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Abstract 

Rationale: Hepatocellular carcinoma (HCC) is a highly heterogeneous and malignant disease with the 
complex immune microenvironment, which ultimately influence clinic outcomes of patients. However, the 
spatial expression patterns of diverse immune cells among tumor microenvironment remain to be further 
deciphered. 
Methods: Spatial transcriptomics sequencing (ST) was implemented on two portions of HCC specimens. 
Differentially expressed genes, cell cycle phases, epithelial-mesenchymal features, pseudo-time and immune 
infiltration analysis were applied to demonstrate the intratumor heterogeneity and define the specific 
immune-related regions, and the results were further validated by a second analysis on another ST study. In vitro 
and in vivo experiments were conducted to confirm the functional mechanisms of key molecules such as CCL15, 
CCL19 and CCL21. Clinical tissue samples were used to assess their potential prognostic and therapeutic 
values. 
Results: Totally, 7553 spots were categorized into 15 subsets by hierarchical clustering, and malignant subsets 
with intratumor heterogeneity phenotypes were identified. Spatial heterogeneity from distinct sectors 
highlights specific chemokines: CCL15 is remarkable in the core region of the carcinoma sector and facilitates 
the immunosuppressive microenvironment by recruiting and polarizing M2-like macrophages in vitro and in vivo; 
High expression of CCL15 and CD163 respectively predicts poor prognosis of HCC patients, and the 
combined application of them has better predictive value. CCL19 and CCL21, sharing similar spatial expression 
patterns, are highly-correlated and prominent in the immune infiltration enrichment and recruit CD3+ T cells 
and CD20+ B cells to inhibit the growth of HCC, indicating a good prognosis of HCC patients. 
Conclusions: Taken together, our studies preliminarily reveal intratumor heterogeneity of HCC based on ST 
techniques and unravel the previously unexplored spatial expression patterns in the immune 
microenvironment. We also highlight the clinical significance and spatial discrepancy of key molecules, providing 
novel insight for further developing therapeutic strategies in HCC. 
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Introduction 
The latest cancer statistics for 2020 indicate that 

primary liver cancer (PLC) ranks sixth in morbidity 
and third in mortality worldwide, with approximately 

906,000 new cases and 830,000 deaths yearly, and that 
hepatocellular carcinoma (HCC) accounts for 
approximately 80% of PLC cases [1]. Vaccination 
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against hepatitis B virus (HBV) and reduction in 
aflatoxin exposure have sharply decreased the 
incidence of HCC in recent decades [2]. HCC 
screening and early diagnosis, as well as advances in 
surgery and molecular targeted medicine, have 
dramatically reduced the mortality rate of HCC to a 
certain extent. Nonetheless, there still exist clinical 
phenomena in which although the clinicopathological 
stages of some patients are consistent, major 
discrepancies due to tumor heterogeneity are noted 
regarding drug sensitivity and prognosis after 
operation [3]. 

Tumor heterogeneity in HCC can be roughly 
classified into phenotypic heterogeneity and 
molecular heterogeneity [4], with the former being 
observed from pathological and morphological 
perspectives and the latter being documented at three 
levels: interpatient, intertumoral, and intratumor 
heterogeneity [5, 6]. Previous studies have attempted 
to profile the landscape of molecular heterogeneity in 
HCC [7-9]; nevertheless, due to discrepancies, the 
roles of various factors in liver carcinogenesis and 
progression remain ill-defined. Accumulating 
evidence has found that tumor heterogeneity is 
closely associated with the immune environment, 
which is characterized by three immunosubtypes 
(immune-high, immune-mid, and immune-low) with 
noteworthily distinct prognoses [10]. Notably, 
single-cell RNA sequencing (scRNA-seq) has 
dramatically enriched our knowledge of tumor 
heterogeneity in tumor cell subpopulations, the 
immune microenvironment, and the cell 
developmental trajectory of HCC [11-13]. Whereas 
spatial information is disrupted after tissue dissection 
into a single-cell suspension, disengaging gene 
expression from its original tissue architecture and 
rendering exploration of the authentic appearance of 
gene expression patterns difficult [14]. In this 
scenario, emerging spatial transcriptomics (ST) 
technology has the attributes of spatially localizing 
function resulting from gene expression, which can be 
a perfect complement to scRNA sequencing. ST was 
first applied in the mouse brain and human breast 
cancer to verify the feasibility of spatial visualization 
and quantitative analysis of gene expression [15]; it 
was then used to explore the spatial discrepancy of 
gene expression in dynamic disease processes, such as 
amyotrophic lateral sclerosis [16] and Alzheimer’s 
disease [17], as well as in normal tissue development 
processes [18]. Moreover, ST is conducive to resolving 
spatial heterogeneity and spatial gene expression 
patterns in various tumors, such as prostate cancer 
[19], melanoma [20] and pancreatic ductal 
adenocarcinoma [21], and primary liver cancer [22, 
23]. 

In the present study, we performed ST 
sequencing for two portions of HCC specimens with 
clearly demarcated and continuous cores, peripheral 
regions, and boundary regions and investigated the 
potential makers and regulatory mechanisms of 
immunosuppressive or immune enrichment regions 
with distinct prognoses based on analyzing spatial 
gene expression patterns. Accordingly, our studies 
highlighted the spatial heterogeneity of gene 
expression patterns as well as their clinical 
significance in the tumor immune microenvironment 
and provided novel insight for the further prognostic 
and therapeutic strategies for HCC. 

Materials and Methods 
Specimens and clinical data 

Totally, two fresh continuous tissues (from 
tumor tissue, tumor boundary region to para-tumor 
tissue) of one HCC case were acquired from surgical 
resections without preoperative treatment at Eastern 
Hepatobiliary Surgery Hospital (EHBH, Shanghai, 
China). Another 89 HCC tissues were obtained from 
the Department of Pathology at Changhai Hospital 
(CH, Shanghai, China). Diagnoses of HCC were 
evaluated by two certificated pathologists. Collections 
of tissue specimens were approved by the Ethics 
Committee of EHBH and CH, respectively. Written 
informed consent was provided by individuals 
donating HCC tissues. Fresh tissues for ST sequencing 
were promptly filled with optimal cutting 
temperature (OCT) compound and then snap frozen 
in isopentane and liquid nitrogen. The samples used 
for Western blotting were freshly frozen in -80 °C 
until use. Tissues utilized for immunohistochemistry 
analysis were formalin fixed and paraffin embedded 
(FFPE). Clinical characteristics from CH cohort were 
listed in Table S1. 

Spatial transcriptomics sequencing and 
bioinformatic analysis 

Spatial transcriptomics sequencing 
The two fresh HCC tissues were surgically 

resected, washed with pre-cooled PBS solution and 
drained by gauzes. The tissues were then transferred 
to isopentane for soaking and freezing, and moved to 
a cryopreservation tube with tweezers for subsequent 
embedding with the OCT mixture. The procedures 
are as follows: (1) Hematoxylin-eosin staining (HE) 
was used for histological imaging; (2) Tissues were 
then fixed, stained and permeabilized to release 
mRNA, which can bind to the probes that contained a 
16 bp spot barcode and a 12 bp UMI sequence. The 
capturing probe with poly (dT) sequence acquired 
gene expression information by binding to mRNA 
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3'-poly(A) tail; (3) cDNA synthesis and sequencing 
libraries were prepared using the captured RNA as 
templates; (4) This sequencing was based on 10× 
Genomics Visium and the paired-end sequencing 
mode of the Illumina sequencing platform, which was 
previously described before [24]. 

Data processing and quality control 
After sequencing, the data were visualized and 

analyzed via Space Ranger (version1.1.0). The Space 
Ranger was used to ensemble the reference genome 
database and FastQC software was utilized for data 
quality control. Further sequencing and application of 
R software and other applications were used for data 
visualization. 

R software version 4.0.3 and “Seurat” software 
package version 3.1.1 were used for analysis. After 
excluding low-quality units, we used the 
“SCTransform” function to normalize data, find 
variable features and scale data. 

Dimensionality reduction analysis 
Next, principal component analysis (PCA) was 

performed on the first 2000 highly variable genes 
using the “RunPCA” function. Then, the number of 
PCs corresponding to ElbowPlot was selected and the 
“RunUMAP” function with a default perplexity value 
of 30 was executed to obtain the bidimensional 
coordinates for single-spot. At the same time, we used 
the “FindClusters” function to cluster the 
unsupervised units at 0.6 resolution on the same PC as 
for the “RunUMAP” function. Therefore, the datasets 
were visualized through UMAP plots. The closer the 
spot distance was, the closer the expression trend of 
spot was. 

Differentially expressed gene analysis 
The “FinAllMarkers” function is used to identify 

the differentially expressed genes (DEGs) in different 
clusters. Bonferroni correction method was used to 
adjust p value, and DEG with p value larger than 0.05 
after correction was eliminated. The nonparametric 
Wilcoxon rank sum test in the “Seurat” software 
package was used to analyze the differential 
expression between subsets. 

Cell cycle and differentiation analysis 
Cells in each spot were divided into specific cell 

cycle and differentiation stage based on G2/M and S 
related gene expression (Table S2) and cell 
differentiation states (epithelium, p-EMT; Table S3). 
Briefly speaking, we used the “CellCycleScoring” and 
“AddModuleScore” function to calculate the cell cycle 
and differentiation score of each spot, and then 
matched it to the metadata. 

Trajectory, pseudo-time, and immune analysis 
The “Monocle2” software is used to identify 

differential genes that change between clusters or 
spots for developmental trajectory and pseudo-time 
analysis. The “Monocle2” package for trajectory and 
pseudo-time analysis contained 400 marker genes 
from the “differentialGeneTest” function that is 
designed to infer potential pedigree differentiation 
trajectories. A generalized additive model (GAM) is 
constructed to generate the average expression of 
each isotype. RNA counts of all spots in the cluster 
were selected as the input of “Monocle2” for 
downstream analysis. Additionally, we also used 
“AddModuleScore” function to evaluate the feature 
scores for immune infiltration enrichment based on 
the specific markers for T cells. B cells, NK cells and 
myeloid cells (Table S4). 

Results 
General profiles of spatial transcriptomics 
sequencing in hepatocellular carcinoma 

To systematically explore the relations between 
spatial expression patterns and tumor heterogeneity 
in hepatocellular carcinoma, we randomly sampled 
tissues from two regions of surgically resected and 
pathologically confirmed HCC (HCC-R1, R2) of the 
same case with clearly demarcated and continuous 
cores, peripheral regions, and boundary regions. The 
fresh-frozen samples were then subjected to spatial 
transcriptomics sequencing via the 10× Genomics 
Visium platform with histological staining, cDNA 
sequencing library preparation, and further 
sequencing procedures. Hematoxylin-eosin staining 
revealed histological locations and boundaries; thus, 
we annotated them as sectors of carcinoma, 
para-carcinoma and fiber cord based on spatial 
locations (Figure 1A). We first integrated two samples 
and obtained 7553 specific captured areas (spots) on 
the ST arrays. Each spot reaches a length of 55 μm and 
contains a mixture of several cells that are not 
necessarily of the same cell type, which serves as an 
individual unit for further computational analysis and 
visualization. Data also showed that the mean 
number of nCount per spot was 22,387, and the mean 
gene count was 4,321 in this study, which qualified 
the sequencing data. 

Next, we performed hierarchical clustering, and 
all the spots were further yielded into 15 clusters. We 
also investigated the spatial distributions of 15 
clusters and nCounts among two samples. Generally, 
certain clusters (HC- 01, 02, 04, 07, 08, 09, 10, 12, 14, 
and 15) were in the carcinoma sector, while clusters 
(HC-03, 05, 06, and 12) were in the para-carcinoma 
sector and cluster HC-11 was in the fiber cord sector. 



Theranostics 2022, Vol. 12, Issue 9 
 

 
https://www.thno.org 

4166 

It was also obvious that the number of nCounts in the 
carcinoma sector was larger than that in the 
para-carcinoma region and fiber cord sector, revealing 
a high abundance of gene expression in the tumor 
region (Figure 1A). All these clusters in the carcinoma 
sector indicated more nCounts than the clusters from 
other sectors (Figure 1B), which reflected a 
hyperproliferative state in the tumor region and was 
consistent with the results reported in previous 
studies [25]. Uniform Manifold Approximation and 
Projection (UMAP) dimension reduction analysis 
depicted clear spatial segregation of spots belonging 
to specific clusters from the carcinoma, fiber cord and 
para-carcinoma sectors as the distance between the 
points represents the similarity between spots and 
spots of the same can form clustering, while spots of 
different clusters or subsets have obvious separation 
(Figure 1C), which further confirmed that various 
spatial regions cannot only be defined by histological 
assessments but also can be specifically distinguished 
from one another by spatial gene expression patterns. 
We displayed the distribution of 15 clusters among 
two samples and the results demonstrated that almost 
all the clusters existed in two samples. However, the 
proportion of the same cluster among two distinct 
samples are quite heterogeneous due to the 
discrepancy of spatial locations (Figure 1D). 

To further characterize the identified clusters, we 
performed differentially expressed gene (DEG) 
analysis and profiled the featured DEGs in each 
cluster at the set of log-fold change (log FC) 
thresholds of 0.25 (Figure S1A). We examined the 
spatial expression of marker genes previously 
reported for common cell types in two samples to 
assess the sensitivity of the method of detecting the 
transcripts per spot, and the results confirmed that 
ALB and CYP2E1 [14] were highly expressed in 
para-carcinoma regions; GPC3 [26] and AKR1B10 [27] 
in carcinoma regions; ACTA2 and COL1A1 (markers 
typically associated with activated fibroblasts or 
cancer-associated fibroblasts) [28] in the fiber cord and 
stromal regions, and the above also confirmed the 
reliability of ST sequencing results. We also detected 
the spatial distribution of PTPRC (leukocyte marker) 
[29], CD2 (T cell and NK cell marker) [30], and LYZ 
(myeloid cell marker) [31] in two samples (Figure 1E); 
however, no evident spatial characteristics of these 
markers were found. 

In the multi-step process of tumorigenesis, the 
basic biological functions of tumor cells have altered, 
such as the acquisition of unlimited replication and 
colonization ability and the activation of metastasis 
and invasion capacity [32]. Consequently, we 
evaluated each spot or cluster for its likely cell cycle 
phases using signatures defined for G1, S, and G2/M 

phases based on functional annotations (Table S2). We 
found that most of clusters from the carcinoma sector 
had a higher proliferative capacity compared with 
those from the para-carcinoma and fiber cord sector 
(Figure S1B). We also appraised the differentiation 
origins of each cluster and undoubtedly found that 
the cluster HC-11 from fiber cord sector dominated 
the mesenchymal differentiation scores. Strikingly, 
clusters (HC-07, 08, and 09) originating from mesen-
chymal differentiation were situated in carcinoma 
sectors, revealing the epithelial-mesenchymal 
transition (EMT) process and potential malignancy of 
these carcinoma clusters (Figure S1B; Table S3). 

Taken together, our recent analysis of spatial 
transcriptomics on two sections of HCC samples 
preliminarily reveals the discrepancies of gene 
expression patterns within the different regions of 
HCC microenvironment, providing new insights and 
novel strategies for exploring the relations between 
spatial gene expression and tumor heterogeneity of 
HCC. 

The spatial expression pattern of CCL15 in the 
tumor core region facilitates the HCC 
immunosuppressive microenvironment 

Next, we intended to elaborate the spatial 
expression pattern and underlying mechanisms in 
distinct sectors. We set out to assess the differentiation 
and development trajectory of spots in the carcinoma 
sector using pseudo-time analysis and observed the 
developmental trajectory among clusters in 
HCC-R1/R2 (Figure 2A). Notably, clusters (HC- 01, 
10, 14, and 15) were in the end stage of the 
developmental trajectory in HCC-R1/R2. All these 
clusters were also spatially located in the internal area 
of the carcinoma sector with the highest nCount, as 
shown before; hence, we annotated them as the core 
region of the carcinoma sector and displayed them 
among two samples (Figure 2B). 

Subsequently, we speculated that inherent 
regularity of gene expression existed, especially in the 
core regions. We then analyzed and marked the top 20 
DEG genes in tumor core regions and found that 
IGHG1, IGHG3, IGHG4, IGKC, and IGLC2 (effector 
markers for humoral immunity) were notably 
downregulated in core regions, possibly indicating an 
immunosuppressive microenvironment (ISME). 
Among the upregulated genes presented, most of 
them (NUPR1, GSTA2, CCL15, UQCRH, GAPDH, 
and so on) have been documented previously to be 
elevated in HCC and play oncogenic roles in various 
aspects (Figure 2C) [33-36]. Further analysis revealed 
that those downregulated genes were mainly 
expressed at the early stages in the trajectory of 
clusters from HCC-R1/R2 and diminished as the 
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pseudo-time progressed, with the lowest expression 
at the end stage; however, nearly all the upregulated 
genes conversely increased gradually, and most of 
them were expressed in the end stages of the 
trajectory (Figure 2D). Interestingly, IGHG1, IGHG3, 
IGHG4, IGKC, and IGLC2 were deficient at the end 
states of time, thus facilitating an immunosuppressive 

microenvironment (Figure 2E), while the reason why 
they were formed was unclear. Among those genes 
that dominated at the end of development trajectory, 
we noted that CCL15, an oncogenic chemokine, 
accumulated along the pseudo-time trajectory and 
was identified to facilitate the formation of tumor 
ISME (Figure 2E). 

 

 
Figure 1. Overall landscapes of spatial transcriptomics in hepatocellular carcinoma. A. Spatial distribution of 15 clusters and nCounts as well as histological 
assessment and boundary among two regions of HCC (HCC-R1, R2). B. Violin plot demonstrating the number of UMI counts in 15 clusters. C. UMAP plot of all the spots from 
15 clusters (colored by clusters and spatial locations; orange represents carcinoma, green represents para-carcinoma and red represents fiber cord). D. Bar plot showing the 
distribution of each cluster among two samples and pie plot indicating the proportion of clusters in each sample. E. Hematoxylin-eosin staining and spatial feature plots of marker 
genes in each sample. 
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Figure 2. The spatial expression pattern of CCL15 in the tumor core region facilitates the HCC immunosuppressive microenvironment. A. Pseudo-time 
analysis and pie plots showing the developmental trajectory of spots from HCC-R1 & R2, colored by the clusters, states and pseudo-time. B. Spatial distributions of clusters in 
R1 & R2 as well as in the core region of HCC. C. Volcano plot of significantly differentially expressed genes in the core region of HCC. D. Heatmap displaying expression changes 
of differentially expressed genes in HCC-R1 & R2 along the pseudo-time trajectory. E. Scatter plots and fitting curves presenting the expression trend of selected marker genes 
in HCC-R1 & R2 along the pseudo-time trajectory. 
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Given the limits of tissue samples, we further 
performed a secondary data analysis on a previous 
study of ST sequencing on primary liver cancers, 
which also presented spatial transcriptome map of 
three major liver cancer subtypes [23]. In order to 
better match the spatial location of our tissue samples 
with higher spatial continuity that includes the 
carcinoma, fiber cord sector to para-carcinoma sector, 
we chose the leading-edge section of 4 HCC samples 
from their ST data and annotated them as HCC1, 
HCC2, HCC3, and HCC4 (Figure S2A). We 
reappraised histological boundaries, nCount profiles 
and performed clustering analysis on each tissue 
separately. We displayed spatial distributions of all 
the clusters among each tissue and HCC-1/2/3/4 can 
be clustered into 11, 9, 12, and 9 clusters, respectively. 
Notably, the number of nCounts in the carcinoma 
sector was remarkably larger than that in other sectors 
(Figure S2A). We also presented the spatial features 
and relatively quantified the levels of CCL15 among 4 
samples, which revealed that CCL15 was obviously 
upregulated in the carcinoma sector of HCC1 and 
HCC4, however, no distinct and similar difference in 
HCC2 and HCC3 was observed (Figure S2B-C). 
Hence, we further analyzed the developmental 
trajectory of specific clusters pertaining to carcinoma 
sectors among HCC1 and HCC4 as previous 
mentioned (Figure S3A-B). CCL15 was also increased 
as the pseudo-time progressed and was dominant in 
the end stages of the pseudo-time axis; Conversely, 
other key molecules such as IGHG1, IGHG3, IGHG4, 
IGKC, IGLC2 decreased gradually among all the 
carcinoma sectors in HCC1 and HCC4 (Figure S3C-D). 
Taken together, their ST data on 4 pieces of HCC 
samples with spatial continuity supported our core 
conclusions and CCL15 did contribute to facilitating 
the HCC immunosuppressive microenvironment. 

CCL15 recruits and polarizes M2-like 
macrophages in vitro and in vivo 

Since the chemokine CCL15 was crucial for HCC 
immune microenvironment, we wondered how did 
CCL15 contribute to the formation of an immuno-
suppressive microenvironment that accordingly 
affected clinical outcome of HCC patients. To better 
investigate the potential mechanism of CCL15, we 
found that CCL15 was the most highly expressed in 
liver cancer among 21 solid tumors from the TCGA 
data (Figure S4A), indicating that CCL15 may play 
important roles in the progression of the liver tumor 
microenvironment (TME). Previous studies have 
shown that CCL15 can recruit CCR1+ bone 
marrow-derived inhibitory cells and CCR1+ 
neutrophils to promote liver metastasis of colorectal 
cancers [37-39]. In another study, CCL15 can recruit 

suppressive CCR1+CD14+ monocytes into HCC 
tissues and promote immune escape by upregulating 
the expression of PD-L1, B7-H3, and IDO and 
activating STAT1/3, AKT, ERK, and other signaling 
pathways in an autocrine manner to promote HCC 
progression [35]. We also analyzed their comparison 
data and found that CCR1+CD14+ monocytes 
recruited by CCL15 showed significantly higher 
expression levels of the M2-like macrophage markers 
CD163L1 and CD200R [35], suggesting the potential of 
CCR1+ monocytes recruited by CCL15 to polarize 
toward the M2-like type. Importantly, we observed a 
positive correlation between CCL15 and the 
infiltration degree of M2-like macrophages in the 
TIMER database (Figure 3A). M2-like macrophages 
secrete various growth factors, cytokines, and 
collagenases and consequently promote tumori-
genesis and tumor development [40]. Taken all these 
standpoints into account, we hypothesized that 
CCL15 may be associated with M2-type macrophages 
and synergistically facilitate the immunosuppressive 
microenvironment of HCC. To verify the hypothesis, 
we next constructed macrophage models in vitro with 
THP-1 or U937 cell lines stimulated by phorbol ester 
(PMA), which increases the expression of macrophage 
markers (Figure S4B). After pre-experimentation to 
determine the optimal stimulating concentration of 
CCL15 (Figure S4C-D), we found that the markers of 
M2-like macrophages and their receptor CCR1 were 
upregulated at both the transcript and protein levels 
(Figure 3B-E). Flow cytometric analysis showed that 
the proportion of CD163+CD206+ positive cells 
increased compared to the control group after CCL15 
stimulation, revealing a trend of macrophage 
polarization toward the M2-like type (Figure 3F-G). 
Furthermore, transwell migration assays showed an 
enhancement in the migration ability of macrophages 
in the presence of CCL15, indicating that CCL15 
enhances the chemotaxis capacity of macrophages 
(Figure 3H-I). To verify the results in vivo, we also 
propagated massive Huh7 cells overexpressing 
CCL15 stably and applied subcutaneous 
tumorigenesis model with nude mice. We found that 
overexpressing CCL15 can increase the vitality and 
tumor growth of xenograft tumors (Figure 3J, Figure 
S4E-F). Intriguingly, the expression of CD163 in the 
overexpressing group was higher than that in the 
control group, revealing a higher infiltration of CD163 
macrophages in the xenograft tumors after 
overexpressing CCL15 (Figure 3K). Collectively, these 
observations demonstrated that CCL15 can recruit 
monocytes and polarize them toward M2-like 
macrophages in vitro and in vivo, but further 
mechanism study is still demanding. 
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Figure 3. CCL15 recruits and polarizes M2-like tumor-associated macrophages in vitro and in vivo. A. Correlation between expression of CCL15 and infiltration of 
M2-like macrophages from the TIMER database. B-C. Relative mRNA levels of macrophage markers (M1, M2) and CCR1 after treatment with CCL15 in THP-1 (B) or U937 (C) 
cells. D-E. Immunoblotting image (D) and relative quantitative analysis (E) of the M2-like macrophage marker CD163 after treatment with CCL15 in THP-1 and U937 cells. F-G. 
Flow cytometric image (F) and relative quantitative analysis (G) revealing the percentage of CD163+CD206+ M2-like macrophages after treatment with CCL15. H-I. 
Representative image (H) and quantitative result (I) of transwell migration assay of monocytes from THP-1 and U937 cells after treatment with CCL15 (scale bar, 50 µm). J. 
Representative image of subcutaneous xenografts resected from the oe-CCL15 group and control group. K. Immunohistochemical analyses of CD163 in the oe-CCL15 group 
and control group (scale bar, 100 µm). 
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Combined predictive role of CCL15 and 
CD163 in the worse prognosis of HCC patients 

Additionally, we further detected the expression 
of CCL15 and the M2-like macrophage marker CD163 
in HCC tissues of 89 patients from the CH cohort 
(Figure 4A). The results indicated a positive 
correlation (R=0.4367, p<0.0001) between CCL15 and 
CD163 expression levels (Figure 4B). After 
determining the optimal cutoff values using X-tile 
software (Version 3.6.1), both CCL15 and CD163 
correlated significantly with prognosis, and the higher 
the levels of CCL15 or CD163 were, the worse the OS 
and RFS of the patients (Figure 4C-F). Furthermore, 
the combined predictive value of CCL15 and CD163 
was higher, with an area under the curve (AUC) of 
0.68/0.79 for one/five years of OS, than that of CCL15 
alone (AUC area of 0.63/0.75) and CD163 alone (AUC 
area of 0.64/0.69) (Figure 4G-H), which indicated the 
superior value of them in predicting the prognosis. 
Therefore, we further evaluated the relationship 
between combined application of the CCL15 and 
CD163 expression and the prognosis of HCC patients. 
Based on the expression differences, all the patients 
can be classified into CCL15hiCD163hi group, 
CCL15hiCD163lo group, CCL15loCD163hi group, 
CCL15loCD163lo group, respectively. We next 
compared the relationship of survival prognosis 
among these four groups, and found the most 
significant survival difference between the 
CCL15loCD163lo group and the CCL15hiCD163hi 
group. CCL15hiCD163hi group was blessed with the 
worst prognosis, verifying the predictive superiority 
of joint application of CCL15 and CD163. The 
five-year survival rate (14.29%) and median survival 
time (35.83, 95% CI: 25.37–46.28) for OS and the 
five-year survival rate (2.85%) and median survival 
time (24.34, 95% CI: 16.13–32.55) for RFS of the 
CCL15hiCD163hi group were the worst among the four 
groups (Figure 4I-J). However, we did not observe 
obvious significance in the clinical characteristics 
between the CCL15hiCD163hi and CCL15loCD163lo 
groups due to the limits of sample capacity (Table S5). 

Taking the above results into account, our results 
suggest that CCL15 may promote the formation of 
immunosuppressive microenvironment and affect the 
prognosis of HCC patients by recruiting and 
polarizing M2-like macrophages. Furthermore, the 
high expression of CCL15 and M2-type macrophage 
marker CD163 predicts poor survival prognosis, and 
the combined application of CCL15 and CD163 
expression has better prognostic value. These results 
further enrich the function and role of CCL15 in the 
immune microenvironment of HCC, but the 
mechanisms driving tumor progression by CCL15 

and M2-likes macrophages still need further 
discussion. 

CCL19 and CCL21 share similar expression 
patterns and are remarkable in the immune 
infiltration enrichment (IIE) 

Given that cellular components of tumor 
microenvironment are fairly complex, with distinct 
populations of immune cells playing vital roles in the 
progression of HCC as well as immunotherapy, recent 
studies have tried to elaborate the characteristics and 
functions of T cells, tumor-associated macrophages 
(TAMs), and dendritic cells (DCs) in HCC [11, 12], but 
the global landscapes of immune cells are still poorly 
understood. In our studies, we first scored the 
abundance of immune cells such as T cells, B cells, 
natural killer cells, and myeloid cells annotated by cell 
marker signatures (Table S4) among 15 clusters 
(Figure 5A) and characterized the spatial expression 
patterns of immune cells among two samples (Figure 
5B). T cells and B cells seemed to be remarkably 
infiltrating in specific areas or clusters among the 
tissues; NK cells presented a low abundance in HCC 
and spatially localized in a random regularity; 
Myeloid cells were the most abundant immune cells 
but without apparent discrepancy in spatial 
distributions due to the limits of sequencing length, 
and consequently we cannot distinguish specific 
myeloid subsets such as monocytes, macrophages and 
other cell types (Figure 5B). After hierarchically 
clustering the abundance of immune cells, clusters 
(HC-09, and 11) were notably enriched with immune 
cells compared with other clusters and were well 
integrated together, which indicated the most 
enrichment of immune cells such as T cells, B cells and 
myeloid cells (Figure 5C); thus, we defined the 
aggregation of these clusters as immune infiltration 
enrichment (IIE). 

We investigated the significantly upregulated 
genes in the IIE and observed that IGHG1, IGHG3, 
IGHG4, IGLC2, IGKC, IGHA1, IGHM and other 
molecules were dramatically elevated (Figure 5D), 
which in turn confirmed the aggregation of B cells in 
these clusters (Figure 5A-C). However, we still 
wondered what triggered the accumulation of 
immune cells in the IIE. We noticed that CCL19 and 
CCL21 were also obviously prominent among the 
upregulated genes. Both CCL19 and CCL21 are 
derived from a population of identical cells, such as 
various stromal cells within primary and secondary 
lymphoid organs, T lymphocytes, and lymphatic 
endothelial cells, in peripheral tissues [41]. CCL19 and 
CCL21 are mainly involved in the homing, migration 
process and maturation of dendritic cells, as well as in 
the activation, recruitment and recirculation of T 
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lymphocytes and B cells in the adaptive immune 
system [42, 43]. Moreover, several studies have 
indicated that CCR7-CCL19/CCL21 has an antitumor 
function by recruiting T lymphocytes and dendritic 
cells in lung cancer and other malignant tumors [44, 
45], and few have been reported in HCC yet. We 
therefore hypothesized that upregulated CCL19 and 
CCL21 may be the leading cause of the enrichment of 
immune cells in the IIE. We further detected the 
expression levels and spatial distribution of CCL19 
and CCL21 among 15 clusters and two pieces of 
samples (Figure 5E-F). In accordance with previous 
results, CCL19 and CCL21 shared similar spatial 
expression patterns, and both were mainly in the fiber 
cord sector (Figure 5F). Although the expression of 
CCL21 was much higher than that of CCL19, CCL19 
was positively correlated with CCL21 among 15 
clusters in two samples (Figure 5G). 

To comprehensively demonstrate the functions 
of CCL19 and CCL21 among immune micro-
environment, we further investigated the expression 
levels and spatial distributions of CCL19 and CCL21 
among the clusters from the leading edging section of 
4 pieces of HCC samples from our secondary data 
analysis (Figure 6A-B) on previous ST data [23]. We 
also detected the infiltration degrees and spatial 
distributions of immune cells and observed that T 
cells and B cells were mainly enriched in the fiber cord 
sector (Figure 6C-D), which is in accordance with the 
spatial expression patterns of CCL19 and CCL21. After 
hierarchically clustering the abundance of immune 
cells, we further defined the IIE among 4 samples 
(Figure 6E). Consistent with our ST data, CCL19 and 
CCL21 were dominant in the up-regulated genes 
among the IIE (Figure 6F). Furthermore, the level of 
CCL19 was positively correlated with CCL21 among 
the clusters from 4 samples respectively (Figure 6G). 
Conclusively, CCL19 and CCL21 may also function in 
synergistic effects on biological processes among the 
IIE region in the spatial architecture of HCC due to 
their similarity in spatial expression patterns and 
interactive approaches, which was reliably confirmed 
by previous ST data as well. 

CCL19 and CCL21 inhibit the growth of HCC 
by enriching the abundance of T cells and B 
cells 

Considering their similarities in spatial 
expression patterns in our ST data, we have strikingly 
verified their positive correlation from our second 
data analysis (Figure 6G), which was also strongly 
confirmed with a coefficient of 0.99 from the TCGA 
database (Figure 7A), reflecting a potential synergistic 
effect between CCL19 and CCL21. Moreover, we 
analyzed the predictive roles in prognosis with 

combined CCL19 and CCL21 in HCC and observed 
that high expression of CCL19 and CCL21 predicts a 
good prognosis in liver cancer from the TCGA 
database (Figure S5A), suggesting that combined 
CCL19 and CCL21 may be used as a new strategy for 
HCC immunotherapy. To evaluate the potential 
therapeutic effects and possible mechanisms, we next 
constructed vectors of adeno-associated viruses 
(AAV-8) overexpressing Ccl19, Ccl21a and combined 
Ccl19/Ccl21a, which target hepatic cells specifically, 
and evaluated therapeutic effects in the subcutaneous 
xenograft models respectively. Results showed that 
overexpressing combined Ccl19/Ccl21a can 
remarkably retard tumor growth and decrease tumor 
vitality of hepa1-6 cells, while overexpressing Ccl19 or 
Ccl21a alone showed a slightly significant difference 
of tumor growth compared to the control group 
(Figure S5B-D), indicating that overexpressing 
combined Ccl19 and Ccl21a elicited a synergistic effect 
in inhibiting the tumor growth. Hence, we next 
focused on the combined therapeutic effects of 
Ccl19/Ccl21a with further research. Besides 
subcutaneous tumor models, we also built DEN/ 
CCl4-induced liver cancer models, and the timeline 
and procedures are shown (Figure S5E). Specifically, 
we chose C57/BL6 mice rather than SCID or nude 
mice for the experiments due to the deficiency in 
normal immune functions of the latter types. 

In the subcutaneous xenograft model, hepa1-6 
cells were first injected into the bilateral armpits of 24 
mice, and the growth of emerging tumors was 
dynamically monitored every four days. Ccl19/ 
Ccl21a-overexpressing AAV (oe-AAV) and control 
AAV were then intratumorally injected when the 
largest diameter of the xenograft reached 5 mm. The 
results showed that the growth of tumors from the 
oe-AAV group was slowed and the tumor volume 
was gradually reduced, whereas the tumor growth 
and tumor volume of the control AAV group 
continued to increase (Figure 7B). The weight and 
volume of tumors in the oe-AAV group were smaller 
than those in the control group (Figure 7B-D), 
indicating that CCL19 and CCL21 have a therapeutic 
effect in inhibiting the growth of HCC. Previous 
studies showed that CCL21 can affect tumor 
progression by recruiting immune cells such as T 
lymphocytes [46, 47], and have reported that 
tumor-infiltrating B cells may inhibit liver cancer 
progression and improve prognosis by interacting 
with CD4+ T cells in close proximity and subsequently 
activating CD8+ T cells, but the origins of tumor- 
infiltrating T cells and B cells are still unclear. 
Therefore, we hypothesized that CCL19 and CCL21 
influenced the infiltration degree of T cells and B cells 
via recruitment. 
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Figure 4. Combined predictive roles of highly-expressed CCL15 and CD163 predict the worst prognosis of HCC patients. A. Representative immunochemical 
staining of CCL15 and the M2-like macrophage marker CD163 in 89 patients (scale bar, 50 µm). B. Correlation between the relative expression of CCL15 and CD163 using the 
H-score method. C-D. Kaplan-Meier survival curves showing correlation between CCL15 alone and OS (C) and RFS (D). E-F. Kaplan-Meier survival curves showing correlation 
between CD163 alone and OS (E) and RFS (F). G-H. ROC analyses showing combined predictive value of CCL15 and CD163 for OS at 1 year (G) and 5 years (H). I-J. Kaplan–
Meier survival curves showing the worst OS (I) and the worst RFS (J) in the CCL15highCD163high group. 
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Figure 5. CCL19 and CCL21 sharing similar expression patterns and remarkable in immune infiltration enrichment (IIE) contribute to the abundance of 
immune cells in HCC. A. Violin plots showing the feature scores of immune cells such as T cells, B cells, NK cells and myeloid cells among 15 clusters. B. Spatial distribution 
of T cells, B cells, NK cells and myeloid cells in two samples. C. Heatmap indicating the overall infiltration of immune cells in each cluster. D. Volcano plot of significantly 
upregulated genes in the IIE. E. Violin plots showing the expression levels of CCL19 and CCL21 among 15 clusters. F. Spatial features of CCL19 and CCL21 in two samples. G. 
Correlation between the relative expression of CCL19 and CCL21 among 15 clusters. 

 
We first evaluated relations between the levels of 

CCL19 and CCL21 and infiltration of immune cells in 
the TIMER database and found that CCL19/CCL21 
correlated positively with CD4+ T cells, CD8+ T cells 
and B lymphocytes (Figure S5F), particularly with 
naïve T cells, central memory T cells, effector T cells 
and Th-1-like cells (Figure S5G, other data not 
shown). We further validated the correlation of Ccl19 
with Cd3e, Cd4, Cd8a, Cd19, Cd20, and Ifng (another 
marker of T cell activation) in subcutaneous 
xenografts, and the results showed that Ccl19 

correlated positively with Cd3e, Cd19, Cd20, and Ifng 
(Figure S5H). Furthermore, the T cell marker CD3 and 
the B cell marker CD20 were upregulated at the 
protein level in the oe-AAV group compared to the 
control group (Figure 7E-F). Flow cytometric analyses 
of tumor xenografts revealed a higher proportion of 
CD3+ cells and CD20+ cells in the oe-AAV group than 
in the control group (Figure 7G-H), and tissue 
immunofluorescence results confirmed significantly 
higher infiltration of CD3+ T cells and CD20+ B cells in 
the oe-AAV group (Figure 7I). 
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Figure 6. Highly-correlated CCL19 and CCL21 are indeed dominant in the IIE from secondary data analysis of previous ST sequencing on HCC. A. Violin 
plots showing the expression levels of CCL19 and CCL21 among all the clusters from four various samples. B. Spatial distribution of CCL19 and CCL21 among four samples. C. 
Violin plots showing the feature scores of immune cells such as T cells, B cells, NK cells and myeloid cells among all the clusters from four various samples. D. Spatial distribution 
of T cells, B cells, NK cells and myeloid cells among four samples. E. Heatmap indicating the overall infiltration of immune cells in each cluster and the IIE in each sample (the 
clusters marked red). F. Volcano plot of significantly upregulated genes in the IIE among four samples. G. Correlation between the relative expression of CCL19 and CCL21 in 
all the clusters among each sample. 
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Figure 7. CCL19 and CCL21 inhibit the growth of HCC by enriching the abundance of T cells and B cells. A. Correlation between expression of CCL19 and 
CCL21 in HCC from TCGA database (R=0.99. p-value=0). B. Tumor volume changes of subcutaneous xenografts after hepa1-6 cell clones were implanted, n=24. C. 
Representative image of subcutaneous xenografts resected from the oe-AAV group and control group (n=12). D. Tumor weight of subcutaneous xenografts from the two 
groups. E-F. Immunoblotting image (E) and relative expression (F) showing CD3 and CD20 in subcutaneous xenografts of the two groups (n=6). G-H. Flow cytometric image 
(G) and relative quantitative analysis (H) indicating CD3+ and CD20+ cells in the two groups. I. Immunofluorescence image showing the infiltration of CD3+ T cells and CD20+ 
B cells in the two groups (scale bars 20 µm; 10 µm). J. Resected liver image showing tumor growth of DEN/CCl4-induced HCC after tail vein injection of AAV (n=7). K. 
Comparison of total tumor number between the oe-AAV group and the control AAV group from DEN-CCl4-induced HCC models. L. Comparison of the largest tumor 
diameters between the two groups. M. Comparison of the number of tumor diameters (>/≤3 mm) between the two groups.  
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In another model, mice were tail vein injected 
with oe-AAV and control AAV after DEN/ 
CCl4-induced liver tumors arose, and the mice were 
sacrificed after three months (Figure 7J). The results 
indicate no significant difference in the overall tumor 
number (Figure 7K), while the maximum tumor 
volume and the number of tumors larger than 3 mm 
were conspicuously reduced in the oe-AAV group 
compared with the control AAV group (Figure 
7L-7M). Taken together, these observations indicate 
that CCL19 and CCL21 inhibit the growth of HCC by 
enhancing the infiltration of tumor-infiltrating T cells 
and B cells. Thus, overexpression of Ccl19/Ccl21a 
AAV may be used as a novel strategy for 
immunotherapy of HCC, but further analysis is 
essential. 

Discussion 
HCC is a highly heterogeneous and malignant 

tumor, and the relationship between HCC 
heterogeneity, microenvironment and spatial location 
has been widely discussed [23, 48, 49]. Most of the 
previous studies have focused on the overall gene 
expression of mixed cells in carcinoma and 
para-carcinoma areas, but the accuracy of gene 
expression is insufficient enough for detailed and 
in-depth studies [22, 50-52]. As sequencing techniques 
advances, single cell transcriptomics can analyze the 
function of cell subsets at the level of single-cell 
resolution [14, 53], but spatial specificity of gene 
expression cannot be determined due to the absence 
of spatial information of intricate tissue structures, 
while spatial transcriptomics sequencing can quantify 
and localize gene expression, decipher the innate 
correlations of spatially correlated genes and 
accordingly tackle with this problem properly [54]. 

In our study, we conducted ST sequencing on 
two pieces of HCC specimens from one patient. Each 
piece of tissues comprised distinct but continuous 
regions from carcinoma tissue and the tumor 
boundary region to para-carcinoma tissue. We first 
described overall landscapes of spatial gene 
expression patterns among two samples and 
intratumor heterogeneity. Next, we defined the tumor 
core region and the IIE via bioinformatics analysis, 
which was also confirmed by our secondary data 
analysis on previous study focusing on tumor 
heterogeneity of primary liver cancers [23]. Finally, 
we further validated the analysis results through the 
molecular, cellular, animal experiment and clinical 
tissue samples, the basic conclusions are as follows: 
(1) All spots were categorized into 15 subgroups by 
hierarchical clustering, differentially expressed genes 
and dimension reduction analysis, and their 
relationship with spatial location was determined; (2) 

Malignant subsets with intratumor heterogeneity 
phenotypes were identified by nCount, cell cycle 
phases, and epithelial-mesenchymal feature analysis; 
(3) Specific immune-related spatial regions, such as 
the tumor core region and the IIE, were defined by the 
pseudo-temporal analysis of tumor subsets and 
spatial expression patterns of immune cells; (4) CCL15 
was significantly upregulated in the tumor core 
region, and promoted the formation of 
immunosuppressive microenvironment by recruiting 
and polarizing M2-like macrophages in vitro and in 
vivo; (5) High expression of CCL15 and CD163 
respectively predicts poor prognosis of HCC patients, 
and the combined application has better predictive 
value; (6) Highly-correlated CCL19 and CCL21 were 
synergistically upregulated in the IIE and inhibited 
the growth of HCC by increasing the infiltration 
degree of T cells and B cells. 

Concretely speaking, we profiled the overall 
landscapes of hepatocellular carcinoma with ST 
sequencing and all the 7553 spots were classified into 
15 clusters. We then determined the features of 15 
clusters belonging to distinct sectors by virtue of the 
histological boundaries, marker genes and differential 
gene expression, cell cycle phases and differentiation 
origins. Intratumor heterogeneity, especially immune- 
ITH, has been documented to impact the clinical 
outcomes of HCC, which is also characterized by an 
increased immunosuppressive or exhaustive TME; 
However, spatial distribution characteristics and 
expression of other cell markers in the tissue structure 
of HCC still need further consideration, and the 
origins and contributing factors for ITH are still 
largely unknown [55]. Accordingly, we next sought to 
explore relations between ITH and spatial expression 
patterns using our ST data and found that those 
clusters located in the core area of the carcinoma 
sector are also in the end stages of the pseudo-time 
trajectory. Consequently, we defined these clusters as 
tumor core region where most of the elevated DEGs 
were reported previously to play oncogenic roles in 
HCC and those significantly downregulated genes 
feature with humoral immunity enhancement, which 
jointly facilitate the formation of immunosuppressive 
microenvironment. Among the upregulated genes, 
we noted that CCL15 may be the culprit for this 
condition. The above results were also verified by 
leading-edge tissues of four HCC section samples 
from our secondary data analysis on a previous study 
[23]. Further studies revealed that CCL15 can recruit 
and polarize M2-like macrophages in vitro and in vivo. 
Clinical relevance analysis also indicated that high 
expression of CCL15 or the M2-like macrophage 
marker CD163 predict a poor prognosis of HCC and 
the combined predictive value of CCL15 and CD163 
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in the prognosis is superior to that using either 
marker alone. Currently, macrophage polarization 
involves a variety of molecular mechanisms, 
including TLR4/NF-κB, JAK/STATS, TGF-β/ 
SMADS, PPARγ, NOTCH and microRNA signaling 
pathways [56], however, the detailed mechanism 
driving M2-like macrophages by CCL15 will be our 
future work. 

Furthermore, we also evaluated the infiltration 
scores and spatial distributions of various immune 
cells, including T cells, B cells, NK cells and myeloid 
cells among 15 clusters. Clustering results showed 
that two clusters are rich in immune cells especially T 
cells and B cells, and are annotated as immune 
infiltration enrichment. Contrary to the conditions of 
tumor core region, upregulated DEGs in the IIE are 
characterized by immunoglobin families and two 
prominent chemokines, CCL19 and CCL21, and the 
results are verified by our second data analysis on a 
previous study [23]. 

Further studies elucidated their strong 
correlations and similarities in spatial expression 
pattern, biological process and clinical significance of 
HCC. In vivo experiments of AAV showed that high 
expression of CCL19 and CCL21 inhibits the growth 
of HCC by influencing the infiltration of CD3+ T cells 
and CD20+ B cells in the subcutaneous xenograft 
model, while there was a slight significance in the 
DEN/CCl4-induced tumor models when compared 
with tumor sizes in two groups. The reason may well 
be that CCL19 and CCL21 function better in the tumor 
progression rather than the tumorigenesis process of 
HCC, and DEN/CCl4-induced tumor models are not 
strongly consistent due to individual differences 
among mice and the sample sizes. Anyway, the above 
conclusions indicate good prognosis and may serve as 
a novel therapeutic target for HCC immunotherapy. 
Taken together, we determined the specific 
chemokines in either the tumor core region or IIE, 
which have remarkably different roles in clinical 
applications due to spatial heterogeneity in gene 
expression. Notably, the recruiting mechanism of 
these chemokines to immune cells still needs further 
exploration. 

In conclusion, our study comprehensively 
reveals intratumor heterogeneity, especially immune- 
ITH, in HCC based on spatial transcriptomics 
technology. We further reveal the spatial expression 
patterns in specific regions of some key molecules 
such as CCL15, CCL19, and CCL21, which affect the 
infiltration and recruitment of various immune cells 
and collectively promote intratumor heterogeneity in 
the HCC microenvironment, thus influencing the 
prognosis of HCC patients. Our studies also highlight 
the clinical significance of the spatial heterogeneity 

and gene expression patterns, laying the foundation 
for developing new prognostic markers and 
therapeutic strategies for HCC. 
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