitations 
There are some limitations of this study. For 

instance, there is a lack of a large and independent 
LUAD cohort to validate exosomal THBS2 as an 
effective biomarker to define high-risk early-stage 
LUAD populations.  Likewise, the sample size for the 
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multiplexed IHC investigating the association 
between THBS2 and immune cell infiltrates was very 
small, thus requiring an extended sample size for 
further validation. Furthermore, a direct validation 
with CAFs-derived THBS2 by culturing and purifying 
clinical LUAD samples is also needed. Also, we did 
not explore the role of exosomal THBS2 in the 
progress of LUAD, which requires systematic 
investigations in the future. 

Conclusions 
Overall, we uncovered a biomarker THBS2, 

produced by a subset of tumor-specific THBS2+ CAF 
subpopulation, to stratify a subgroup of early-stage 
LUAD patients. THBS2 might play a pleiotropic role 
in modulating cancer cells and particularly tumor 
immunity. Our study provides not only a biomarker 
for predicting clinical outcomes of pN0-stage LUAD 
but also a potential target for therapeutic intervention. 
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