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Abstract 

Background: Gastric cancer remains the third most common cause of cancer-related death worldwide. 
The development of novel therapeutic strategies for gastric cancer requires a deep understanding of the 
tumor cells and microenvironment of gastric cancer.  
Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine untreated 
non-metastatic gastric cancer patients. The transcriptomic atlas and ligand-receptor-based intercellular 
communication networks of the single cells were characterized. 
Results: Here, we profiled the transcriptomes of 47,304 cells from nine patients with gastric cancer. 
Tregs cells were significantly enriched in the gastric tumor tissues with increased expression of immune 
suppression related genes, which suggest a more immunosuppressive microenvironment. We also 
observed the absence of separate exhausted CD8+ T cell cluster, and the low expression level of 
exhaustion markers PDCD1, CTLA4, HAVCR2, LAG-3, and TIGIT in those specific cells. These may 
serve as molecular-level evidence for the limited benefit of immunotherapy among gastric cancer patients. 
In addition, we found ACKR1 specifically expressed in tumor endothelial cells, associated with poor 
prognosis in the cohort data and potentially provided a novel target of gastric cancer treatment. 
Furthermore, the tight interaction between endothelial cells and fibroblast implied the important roles of 
fibroblast in tumor angiogenesis and the maintenance of tumor vasculature.  
Conclusions: In conclusion, this single-cell atlas provide understanding the cellular heterogeneity from 
molecular level in gastric cancer and will serve as a valuable resource for developing innovative early and 
companion diagnostics, as well as discovering novel targeted therapies for gastric cancer. 
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Background 
Gastric cancer is the third leading cause of 

cancer-related mortality and the sixth most common 
type of cancer globally [1]. The existing traditional 
treatment of gastric cancer has reached the 
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therapeutic plateau, and it is urgent to find new 
breakthroughs. Though proven in other cancers, anti 
PD-L1 antibody (avelumab) did not bring hope to 
gastric cancer patients in a recent phase III trial, 
failing to meet its primary end point of improving 
overall survival [2]. Meanwhile, a PD-1 inhibitor 
(nivolumab) showed limited survival benefit for 
advanced gastric cancer [3]. Additional targets that 
have been explored include vascular endothelial 
growth factor (VEGF) and angiopoietin-1/2. Studies 
in animals have shown that blocking these proteins 
may inhibit cancer cell proliferation [4-6]. But the 
survival outcomes of related clinical trials, combined 
with chemotherapy drugs, were still inconclusive [7]. 
Therefore, there is an unprecedented need to deepen 
our understanding of the tumor microenvironment 
(TME) in gastric cancer to identify novel targets for 
improving the clinical management of this disease. 

TME comprises various cell types and extra- 
cellular components that are surrounding tumor cells 
and nourished by a vascular network. The cellular 
heterogeneity within TME is extremely complex and 
the recent advances in single-cell RNA sequencing 
(scRNA-seq) have enabled the analysis at a single-cell 
resolution among various malignant and non- 
transformed cell types, which can impact cancer 
progression and metastasis. Costa et al. [8] have 
identified four subsets of carcinoma-associated 
fibroblasts (CAF) in breast cancer, and one subset of 
them promotes an immunosuppressive microen-
vironment by recruiting CD4+CD25+ T cells. Fang et 
al. [9] presented a subset of tumor-associated 
macrophages (TAM), PLTP+C1QC+ TAMs, which 
may regulate the abundance of dysfunctional T cells 
through cytokine/chemokine signaling. Thus, a 
deeper understanding of stromal and immune cells 
could offer insights to develop novel therapies that 
exploit the therapeutic vulnerabilities of the TME and 
reprogram TME components to control gastric cancer 
progression. 

Previous scRNA-seq studies on gastric cancer 
have reported the characteristics of gastric epithelial 
cells across different lesions and tumor heterogeneity, 
however, little is known about the association among 
immunosuppressive microenvironment, interactions 
between specific cell types, such as immune and 
stromal cells, and cancer progression [10-13]. In this 
study, we performed droplet based scRNA-seq on 
tumor tissues and matched normal tissues from nine 
untreated non-metastatic gastric cancer patients, 
aiming to depict the cellular composition for gastric 
cancer, identify the changes of gene expression for 
different subsets of immune and stromal cells in TME, 
and construct the cellular interaction network in 
gastric cancer. 

Results 
Single-cell RNA sequencing identified seven 
major cell types in gastric cancer 

We collected fresh tumor samples and adjacent 
non-tumor samples from nine patients with untreated 
no metastatic gastric cancer who underwent 
gastrectomy with curative intent. Six of these patients 
had proximal gastric cancer (labeled P01-P06) and 
three had distal gastric cancer (labeled D01-D03) 
(Figure S1A-B). Detailed clinical and pathological 
information are provided in Table S1. Fresh samples 
collected during gastrectomy were rapidly digested 
into a single-cell suspension and analyzed using 
droplet-based single-cell transcriptome profiling 
(Figure 1A). A total of 47,304 cells with detectable 
expression of more than 200 genes were obtained after 
quality control (Methods), and 60.4% of these cells 
were derived from tumor samples. After the 
normalization of read counts and principal 
component analysis, we could obtain 17 cell clusters 
using graph-based clustering (Figure 1B, Methods). 
Based on the expression of canonical marker genes 
and top differently expressed gene of these clusters 
(Figure 1C), we classified these clusters into seven 
major cell types, including T and NK cells (6 clusters), 
B cells (2 clusters), myeloid cells (2 clusters), mast cells 
(1 cluster), fibroblasts (3 clusters), endothelial cells (1 
cluster), epithelial and malignant cells (3 clusters). To 
explore the cellular heterogeneity within these major 
cell lineages, we reclustered each of these major cell 
types using a finely tuned pipeline which had higher 
resolution to distinguish cells from similar subtypes 
or cells in different states within a single cell lineage 
(Figure S2, Methods).  

Significant expansion of regulatory T cell in 
gastric tumors 

T and NK cells were reclustered and 14 distinct 
clusters were identified (Figure 2A and Figure S3). 
Based on the expression of canonical marker genes 
and the top differentially expressed genes of each 
cluster (Figure 2B, Figure S3 and Table S2), we 
annotated these clusters as regulatory T cells, CD4+ T 
cells, CD8+ T cells, natural killer cells and innate 
lymphocyte cells (ILCs). 

For CD4+ cell clusters (Figure 2B), T01 was 
characterized as native CD4+ T cells given the specific 
expression of CCR7 [14]. T02 was identified as helper 
T cells with increased expression of IL7R, CCL20 and 
GZMA (Figure 2B and Table S2) [14]. T04 was 
classified as follicular help T cells based on 
specifically expressed CXCL13 [14], and this cluster 
had increased expression of PDCD1 and TIGIT (Table 
S2), suggesting an exhausted state.  
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The relative proportions of Tregs (T03) in tumor 
samples were significantly higher in tumor samples 
comparing to adjacent normal samples (P = 2.96×10-9, 
Figure 2C), suggesting the expansion or recruitment 
of Tregs in gastric tumors. To further validate this 
observation, we calculated the average expression of 
14 Treg signature genes (Table S3) among 328 gastric 
tumor samples and 32 non-malignant gastric samples 
in the bulk RNA-seq data of TCGA. Indeed, Treg 
signature genes showed consistent higher expression 
in tumor samples (P = 7.87×10-7, Figure 2D). While 
comparing with normal Tregs, tumor Tregs had 
increased expression of multiple genes related with 
immune suppression, including DUSP4, IL2RA, 
TNFRSF4, LAYN and LGALS1 (Figure 2E). Gene set 
variation analysis (GSVA) analysis revealed multiple 
immune response related pathways, namely 
IL2-STAT5 signaling, IL6-JAK-STAT3 signaling, 
allograph rejection, INF-alpha response and 
INF-gamma response, PI3K-AKT-MTOR signaling, 
KRAS signaling and glycolysis, were upregulated in 
tumor samples (Figure 2F). The increasing of Treg 
proportion in tumors, together with the upregulated 
expression of these genes and pathways, suggested 
the immunosuppressive nature of microenvironment 
in gastric tumors. 

No typical exhausted CD8+ T cell cluster was 
founded in gastric tumors 

Next we investigated the two major clusters of 
CD8+ T cells, T05 and T06. T05 was characterized as 
effector memory CD8+ T cells (TEM) with high 
expression of GZMK and a set of cytotoxic genes [14] 
(Figure 2B). T06 was classified as tissue resident 
memory T cells (TRM) based on increased expression 
of KLRC1 and ITGA1/CD103 (Figure 2B). 
Intriguingly, we did not identified an typical 
exhausted CD8+ T cell cluster in our dataset, which 
had been frequently detected in various tumor types, 
such as colon cancer and non-small-cell lung cancer 
[15, 16]. To confirm the absence of exhausted CD8+ T 
cells, we performed another reclustering on T and NK 
cells using an independent scRNA-seq dataset of 
gastric cancer published recently [12]. Consistently, 
none of the CD8+ T cell clusters could be designated 
as exhausted CD8+ T cells in this independent dataset 
(Figure S4A-C). In addition, no differential expression 
of immune checkpoint genes in T05 and T06 was 
detected between tumor and normal samples (Figure 
2G). These observations suggest that the exhaustion 
levels of cytotoxic CD8+ T cells are relatively low in 
primary gastric tumors. 

We calculated the exhaustion scores for CD8+ T 
cells (the average expression values of PDCD1, LAG3, 
TIGIT, HAVCR2, CTLA4 in each cell), which was low 

among all CD8+ cell clusters (Figure S5). We also 
compared the exhaustion levels of CD8+ T cell 
clusters between tumor and normal samples. No 
significant increase of exhaustion levels was observed 
in tumor samples (Figure 2H). Therefore, CD8+ T cells 
in the gastric tumor did not have significant 
exhaustion. 

A tumor specific LAMP3+ dendritic cells (DCs) 
were identified in gastric tumors 

Then we reconstructed myeloid cells clustering 
and identified 15 clusters (Figure 3A). M01-M03 were 
identified as monocytes based on the high expression 
of S100A8, S100A9 and FCN1 in these clusters (Figure 
3B-C). M04-M07 were characterized as dendritic cells 
based on low expression CD14 and high expression of 
HLA-DR gene (Figure 3B-C). M08-M11 was identified 
as macrophage due to the high expression of CD68, 
CD163 and MRC1 in these clusters (Figure 3B-C). 
Remaining three unclassified clusters (M12, M13 and 
M15) were probably derived from cells of low quality 
or doublet cells.  

The expression profiles of M01 (CD14high 
CD16-) and M02 (CD14+CD16high ) were similar to 
Mono1 and Mono 2 in human blood [17], i.e. classical 
monocytes and non-classical monocytes, respectively 
(Table S4). M03 expressed CD2, CD3D, IL32 and a 
number of cytotoxic genes (CCL5, TRAC, GZMA and 
GNLY) (Table S4), which was the unique 
characteristic of Mono4 cells in the same study [17]. 
The consistency of all the three monocyte subtypes 
with cell subtypes in the blood reflects the infiltrating 
nature of monocytes in gastric tumors.  

While M04 highly expressed CD1C, FCER1A 
and CLEC10A corresponding to cDC2 (Figure 3C and 
Table S4), M05 highly expressed CLEC9A 
representing cDC1 (Figure 3C and Table S4), and M07 
was identified as plasmacytoid DC (pDC) by the 
specific expression of LILRA4 (Figure 3C and Table 
S4). However, we noticed M06, highly expressed 
LAMP3, CCL22 and CCL19, did not connect with any 
classical DC subtype (Figure 3C and Table S4). Unlike 
the previous three classical DC subtypes which were 
shared by both tumor and normal samples, almost all 
cells in M06 were derived from tumor samples, 
suggesting that this LAMP3+ DC subsets were 
strongly enriched in tumor samples (Figure 3D). 
Interestingly, the expression profile of this cluster was 
similar to the LAMP3+ DCs identified in 
hepatocellular carcinoma (Figure S6 and Table S5), 
which was also strongly enriched in tumor samples 
[18]. Furthermore, the average expression of signature 
genes for LAMP3+ DCs was also much higher in the 
stomach tumor samples in TCGA dataset (Figure 3E 
and Table S5).  
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Figure 1. Single cell RNA-seq of gastric tumor and adjacent non-malignant samples. A, the design and workflow of this study. B, tSNE plots of cells from tumor and 
matched non-malignant samples of nine GC patients, colored by clusters (left panel), cell types (middle panel) and tissue origin (right panel). C, tSNE plots of known marker genes 
of each major cell type.  

 
To explore the origin of LAMP3+ DCs in gastric 

tumors, we first built a dendrogram of myeloid 
clusters and found that LAMP3+ DCs were clustered 
with cDC1 and cDC2 (Figure 3F). Next, trajectory 
analysis of these three subsets revealed that LAMP3+ 
DCs potentially were developed from cDC2 and cDC1 
in gastric tumors (Figure 3G). Lastly, SCENIC 
(Single-Cell Regulatory Network Inference and 
Clustering) analysis revealed that the activities of 
IRF1, IRF2, NFKB1 and NFKB2 were upregulated in 
LMAP3+ DCs (Figure S7), which indicates that IRF 
family and NF-kB are crucial regulators for DC 
differentiation and maturation [19].  

The heterogeneity of macrophages in gastric 
tumors 

When focusing on macrophages, we observed 
M08 had high expression of INHBA, PTGS2 and a 
number of pro-inflammatory cytokines and 
chemokines, which was similar to the recently 
reported INHBA+ macrophages identified in 
esophageal carcinoma (Figure S8 and Table S4) [20]. 
M09 and M10 were two clusters of C1QC+ 
macrophages, characterized by high expression of 
multiple C1Q genes and antigen presenting genes 
(Figure 3B). M11 had high expression of multiple 
interferon induced genes, such as ISG15, IFIT2 and 
IFIT3 (Figure 3C and Table S4). Among these four 
macrophage clusters, M08 was significantly enriched 

in the tumor samples (Figure 3D), thus was 
designated as tumor associated macrophages (TAMs).  

Macrophages are usually classified into 
pro-inflammatory M1 and anti-inflammatory M2 class 
[20]. To test whether the macrophage subpopulations 
identified here fit the classical M1/M2 model, we 
evaluated the expression of the classical M1 and M2 
signatures for these macrophage subtypes. M1 and 
M2 signature genes were co-expressed by all these 
subpopulations. The INHBA+ cluster (M08) and 
ISG15+ cluster (M11) exhibited higher M1 signatures, 
while the C1QC+ cluster (M9 and M10) were higher 
for M2 signatures (Figure 4A). This analysis suggests 
that in vivo polarization of macrophage in gastric 
tumors could not be explained by the M1/M2 model. 

In the comparison of gene expression levels of 
TAMs and C1QC+ macrophages, we identified 49 
upregulated genes (fold change > 2, FDR < 0.05) in 
INHBA+ macrophages, including multiple 
chemokines, IL6, PTGS2, IL1RN and TIMP1 (Figure 
4B). GSVA analysis of hallmark pathways revealed 
there were increased activities of WNT beta catenin 
signaling, angiogenesis, hedgehog signaling, 
epithelial mesenchymal transition, and IL10 signaling 
in this subtype, while C1QC+ macrophages were 
upregulated in MHC class II antigen presentation 
(Figure 4C). INHBA+ TAM and monocytes were 
located in a single branch in the dendrogram, 
implying that this cluster probably was originated 
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from infiltrated monocytes in tumor regions (Figure 
3F). Trajectory analysis supports that this TAMs 
(M08) could develop from monocytes (Figure 4D). 
SCENIC analysis revealed that the activities of 

multiple transcription factors were specifically 
upregulated in INHBA+ TAM, including RELB, 
NFKB1, NFKB2 and etc. (Figure S9).  

 

 
Figure 2. The profile of T and NK cells in gastric cancer. A, UMAP plots of T and NK cells, colored by cluster (left panel) and by tissue origin (right panel). B, Bubble plot 
of top differentially expressed genes for each T and NK cluster. C, The proportions of Tregs in tumor and normal samples. D, The average expression of Treg signature genes 
in tumor and normal samples of the gastric adenocarcinoma dataset in TCGA. E, Differentially expressed genes of Tregs between tumor and normal tissues. F, Pathways had 
increased activities in tumor Tregs estimated by GSVA. G, Violin plots of immune checkpoint genes in all T and NK clusters. The gene expression value of Y-axis ranges from 0-5. 
H, Differential analysis of exhaustion levels between tumor and normal samples. 
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Figure 3. The heterogenicity of myeloid cells in gastric cancer. A, UMAP plots of myeloid cells, colored by cluster (left panel) and tissue origin (right panel). B, UMAP 
plots of marker genes of different subsets of myeloid cells. C, Bubble plot of top differentially expressed genes for each myeloid cell cluster. D, The proportions of each myeloid 
cell cluster in tumor and normal samples. Asterisks denote P value < 0.05 in the comparison of the proportions between tumor and normal samples. E, The average expression 
of signature genes of LAMP3+ DCs in TCGA gastric adenocarcinoma dataset. F, Dendrogram of different subsets of monocytes, DCs and macrophages in tumor samples. G, 
Trajectory analysis of three DC clusters by Slingshot. The density distribution of pseudotime for three DC clusters was plotted on the right panel. 
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Figure 4. The molecular features of macrophage in gastric cancer. A, Boxplots showing the average expression of M1 and M2 signature genes in four macrophage 
clusters. B, Differentially expressed genes between Macro-INHBA and Macro-C1QC. C, Pathways had high activities in Macro-INHBA and C1QC+ Macro-C1QC by GSVA. D, 
Trajectory analysis of M01, M02 and M08 by Slingshot. The density distribution of pseudotime for the three clusters was plotted on the bottom panel. 

 

Fibroblasts play crucial roles in neovasculation 
and tumor development 

Next, we aimed to explore the heterogeneity of 
fibroblasts in gastric cancer. Fibroblasts are thought to 
be a highly plastic cell population in the TME, but no 
consensuses were achieved for the definition of 
fibroblast subtypes and CAFs in gastric cancer. Here, 
we obtained 11 fibroblast clusters in total after the 
reclustering of the 3,467 fibroblast cells and 
designated three of them as CAF (Figure 5A). The 
expression of collagens, MMPs, cytokines and 
chemokines varied among different fibroblast clusters 
(Figure S10). For example, COL7A1 was specifically 
expressed in F08, and COL8A1 was highly expressed 
in F04 but not in other clusters (Figure S10A).  

Both F01 and F02 expressed ACTA2 and 
multiple genes were related with muscle contraction 

(including ACTG2, MYH11 and PLN) (Figure 5B and 
Table S6). F01 could be annotated as pericytes 
referring to the high expression of RGS5 and PDGFRB 
in this cluster (Figure 5B-C). The relative abundance 
of pericytes was much higher in tumor samples (P < 
0.05, Figure 5D). Immunofluorescence staining of 
PDGFRB showed that pericytes had a perivascular 
location and confirmed that pericytes were enriched 
in tumor samples (Figure 5E). Increased expression of 
several angiogenic factors (including ANGPT2, 
CAV1, NOTCH3, PDGFA, EPAS1 and THY1) was 
observed in this cluster (Figure S10B). Notably, gastric 
cancer patients with higher expression of PDGFRB 
had poor prognosis in TCGA (Figure S11). Therefore, 
this cluster plays crucial roles in the neovasculation of 
gastric tumors. SCENIC analysis further showed that 
LRRFIP1, ETS1, EPAS2, MEF2C and SSRP1 were 
upregulated in pericytes (Figure S12).  
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Figure 5. The profile of fibroblasts in gastric cancer. A, UMAP plots of fibroblast cells, colored by cluster (left panel) and tissue origin (right panel). B, UMAP plots of 
marker genes for different subsets of fibroblasts. C, Bubble plot of top differentially expressed genes for each fibroblast cluster. D, The proportions of each fibroblast cluster in 
tumor and normal samples. Asterisks indicate P value < 0.05 in the comparison of the proportions between tumor and normal samples. E, Immunofluorescence staining of 
PDGFRB (top panel) and CTHRC1 (bottom panel) together with CD31 (vascular endothelial cells) and DAPI (nuclei) (100 µm). F, Kaplan-Meier survival curves showed the 
gastric cancer patients with high expression of Fib-CTHRC1 signature genes had poor survival in TCGA datasets. 

 
F03 was the major fibroblast subset in normal 

samples (Figure 5D), marked by high expression of 
CXCL14, POSTN, F3, PDGFRA and SOX6 (Table S6). 
The expression signature of this cluster was similar to 
the S2 subset of mesenchymal cells in human colons, 
which was in close proximity to the epithelial 
monolayer of colon and was thought to play some 
roles in the maintenance of epithelial homeostasis 

[21]. In this study we observed significant decrease of 
this subset in tumor tissues, which could reflect the 
dysfunction of epithelial barrier in the tumors.  

F06 was mainly derived from normal samples, 
marked by high expression of CFD, CLU, COL14A1 
and PI16 (Table S6). COL14A1+ fibroblasts had been 
identified in single-cell studies of multiple human 
tissues, including human lung and colon tissues 
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[21-23], indicating this cluster may represent a 
common subtype of fibroblast in multiple tissues. A 
set of ECM molecules (DCN, DPT, FBLN1, FBLN2, 
GSN and TNXB) were highly expressed in this cluster. 
In addition, we found multiple complement factors 
(Figure 5C and Table S6) were highly expressed in this 
cluster, implying that this subset of fibroblasts plays 
some roles in innate immune defense.  

F04, F05 and F08 were significantly enriched in 
tumor samples, thus were denoted as three subsets of 
cancer associated fibroblasts (CAFs) (Figure 5D). F04 
specifically expressed CTHRC1 (Figure 5C and Table 
S7), which was over-expressed in gastric tumors and 
associated with poor prognosis [24]. It has been 
reported that CTHRC1 was associated with tumor 
progression and metastasis in multiple tumor types 
[24-29]. Immunofluorescence staining of CTHRC1 
showed the location of CTHRC1+ cells was 
endothelial cell surrounding in gastric tumors (Figure 
5E). FAP, a canonical marker of CAF, had highest 
expression in this cluster (Figure 5B). In the TCGA 
dataset, high expression of signature genes of 

Fib-CTHRC1 had poor prognosis (Figure 5F, 
Methods). GSVA analysis revealed that this cluster 
had high activities in ECM remodeling related 
pathways, including "Elastic fiber formation", 
"Activation of matrix metalloproteinases" and 
"Collagen degradation" (Figure S13). 

F05 was a COL14A1+ fibroblast cluster, 
characterized by high expression of C7 and APOD 
(Figure 5C). F08 specifically expressed MMP1, MMP3 
and MMP9 (Figure S10). Transcription factor TWIST1 
was highly expressed in F08 (Figure S10), which has 
been validated as a key regulator of cancer-associated 
fibroblast [30]. 

Tumor endothelial cells showed high activity 
of angiogenesis 

Overall, we detected 1,873 endothelial cells (ECs) 
in this study and most of them (88.2%) were derived 
from the tumor samples. Reclustering of tumor 
endothelial cells revealed nine distinct clusters (Figure 
6A). 

 

 
Figure 6. The cellular composition of endothelial cells in gastric cancer. A, UMAP plots of endothelial cells, colored by cluster (left panel) and tissue origin (right panel). 
B, Bubble plots of top differentially expressed genes for endothelial cell clusters. C, UMAP plots of CD34 and marker genes for different subsets of endothelial cells. D, The 
average expression of signature genes of EC-ESM1 in TCGA gastric adenocarcinoma dataset. E, Immunofluorescence staining of ACKR1 together with CD31 (vascular 
endothelial cells) and DAPI (nuclei).  
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Figure 7. Cell-cell interactions in gastric cancer. A, Heatmap representing the number of predicted ligand-receptor pairs between different cell types in tumor and normal 
samples. B, Heatmap representing the number of predicted ligand and receptor pairs between different subsets of endothelial cells and fibroblasts in tumor samples. C, Dot plot 
of predicted ligand-receptor interactions between different subsets of endothelial cells and fibroblasts in tumor samples. 

 
E01 was tip-like cells with specific expression of 

tip cell markers (including ESM1, KDR and PDGFB) 
were observed in this cluster (Figure 6B-C and Table 
S8). Multiple VEGF receptors were expressed in this 
cluster (Table S8), in line with the essential roles that 
tip cells played in angiogenesis. We identified 3 
signature genes for this cluster, then compared the 
average expression signature genes between gastric 
tumor samples and non-malignant gastric samples in 
TCGA datasets (Table S9). In TCGA, gastric tumor 
samples had much higher expression of these 
signature genes, indicating angiogenesis was very 
active in gastric cancer (Figure 6D). GO enrichment of 
upregulated genes showed that "angiogenesis" and 
"leukocyte chemotaxis" were enriched in this cluster 
(Figure S14). 

E02 and E03 had high expression of ACKR1 and 
SELP (Figure 6C), thus could be designated as venous 
ECs [31]. Immunofluorescence staining showed that 
ACKR1 were highly expressed in tumor ECs (Figure 
6E). In the TCGA dataset, gastric cancer patients with 
high expression of ACKR1 gene had poor prognosis 
(Figure S15). E04 had high expression of CD36 and 
CA4 (Figure 6C), representing capillary ECs [32]. E05 
had high expression of multiple markers of arterial 
ECs (GJA5, GJA4, SEMA3G and HEY1) (Table S8). E07 
expressed a number of interferon induced genes (such 
as CXCL10, CXCL11, ISG15 and IFIT3) (Table S8). E09 
represented lymphatic EC as LYVE1 and CCL21 were 

specifically expressed in this cluster (Figure 6C). 

Enhanced interplay of endothelial and 
fibroblast in tumor angiogenesis 

Using CellPhoneDB2, we identified potential 
cell-cell interactions mediated by various ligand and 
receptor pairs in tumor and normal samples (See 
Methods) [33]. In normal samples, cell-cell 
interactions were slightly enriched in three classes of 
myeloid (Figure 7A), in line with the essential roles 
that myeloid cells played in the maintenance of the 
tissue homeostasis. In tumor samples, we observed 
enhanced interactions between endothelial cells and 
multiple cell types, including fibroblast, monocytes, 
macrophages and DC (Figure 7A). For example, there 
were only 3 predicted interactions between 
endothelial cells and fibroblasts in normal samples, 
but the number was 15 in tumor samples. The tight 
interaction between endothelial cells and fibroblast 
implied that fibroblast was closely implicated in 
tumor angiogenesis and the maintenance of tumor 
vasculature.  

When inspecting the cell-cell interactions for 
different subsets of endothelial cells and fibroblasts, 
we found EC-ESM1 (tip-like endothelial cells) had 
strong interactions with four subsets of fibroblast 
(F01-F04) (Figure 7B). The interaction of EC-ESM1 and 
these four subsets of fibroblasts was mainly mediated 
by PGF, VEGFA, PDGF genes and their receptors 



Theranostics 2022, Vol. 12, Issue 8 
 

 
https://www.thno.org 

3828 

(Figure 7C), which were the known driving factors for 
angiogenesis. Interestingly, the interaction of FLT1 
and PGF was only observed in EC-ESM1 and 
Fib-RGS5, but not in other pairs of endothelial and 
fibroblast clusters. Taken together, our analysis 
showed that the enhanced interplay of endothelial 
and fibroblast was the fundamental change of cell-cell 
interactions in gastric cancer.  

The replication analysis of three previous 
studies 

Three published scRNA-seq datasets (PMID 
32532891, 34385296 and 34933901) [12, 34, 35] were 
used to verify that the cells subpopulations identified 
in our datasets could represent the cellular 
heterozygosity of gastric cancer. As shown in Figure 
S16, UMAP plot of T cell subpopulations identified in 
PMID 32532891 (Figure S16A), PMID 34385296 
(Figure S16B) and PMID 34933901 (Figure S16C), 
where regulatory T cells, CD4+ T cells, CD8+ T cells 
and natural killer cells were found in all three studies. 
Clustering of myeloid cells from these published 
single cell datasets of gastric cancer was showed in 
Figure S17, and 15 clusters were found in three 
datasets. In Figure S18 and Figure S19, fibroblast and 
endothelial cells with from gastric cancer were 
analyzed, and the majority of the subtypes were 
similar to our findings. 

Discussion  
In this study we generated a complete single-cell 

atlas of immune and stromal cells for gastric cancer by 
scRNA-seq. Using a finely tuned clustering method, 
we unveiled the cellular heterozygosity of T and NK 
cells, myeloid cells, fibroblasts and endothelial cells in 
gastric cancer. 

For T and NK cells, we found there was 
significant expansion of Tregs in tumor samples. The 
cytotoxic activity of CD8+ T cells could be rendered 
ineffective primarily by the suppression of Tregs, 
defined by poor effector function, sustaining 
expression of inhibitory receptors and a unique 
transcriptional state [16, 36]. Therefore, a deep 
understanding of the mechanisms and pathways 
leading to the accumulation of Tregs in cancer will 
provide better strategies to orchestrate the immune 
system to eradicate cancers. The increased expression 
of multiple immune suppression genes was observed 
in tumor Tregs. For example, LAYN, linked to the 
suppressive function of tumor Treg and exhausted 
CD8+ T cells, was recently reported to be highly 
expressed in Tregs isolated from lung, colon and liver 
cancers [22]. LGALS1 contributes to the immune 
heterogeneity and immunosuppression in glioma 
[37]. DUSP4 is important not only for both innate and 

adaptive immune responses, but also for metabolic 
homeostasis [38]. IL2RA, highly expressed in Treg 
cells, has strong suppressive activity[39]. The upregu-
lation of these genes suggest that microenvironment 
of gastric tumors was more immunosuppressive than 
normal samples. Surprisingly, we did not obtain a 
separate cluster of typical exhausted CD8+ T cells. 
The exhaustion markers PDCD1, CTLA4, HAVCR2, 
LAG-3, and TIGIT were expressed at low levels in 
CD8+ T cells, which implied the benefit of 
immunotherapy would be limited for gastric cancer 
patients [16, 40]. 

Macrophage metabolism has been tightly 
associated with distinct activation phenotypes within 
the range of M1-like and M2-like types [41]. However, 
in this study, M1-like and M2-like TAM signature 
genes were co-expressed by all macrophage 
subpopulations, suggesting the polarization of TAM 
in gastric cancers could not be explained by the fully 
M1/M2 (or alternatively activated) macrophages 
model. This is consistent with a previous study [11], 
indicating that tumor-associated macrophages have a 
spectrum-like level of subtypes in microenvironment. 
In this study, we identified a subset of macrophage as 
tumor associated macrophage (M08: Macro-INHBA), 
which probably were monocyte derived. This subset 
showed high activity of angiogenesis, hedgehog 
signaling, epithelial mesenchymal transition, NF-κB 
pathway, and IL10 signaling, suggesting it had 
essential roles in the remodeling of cancer immunity 
and progression. In addition, a published study 
indicated that INHBA over-expression promotes cell 
proliferation and may be epigenetically regulated in 
esophageal adenocarcinoma [42].  

In previous studies, CAF is characterized by 
increased expression of myofibroblast markers, there 
is no consensus on what distinguishes quiescent 
fibroblasts, myofibroblasts and CAFs [43, 44]. 
Increasing evidence has shown that CAFs mediate 
chemotherapy resistance in several tumors by 
releasing paracrine signals such as cytokines, 
exosomes and metabolites [45, 46]. In this study, we 
found pericytes were enriched in gastric tumors and 
identified three subsets of fibroblast as CAFs. One of 
these subsets (labeled as Fib-CTHRC1) was 
represented by high expression of CTHRC1. CTHRC1 
is upregulated by promoter demethylation and 
transforming growth factor-β1 and may be associated 
with metastasis in human gastric cancer [47]. We 
demonstrated that high expression of signature genes 
of F04 was associated with poor survival in gastric 
cancer. Therefore, targeting CAFs may be an 
innovative strategy that may synergize with the 
standard antitumor approaches and serve as a more 
effective combination therapy for gastric cancer. 
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Abnormal vessel growth and function are 
hallmarks of cancer, contributing to disease 
progression [48]. Therapeutic approaches to block the 
vascular supply have reached the clinic, but the 
limited efficacy due to cancer resistance poses 
unresolved challenges [49]. In this study, we observed 
the interactions of endothelial cells with multiple cell 
types were enhanced in tumor samples. Specifically, 
there was strong interaction between tip-like ECs and 
CAFs, mediated by PGF, VEGFA, PDGF and their 
receptors.  

In addition, for most cell sub-populations 
identified in our datasets there is a counterpart in the 
three published scRNA-seq datasets of gastric cancer. 
All these findings indicated that the cell sub- 
populations detected in our datasets could represent 
the cellular heterozigosity in the micro-environment 
of gastric cancer.  

This study has three main limitations. As a small 
number of samples were collected in our study, 
increasing the cohort size will help to address the 
influence of the TME in gastric cancer, further 
replicate and validate the generalizability of our 
findings. Secondly, we did not consider spatial 
context, which may be affected by the dissociation 
process and could be addressed by dual single-cell 
proteomics and transcriptomics. Thirdly, for the first 
time we demonstrated the profiling of stromal cells 
and immune cells in gastric cancer, rather than solely 
epithelial cells. Fourthly, it’s difficult to describe the 
cellular heterogeneity of tumor cells, as well as the 
interaction between tumor epithelial cells and other 
cells because of the length limit in this manuscript. We 
will discuss it in our future study. 

Taken together, our single-cell atlas of gastric 
cancer could shed more light on the potential 
solutions on efficiently inhibiting tumor angiogenesis 
and tumor cell proliferation and invasion. 

Methods 
Patient recruitment and ethical approval 

Nine patients with histologically confirmed 
proximal (n = 6) or distal (n = 3) gastric 
adenocarcinoma were enrolled in this study, and 
normal stomach tissues from these patients were 
collected as control samples. All patients were 
treatment-naïve and their clinical characteristics are 
summarized in Table S1. All clinical samples were 
collected from the Center for Cancer/Cancer 
Hospital, Chinese Academy of Medical Sciences and 
Peking Union Medical College from 2017 to 2018. 
Written informed consent was obtained from all 
participants enrolled in this study, and ethical 
approval was obtained from the following 

institutional review boards in accordance with the 
Declaration of Helsinki: National Cancer Center/ 
National Clinical Research Center for Cancer/Cancer 
Hospital, Chinese Academy of Medical Sciences and 
Peking Union Medical College. Approval number: 
17-156/1412. Issued date: 2017-09-14. 

Sample processing and library construction for 
scRNA-seq 

Fresh gastric tumor and adjacent tissues were cut 
into approximately 1 mm3 pieces in RPMI-1640 
medium (Invitrogen) with 10% fetal bovine serum 
(FBS; ScienCell) and enzymatically digested with a 
MACS tumor dissociation kit (Miltenyi Biotec) for 30 
min on a rotor at 37°C, according to the 
manufacturer’s instructions. After filtration with a 70 
μm Cell-Strainer (BD) in RPMI-1640 medium 
(Invitrogen), the suspended cells were centrifuged at 
400× g for 5 min. After removing the supernatant, the 
pelleted cells were suspended in red blood cell lysis 
buffer (Solarbio) and incubated on ice for 2 min to lyse 
red blood cells. The cell pellets were resuspended in 
sorting buffer (PBS supplemented with 2% FBS) after 
washing twice with PBS (Invitrogen).  

The single cell suspensions were stained with 
7-AAD Viability Staining Solution (Cat# 00-6993-50, 
eBiocience) for flow cytometry (FACS), performed on 
a BD Aria III instrument. Based on FACS analysis, 1 × 
105 living cells were sorted into 1.5 ml tubes with 
sorting buffer, and counted manually under the 
microscope. Then, single cells were processed with 
the GemCode Single Cell Platform using the 3’ 
GemCode Gel Bead, Chip and Library Kits (10 x 
Genomics) as per the manufacturer’s protocol. The 
loaded cell numbers were 10,000 for each sample. The 
cells were then partitioned into Gel Beads in Emulsion 
in the GemCode instrument, where the cells were 
lysed and barcodes were ligated via reverse 
transcription; then, the RNA was amplified and 
sheared, and 3’ adaptors and sample indexes were 
ligated. The libraries were sequenced on an Illumina 
HiSeq 4000 with paired-ends 150bp sequencing 
strategy. 

Single cell data processing and clustering 
Raw gene expression matrix was generated for 

each sample using CellRanger (v2.0.2). Cells that had 
less than 200 expressed genes or more than 7,000 
expressed genes were removed. Cells in which the 
fraction of mitochondrial genes exceeded 10% also 
were removed. Scrublet (v0.1) was used to remove 
doublet cells. The UMI count per gene were 
normalized by the total UMI count in each cell and log 
transformed with the NormalizedData function in 
Seurat [50], using 10000 as the scale factor. The effects 
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of the number of detected UMIs, the fraction of 
mitochondrial genes and cell cycles on the gene 
expression values were corrected by regression using 
the ScaleData function in Seurat. 

Before the clustering, we first applied Canonical 
correlation analysis (CCA) implemented in Seurat to 
correct the batch effects among the experiments, and 
integrate the gene expression matrix of all samples 
into a whole matrix. To identify the major cell types in 
our dataset, we first selected the variably expressed 
genes using the FindVariableGenes function in Seurat, 
requiring the average expression was between 0.05 
and 5 and the dispersion was no less than 0.5. Next, 
we performed principal component analysis to reduce 
the dimensionality. The top 20 PCs were selected for 
cell clustering after the inspection of the elbow plot. 
The FindClusters function was used to cluster all cells 
from both tumor and normal samples at resolution 
0.4. Finally, we got the tSNE visualization using the 
RunTSNE functions in Seurat. We also performed cell 
clustering using Harmony (v1.0) and compared the 
results of two clustering methods. The clustering 
results by Seurat had high agreement with the results 
by Harmony. In the analysis above, Seurat v3.2.2 was 
used.  

Reclustering of major cell types 
To identify subtypes or cells in different states 

within a major cell type, we used a two round 
clustering strategy. Firstly, cells belonging to a cell 
type were extracted from the normalized gene 
expression matrix of each sample and a combined 
gene expression matrix of all samples was prepared. 
Like we did on the whole dataset, variably expressed 
genes were identified by the FindVariableGenes 
function in Seurat using the same parameters. After 
PCA analysis, we selected top PCs based on the elbow 
plot and performed clustering analysis using 
Harmony. To improve the resolution of cell 
clustering, we applied two-way ANOVA to identify 
genes in the variably expressed genes whose variance 
of expression were mainly derived from samples 
rather than cell clusters (the fraction of variance 
explained by samples in the total variance explained 
by samples and clusters > 0.9). After the removal of 
these genes from the list of variably expressed genes, 
we performed the second round of clustering. For 
each cell type, cell clustering was conducted at 
multiple resolutions (0.4, 0.6 and 0.8) and we finally 
chose the resolution which could give us the better 
recovery of the known subtypes or states within a cell 
type.  

We then evaluated the robustness of reclustering 
using a resampling approach. Explicitly, we sampled 
75% cells from our dataset at random, and then 

clustered them with same set of parameters and 
selected features. For each cluster, we calculated the 
fraction of the sampled cells that still clustered into a 
single cluster in the resampling as a measurement of 
cluster robustness. Most subclusters identified in our 
dataset are highly robust at 30 times of resampling 
(Figure S20). 

Comparison of cell cluster abundance between 
tumor and normal tissues 

To access whether a specific cell cluster in a 
major cell type was significantly enriched in the 
tumor samples, we model the number of cells in a 
cluster as a random variable of a Poisson process. The 
condition (tumor or non-tumor) was provided as 
covariate and the total number of cells was provided 
as an offset variable. glm function in R package was 
used to fit the model [51]. The significance of 
coefficient was evaluated using Wald test.  

Differential gene expression analysis 
The MAST (Model-based Analysis of Single-cell 

Transcriptomics) method implemented in 
FindMarkers function in Seurat package was used to 
identify differently expressed genes between two 
subsets or clusters of cells. Genes with expression 
percent > 10%, fold change > 2 and Benjamini- 
Hochberg adjusted p < 0.05 were identified as 
differently expressed genes. 

Identification of signature genes 
Signature genes for each cluster would have high 

expression in this cluster but not in other clusters of a 
cell type, also have specific expression in the current 
cell type but not in other cell types. To identify 
signature genes for a cluster in a cell type, we first 
identified differently expressed genes for this cluster 
using FindAllMarkers function in Seurat, and then 
calculated a cluster specificity score and a cell type 
specificity score for each differently expressed genes.  

Cluster specificity score was defined as: 

𝑆𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟  =  1 − fraction of high expressed cells in other clusters
fraction of high expressed cells in this cluster

  

Here, high expressed cells was defined as cells 
whose expression were greater than the 1/4 quantile 
of the expression values in this cluster (ignore zero 
values). If a gene was only expressed in this cluster 
but not in other clusters in a cell type, cluster 
specificity score would be 1. If the fraction of high 
expressed cells other clusters in a cell type was equal 
to or higher than the fraction in this cluster, the cluster 
specificity would be 0.  

Cell type specificity score was defined as:  
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𝑆𝑝𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒  

=  
number of cells expressed in this celltype

/totalnumberofexpressedcellsinallcelltypes
 

Here, a cell was taken as expressed if the 
expression value was greater than the 5th percentile of 
the expression values of all cells (ignore zero 
expression).  

Finally, we calculated a combined score which 
was the geometric average of the cluster specificity 
score and the cell type specificity score:  

𝑆𝑝𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑  =  �𝑆𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟 × 𝑆𝑝𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 

Using this combined score and a cutoff value of 
0.7, we identified signature genes for regulatory T 
cells, LAMP3+ DC, INHBA+ macrophages and other 
cell clusters in our dataset. For regulatory T cells, a set 
of well-defined marker genes (including IL2RA, 
BATF, FOXP3, TIGIT, CTLA4 and ICOS) were 
identified as signature genes, indicating that this 
quantitative method was effective to identify the 
signature genes for a single cell cluster from single cell 
sequencing data.  

GSVA 
The gene set variation analysis (GSVA) were 

performed on the hallmark pathways or canonical 
pathways collected in the molecular signature 
database (V7.0) [52, 53], and GSVA scores were 
obtained using the GSVA package (v1.34.0) [54]. To 
assess the differential pathway activities among cell 
clusters, we used LIMMA package (v3.42.2) to 
contrast the activity scores for each cell based on a 
generalized linear model with the patient of origin as 
a categorical variable. 

Dendrogram 
To explore how the clusters or subsets of a single 

cell type related with each other. We built 
dendrogram based on the similarities of their 
transcriptome, referring to the method used in Cheng 
et al [20]. Explicitly, we identified variably expressed 
genes for a cell type and calculated their mean 
expression for each cluster. For each pair of clusters, 
we computed Pearson correlation coefficient of mean 
expression of variably expressed genes, and defined 
the distance between the two clusters as (1 - Pearson 
correlation coefficient)/2. Dendrogram was 
constructed using APE package (version 5.3).  

Trajectory analysis 
Before trajectory analysis, cell cycle effects in 

major cell types were regressed out using the Seurat 
package [55]. Slingshot (v1.4.0) was used to do 
trajectory construction by setting dimensionality 

reduction method as PCA and other parameters as 
default. Then lineages and pseudotime tendency 
within different cell clusters were visualized in 
graphs. 

Cell-cell interaction analysis 
We used CellPhoneDB (v.1.1.0) [33] to detect the 

pairwise interactions between cell clusters. Only 
receptors and ligands whose expression was detected 
in more than 25% of cells were included in this 
analysis. The significance of a ligand and receptor pair 
in each cell-cell interaction was evaluated by 1,000 
random permutations of the cell types. For each 
permutation, the total mean of the average receptor 
expression level and the average ligand expression 
level is calculated, and a null distribution is derived 
for each ligand-receptor pair. For the multi-subunit 
heteromeric complexes, the member of the complex 
with the minimum average expression is used for 
calculating the mean. An empirical P value is 
calculated from the proportion of the means which are 
'as or more extreme' than the actual mean. The 
cell-cell interaction landscape was generated using 
Cytoscape (version 3.6.1)[56]. The network output 
was a circular layout and was adjusted manually.  

TCGA data analysis 
The TCGA gastric adenocarcinoma dataset was 

used to evaluate the prognostic effect of a single gene 
or a set of genes (such as Treg signature genes). Gene 
expression data were downloaded from UCSC Xena 
(http://xena.ucsc.edu/), and the clinical data were 
downloaded from the Genomic Data Commons Data 
Portal (https://gdc-portal.nci.nih.gov/). The TPM 
values were normalized by the average expression of 
a gene in normal samples. For each signature gene set, 
the average TPM value of the selected genes was 
calculated for all samples. Samples whose average 
expression at the top 25% were defined as the high 
expression group, whereas samples whose average 
expression at the bottom 25% were defined as the low 
expression group. We performed multivariate 
analyses using the Cox proportional hazards model to 
correct clinical covariates including age, sex, tumor 
stage and gene expression group (high or low) for all 
survival analyses in our study (R Package survival, 
version 3.2-7). Kaplan-Meier survival curves were 
plotted to show the differences in of survival curves 
between the high and low expression group. 

Immunofluorescence staining 
To confirm the endothelial and fibroblast 

subtypes in gastric tumors, we performed 
immunofluorescence staining of CTHRC1, ACKR1 
and PRGFRB in five tumor samples. Serial sections 
(~4 μm) from formalin-fixed paraffin-embedded 
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tumor tissues were stained using standard protocols. 
Anti-CD31 (mouse, 1:50, Proteintech, Ag1787, lot 
number: 66065-1-Ig) was used to stain endothelial 
cells. The following antibodies and dilutions were 
used to detect the corresponding proteins: 
anti-CTHRC1 (rabbit, 1:50, Proteintech, Ag9812, lot 
number: 16534-1-AP), anti-PDGFR B (mouse, 1:50, 
Abcam, ab51869, lot number: MM0014-5F66), and 
anti-ACKR1 (rabbit, 5 µg/ml, Abcam, ab58965). DAPI 
was used to stain cell nuclei. 

Replication analysis 
To confirm our findings, we used three 

published scRNA-seq datasets (PMID 32532891, 
34385296 and 34933901) to verify that the cells 
subpopulations identified in our datasets could 
represent the cellular heterozygosity of gastric cancer. 
For study of PMID 34933901, we only used 
pre-treatment samples in the replication analysis. The 
same cell clustering pipelines were used to re-analyze 
these three datasets. For T cells, we performed 
clustering for each dataset separately. For myeloid, 
fibroblast and endothelial cells, we aggregated cells 
from the three datasets into a single data matrix, then 
performed cell clustering. 

Supplementary Material  
Supplementary figures. 
https://www.thno.org/v12p3818s1.pdf  
Supplementary tables. 
https://www.thno.org/v12p3818s2.pdf  
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