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Abstract 

Rationale: Gastric cancer (GC) is preceded by a stepwise progression of precancerous gastric lesions. 
Distinguishing individuals with precancerous gastric lesions that have progression potential to GC is an 
important need. Perturbated lipid metabolism, particularly the dysregulation of de novo lipogenesis, is involved 
in gastric carcinogenesis. We conducted the first prospective lipidomics study exploring lipidomic signatures 
for the risk of gastric lesion progression and early GC. 
Methods: Our two-stage study of targeted lipidomics enrolled 400 subjects from the National Upper 
Gastrointestinal Cancer Early Detection Program in China, including 200 subjects of GC and different gastric 
lesions in the discovery and validation stages. Of validation stage, 152 cases with gastric lesions were 
prospectively followed for the progression of gastric lesions for a median follow-up of 580 days (interquartile 
range 390-806 days). We examined the lipidomic signatures associated with the risk of advanced gastric lesions 
and their progression to GC. Our published tissue proteomic data were referred to further investigate 
highlighted lipids with their biologically related protein expression in gastric mucosa. 
Results: We identified 11 plasma lipids significantly inversely associated with the risk of gastric lesion 
progression and GC occurrence. These lipids were integrated as latent profiles to identify 5 clusters of lipid 
expression that had distinct risk of gastric lesion progression. The latent profiles significantly improved the 
ability to predict the progression potential of gastric lesions (AUC: 0.82 vs 0.68, Delong’s P = 4.6×10-4) and risk 
of early GC (AUC: 0.81 vs 0.55, P = 6.3×10-5). Significant associations were found between highlighted lipids, 
their biologically correlated proteins and the risk of GC, supporting the role of the pathways involving 
monocarboxylic acid metabolism and lipid transport and catabolic process in GC. 
Conclusions: Our study revealed the lipidomic signatures associated with the risk of gastric lesion 
progression and GC occurrence, exhibiting translational implications for GC prevention. 
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Introduction 
Gastric cancer (GC) is one major public health 

threat with high morbidity and mortality worldwide 
[1]. GC of the intestinal type predominates in 
high-risk geographic areas [2], and its occurrence 

experiences multistep cascade progression of gastric 
lesions, which evolve from superficial gastritis (SG), 
chronic atrophic gastritis (CAG), intestinal metaplasia 
(IM), and low-grade intraepithelial neoplasia (LGIN) 
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to high-grade intraepithelial neoplasia (HGIN) and 
invasive GC [3,4]. Studies of TCGA and other data 
have examined the molecular subtypes of GC, aiming 
to provide a roadmap for patient stratification and 
targeted therapies [5,6]. However, while most GCs are 
diagnosed at locally advanced or advanced stages 
with unfavorable prognosis[7], efforts are warranted 
to identify populations at particularly high-risk for 
progression of gastric lesions and development of GC, 
essential for improving the primary prevention and 
early detection of GC. Efficient biomarkers are 
therefore highly needed. 

Lipids play essential roles in cellular functions 
related to the carcinogenesis process [8]. Perturbated 
lipid metabolism, including increased lipid uptake, 
endogenous de novo fatty acid synthesis, fatty acid 
oxidation, and cholesterol accumulation, has been 
reported to promote tumor growth and progression 
[9–11]. In addition, lipid content of phospholipids 
could compromise membrane fluidity and signal 
transduction which may in turn affect GC 
tumorigenesis and progression [12,13]. In our recent 
study based on untargeted metabolomics covering 
carbohydrates, amino acids, nucleotides, polar lipids, 
and other metabolites; six lipids, including α-linolenic 
acid, linoleic acid, palmitic acid, arachidonic acid, sn-1 
lysophosphatidylcholine (LysoPC)18:3, and sn-2 
LysoPC20:3 stood out to have the most robust 
associations with the risk of early GC, with the first 
three also significantly associated with the risk of 
gastric lesion progression in a prospective analysis 
[14]. These highlight the potential importance of the 
overall lipidomic profile underlying GC carcino-
genesis [15]. However, previous metabolomics studies 
of GC were restricted to water-soluble compounds 
and volatile metabolites [16], which lacked coverage 
and in-depth investigation for a wide range of lipids 
with potentially pivotal functions, thus leaving a 
knowledge gap on the full spectrum of lipidomic 
signatures associated with the development of GC. 

Based on a total of 400 subjects from Linqu 
county, a well-recognized high-risk area in eastern 
China [4,17], we conducted the first comprehensive 
lipidomics study for GC and delineated a plasma 
lipidomics profile for a sequence of gastric lesions and 
GC in two stages. We took advantage of our prospec-
tively followed participants and longitudinally 
investigated the lipidomic signatures underlying the 
progression of gastric lesions and development of GC. 

Methods 
Study participants 

Our study involved a total of 400 subjects in two 
stages from Linqu County, Shandong Province of 

China, an established high-risk area for GC, where 
most GCs are of the intestinal type [4,17]. All subjects 
were enrolled from those attending the National 
Upper Gastrointestinal Cancer Early Detection 
(UGCED) Program for rural areas, in which residents 
aged 40 to 69 years received upper gastroendoscopy 
examinations free of charge. Individuals with 
cardiovascular, liver and spleen disorder and other 
major chronic diseases are ineligible for 
gastroendoscopy and were therefore excluded from 
the program. Gastroendoscopy was performed by 
two experienced gastroenterologists using video 
endoscopes (Olympus). For each individual, biopsies 
were taken at five standardized sites and other sites 
with suspicious lesion detected by endoscopy, if any 
[18]. Formalin-fixed, paraffin-embedded tissue 
samples for biopsy were reviewed blindly by two 
pathologists. Each subject was given a global 
diagnosis of normal, SG, CAG, IM, LGIN, HGIN, or 
invasive GC, defined as the most severe gastric 
histology among all biopsies, following the criteria of 
the Updated Sydney System [18] and the Chinese 
Association of Gastric Cancer [19]. Subjects were 
surveyed using standard questionnaires and had a 
5ml blood sample collected following standardized 
collection process. H.pylori infection status was 
determined by enzyme-linked immunosorbent assay 
for plasma IgG [20]. 

The study consisted of two independent stages 
involving a total of 400 subjects. The discovery set 
included a total of 200 subjects with gastric lesions of 
different stages (n = 169) and GC (n = 31, including 22 
HGINs and 9 invasive GCs) diagnosed in 2018. The 
validation set further independently enrolled 200 
subjects, including 48 cases of GC and 152 cases with 
different gastric lesions diagnosed in 2017. We did not 
include any subjects with normal gastric mucosa as 
few of the adult residents had completely normal 
histology [17,19]. We prospectively followed the 
subjects of gastric lesions in the validation stage (n = 
152, “prospective cohort”) until May 31, 2021, for a 
median follow-up of 580 days (interquartile range 390 
to 806 days), with endoscopic examinations 
conducted at the endpoint for each individual. 
Among them, we had a multi-time point longitudinal 
sub-cohort of 76 participants who undertook further 
gastroendoscopy examinations in the middle of 
follow-up and thus had three or more measurement 
of gastric lesions during the follow-up. The 
progression of gastric lesions during the follow-up for 
the prospective cohort, or during a time window for 
the multi-time point longitudinal sub-cohort was 
assessed based on the global diagnosis of gastric 
lesions, defined as the most severe gastric histology 
among all biopsies (SG, CAG, IM, LGIN, HGIN or 
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invasive GC). Subjects were considered to have 
progression of gastric lesions, if the severity of gastric 
lesion at follow-up endpoint is higher than that at 

baseline. Details of the participants in each cohort are 
presented in Figure 1 and Table S1. 

 
 

 
Figure 1. General workflow of the study. Targeted lipidomics analysis involved a total of 200 subjects in two stages respectively. In the validation stage, 152 non-GC subjects 
were prospectively followed for the progression of gastric lesions (“prospective follow-up cohort”). For 11 validated lipids significantly associated with risk of gastric lesion 
progression and GC occurrence, latent profiles were extracted using VAEN, representing the refined molecular pattern of lipids. Latent profiles of lipids were used to define 
lipidomic-based clusters of the prospective cohort subjects and the time-varying trajectories of gastric lesion progression were delineated by the clusters. XGBoost models were 
constructed to predict the risk of gastric lesion progression and GC occurrence. CAG, chronic atrophic gastritis; FDR: false discovery rate; GC, gastric cancer; HGIN, high-grade 
intraepithelial neoplasia; IM, intestinal metaplasia; LGIN, low-grade intraepithelial neoplasia; ROC, receiver operating characteristic; SG, superficial gastritis; VAEN, variational auto-encoder 
followed by the elastic net regression model; VIP, variable importance in projection; XGBoost, extreme gradient boosting. 
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The study was approved by the Institutional 
Review Board of Peking University Cancer Hospital. 
Informed consent was waived as study subjects were 
selected within the framework of the National 
UGCED Program. 

Targeted lipidomics profiling 
Targeted lipidomics profiling was performed on 

plasma samples using ultra high-performance liquid 
chromatography-mass spectrometry (LC-MS) [21]. 
Methods on sample preparation and LC-MS assays 
are detailed in the Supplementary Methods. Quality 
control (QC) samples were prepared using mixed 
plasma samples, with 1 QC sample inserted between 
every 20 tested samples. A total of 10 and 11 QC 
samples were inserted during the lipidomics profiling 
for plasma samples in the discovery and validation 
stage, respectively. Ionization signals were monitored 
in QC samples based on the intensities of internal 
standards for individual lipid classes to ensure no 
significant drop in intensity (within 20%) and no drift 
in retention time (within 0.05 min) throughout the 
run. Lipids were identified based on structure-specific 
multiple reaction monitoring (MRMs), which 
comprise MRMs specific to both head groups distinct 
to individual lipid classes and fatty acyl compositions, 
as well as correct retention times by comparing to 
authentic lipid reference compounds from human 
lipid ID inventory constructed in-house. Lipid levels 
were expressed in moles per L (mol/L) of plasma for 
statistical analyses. 

Bioinformatics and statistical analysis 
We conducted bioinformatics and statistical 

analyses for the lipid signatures associated with the 
risk of GC compared with the well-recognized mild 
gastric lesion group (SG/CAG) or advanced gastric 
lesion group (IM/LGIN) as references, based on the 
discovery and validation set data, and the risk of 
gastric lesion progression based on the prospective 
cohort. 

Identification and validation of key individual lipids 
Data on lipid levels were log-transformed and 

normalized for analysis. Based on the discovery set 
data, Orthogonal Projections to Latent Structures 
Discriminant Analysis (OPLS-DA) was performed to 
calculate the variable importance projection (VIP) 
value between different comparison groups. Among 
lipids with VIP > 1 from OPLS-DA for the 
comparisons of GC with mild (SG/CAG) or advanced 
gastric lesion group (IM/LGIN), we used logistic 
regression models to calculate the odds ratios (ORs) 
and 95% confidence intervals (CIs) for their 
associations with GC respectively, adjusting for age, 
sex, and H. pylori infection. Lipids that had significant 

association (P-value < 0.05 and false discovery rate 
(FDR)-q value < 0.05) with GC, compared with mild 
or advanced gastric lesions, were examined during 
the validation stage, using logistic regression models 
adjusting for age, sex, and H. pylori infection. For the 
validated lipids (P < 0.05 in validation), meta-analysis 
was conducted for the associations with GC 
combining the discovery and validation sets. 
Validated lipids significantly associated with the risk 
of GC were further investigated for their associations 
with the progression of gastric lesions, based on the 
prospective cohort subjects. For this association 
analysis, the progression of gastric lesions for each 
subject was classified into three categories (regression, 
no-change, and progression), and ordinal logistic 
regression analyses were conducted, with P < 0.05 
considered statistically significant. A Pearson’s 
correlation coefficient matrix was derived to examine 
the pairwise correlation structure between the 
validated lipids, and pathway enrichment analysis 
was conducted on the validated lipids using 
MetaboAnalyst (https://www.metaboanalyst.ca/). 

Applying generative neural networks to refine the 
latent profiles of key lipids 

Focusing on the key lipids associated with the 
risk of GC and gastric lesion progression, we applied 
the variational autoencoder (VAE) framework, an 
unsupervised deep neural network, to decipher the 
non-linear nature of biological connections of lipid 
alterations with the risk of GC and progression of 
gastric lesions based on validation set subjects [22]. 
The VAE model followed by the Elastic Net (EN) 
method, namely the VAEN strategy, was employed to 
extract the latent profiles (i.e., a latent matrix) that 
contained denoised information of the original lipid 
data [23]. We generated 200 latent matrices from VAE 
models and fitted EN regression models (α = 0.5) on 
each matrix with 5-fold cross-validation. The 
predictive latent vector dimensions selected from each 
EN model were then evaluated by average R2 from a 
standard multivariate linear regression via 10-fold 
cross-validation. Latent matrix with the highest 
average R2, which indicated the best model efficiency, 
was kept for further analyses. Details are shown in the 
Supplementary Material. 

Visualizing the changing trajectories of gastric lesions 
by clustering latent profiles of lipids expression 

Taking advantage of the longitudinal follow-up 
of subjects with gastric lesions as one clear feature of 
the study design, we sought to further decipher 
whether individuals’ patterns of gastric lesion 
progression would differ by the clusters of latent 
profiles of key lipids. The Partitioning Around 
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Medoids (PAM) clustering method was used to derive 
the clusters for each individual of the prospective 
cohort (n = 152) [24]. The optimal number of clusters 
was determined by Silhouette’s method [25]. We then 
examined the associations between the clusters of 
latent profiles and risk of gastric lesion progression, 
utilizing data from the prospective cohort. For each 
cluster, a time-variate trajectory depicting partici-
pants’ average changes of lesion severity was plotted 
via the generalized additive model. The ORs (95% 
CIs) for the clusters associated with gastric lesion 
progression versus non-progression were calculated 
using the logistic regression model, adjusting for age, 
sex, H.pylori infection, and baseline gastric 
histopathology. 

Constructing machine learning risk prediction 
models for the risk of GC and gastric lesion 
progression 

Machine learning models were trained upon the 
discovery set and tested on the validation set to 
evaluate the efficacy of the validated lipids as 
potential biomarkers. A multi-class XGBoost model 
was used to evaluate the efficacy of latent profiles in 
discriminating four case groups of mild gastric 
lesions, advanced gastric lesions, HGIN and invasive 
GC. Binary XGBoost models were further constructed 
for the risk prediction of total GC, HGIN, and 
invasive GC based on the validation set, and the risk 
prediction of gastric lesion progression based on the 
prospective cohort. For each outcome of interest, we 
developed a base model only including baseline 
characteristics such as age, sex, H.pylori infection, and 
baseline gastric histopathology (for the prediction of 
gastric lesion progression), as well as an updated 
model additionally integrating aforementioned latent 
profiles of key lipids. We also sought to integrate the 
risk scores of several or all 11 lipids with the base 
model, with risk scores calculated as the linear 
combination of the individual lipid levels and their 
coefficient estimates of logistic regression. For all 
prediction models, the prediction error was estimated 
by 10-fold cross-validation [26]. Receiver operating 
characteristic (ROC) curves were plotted, with area 
under the curve (AUC) calculated. In addition, the 
Micro-average AUC was calculated to display the 
overall performance of the multi-class model [27]. 
Delong test was used to compare the performance of 
prediction models with and without integrating the 
lipidomic signatures. 

Integrative analysis of the lipidomic and 
proteomic profiling 

To provide clues for the biological mechanisms 
underlying the validated lipids associated with GC 

development, we referred to our recent published 
proteomics profiling results [28] and explored their 
potential correlations with the validated lipids in the 
current study. Combining with our proteomics data, 
we have 104 subjects available for both plasma 
lipidomics and tissue proteomics profiling data in the 
current study. The highlighted lipids in our study 
were then matched with their biologically related 
protein expression in gastric mucosa according to the 
annotation of Human Metabolite Database (HMDB). 
We assessed the overall correlation between plasma 
lipid levels and matched protein expression using the 
Wilks’ λ test in the canonical correlation analysis 
(CCA) [29], a typical method to represent the 
correlation between two separate datasets. Significant 
canonical covariates (CVs) were identified based on 
the Hotelling-Lawley Trace (HLT) test and Pearson 
correlation analysis. Standardized canonical 
coefficients were calculated for visualizing the 
associations of each individual protein with the 
selected CVs. Pathway enrichment analyses were 
conducted for proteins significantly associated with 
the risk of GC. 

Results 
Key individual lipids associated with the 
progression of precancerous gastric lesions to 
gastric cancer 

Characteristics of 400 study subjects are shown 
in Table S1. Principle component analysis showed 
that the QC samples were highly correlated, with the 
Spearman correlation coefficients (r) ranging from 
0.96 to 1 (Figure S1A-1D), indicating high stability 
and reproducibility. QC samples showed good 
consistency with tested samples in quantification of 
plasma lipid levels (Figure S1E-S1F). 

We identified 624 lipids in the discovery stage, 
including 199 triacylglycerols (TAGs), 88 phosphati-
dylcholines (PCs), 63 phosphatidylethanolamines 
(PEs), 27 phosphoinositol (PIs), 27 Sphingomyelins 
(SMs), 27 Phosphatidylglycerols (PGs), 27 Lysobis-
phosphatidic acids (LBPAs), 20 Diacylglycerol 
(DAGs), and 146 others (Figure 2A). Of them, 178 
lipids had distinct plasma levels in GC from mild (SG 
or CAG) or advanced gastric lesion (IM or LGIN) 
group (VIP > 1). Compared with subjects with mild or 
advanced gastric lesions as reference respectively, a 
total of 142 out of 178 lipids were further associated 
with the risk of GC in logistic regression analyses 
(FDR-q < 0.05) (Figure 2B). We then sought to validate 
the associations for these lipids using an independent 
validation set, where 15 lipids showed consistent 
associations with GC (P < 0.05). Further analysis 
based on the prospective cohort found that 11 lipids (3 
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FFAs and 8 phospholipids) were also inversely 
associated with the risk of gastric lesion progression 
(P < 0.05), including PC38:6(20:4), PC38:5(20:4), 
PC34:3, LysoPC18:3, LysoPC20:4, LPI18:0, LPI20:4, 
FFA20:4 (arachidonic acid), FFA18:3 (α-linolenic acid), 

FFA18:0 (stearic acid), and PA32:1 (Table 1). Most of 
these lipids showed positive pairwise correlations 
(Figure S2). The ORs (95% CIs) for these 11 lipids 
associated with GC in meta-analysis combining the 
discovery and validation sets are shown in Figure 3. 

 

 
Figure 2. Identification of the lipids through targeted lipidomics analyses in the discovery and validation stage. A. A total of 624 lipids identified in the discovery 
stage. Lipid classes are displayed by different colors. B. Average levels of the 142 lipids associated with the risk of GC (VIP > 1 and FDR-q < 0.05) in the discovery stage. VIP values 
were calculated by orthogonal projections to latent structures discriminant analysis. Logistic regression adjusting for sex, age, and Helicobacter pylori infection was used for the 
association analyses. Of 142 lipids, 11 lipids associated with the risk of gastric lesion progression and GC occurrence are yellow-colored. For both panels, average lipid levels are 
shown for subjects with mild (green bar), advanced gastric lesions (red bar) and GC (blue bar). The inner-circle in black color is a reference line for lipid level equal to 0 and height 
of the bar indicates the lipid levels with log-transformation and normalization. The direction of bars pointing towards the center represents a lower lipid level and the direction 
pointing away from the center represents an increased lipid level in a subject group. CAG, chronic atrophic gastritis; CE, cholesterol ester; Cer, ceramide; DAG, diacylglycerol; FFA, free fatty 
acid; FDR: False discovery rate; GC, gastric cancer; GluCer, glucosylceramide; GM3, monosialodihexosylganglioside; IM, intestinal metaplasia; LacCer, lactosylceramide; LBPA, lysobisphosphatidic 
acid; LGIN, low-grade intraepithelial neoplasia; LPA, lysophosphatidic acid; LPE, lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; LPS, lipopolysaccharides; LysoPC, 
lysophosphatidylcholine; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, glycerophospholipid; PI, phosphatidylinositol; PS, phosphatidylserine; SG, superficial 
gastritis; SM, sphingomyelin; Sph, sphingosine; S1P, sphingosine-1-phosphate; TAG, triacylglycerol; VIP, variable importance in projection. 

 

Table 1. Lipids Associated with the risk of GC and the progression of the gastric lesions 

 Discovery cohort  Validation cohort Prospective cohort  
GC vs SG/CAG GC vs IM/LGIN GC vs SG/CAG GC vs IM/LGIN Progression vs 

Non-progression 
Lipid OR P value VIP FDR-q OR P value VIP FDR-q OR P value OR P value OR P value 
PC38:6(20:4) 0.54 0.009 1.66 0.049 0.61 0.010 1.18 0.052 0.60 0.007 0.54 0.002 0.75 0.025 
PC38:5(20:4) 0.62 0.007 1.39 0.039 0.74 0.037 0.94 0.103 0.64 0.013 0.54 0.003 0.70 0.021 
PA32:1 0.51 0.003 1.59 0.024 0.50 0.005 1.49 0.036 0.78 0.108 0.71 0.047 0.73 0.022 
LPI18:0 0.41 5.5×10-4 2.18 0.008 0.58 0.010 1.08 0.051 0.81 0.137 0.67 0.039 0.86 0.015 
LPI20:4 0.13 1.2×10-6 3.56 1.9×10-4 0.13 4.1×10-5 2.71 0.003 0.72 0.047 0.67 0.024 0.87 0.014 
FFA20:4 0.57 0.017 1.32 0.076 0.50 0.006 1.20 0.038 0.71 0.038 0.65 0.021 0.73 0.022 
FFA18:3 0.37 6.7×10-4 2.14 0.009 0.50 0.006 1.39 0.040 0.56 0.004 0.63 0.015 0.69 0.025 
FFA18:0 0.52 0.037 1.32 0.113 0.58 0.004 1.37 0.032 0.64 0.003 0.62 0.014 0.88 0.013 
LysoPC18:3 0.23 3.7×10-5 3.06 0.001 0.31 8.3×10-4 2.05 0.012 0.81 0.139 0.61 0.018 0.79 0.049 
LysoPC20:4 0.22 7.1×10-6 2.98 0.003 0.17 7.2×10-5 2.62 4.5×10-4 0.88 0.258 0.67 0.022 0.73 0.028 
PC34:3 0.64 0.008 1.51 0.048 0.60 0.004 1.46 0.031 0.71 0.04 0.66 0.04 0.77 0.036 
Abbreviations: CAG, chronic atrophic gastritis; GC, gastric cancer including high-grade intraepithelial neoplasia and invasive gastric cancer; IM, intestinal metaplasia; LGIN, 
low-grade intraepithelial neoplasia; SG, superficial gastritis; OR, odds ratio; VIP, variable importance in projection. 
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Figure 3. The ORs (95% CIs) for the validated lipids associated with the risk of gastric lesion progression and GC occurrence. ORs (95% CIs) for GC risk were 
calculated by logistic regression adjusting for age, sex, and Helicobacter pylori infection, combining the discovery and validation stage subjects for meta-analysis. ORs (95% CIs) for 
the risk of gastric lesion progression were calculated by ordinal logistic regression adjusted for age, sex, Helicobacter pylori infection and gastric histopathology, based on the 
prospective cohort. CAG, chronic atrophic gastritis; CI, confidence interval. FFA, free fatty acid; GC, gastric cancer; IM, intestinal metaplasia; LGIN, low-grade intraepithelial neoplasia; LPI, 
lysophosphatidylinositol; LysoPC, lysophosphatidylcholine; OR, odds ratio; PA, phosphatidic acid; PC, phosphatidylcholine; SG, superficial gastritis. 

 
Of the highlighted lipids, FFA20:4 (arachidonic 

acid), FFA18:3 (α-Linolenic acid), and LysoPC18:3 
were identified as key metabolites for GC, and 
α-Linolenic acid was further associated with risk of 
gastric lesion progression in our published study on 
untargeted metabolomics [14], with similar effect 
magnitudes for associations in previous and current 
studies. Although the association with FFA18:2 
(linoleic acid), FFA16:0 (palmitic acid), and 
LysoPC20:3 was not statistically significant in the 
present study, the association went to the same 
direction with similar effect magnitude (Table S2). 

Pathway enrichment analysis revealed that the 
pathways of arachidonic acid metabolism (impact = 
0.36; P = 0.005), α-linolenic acid metabolism (impact = 
0.25; P = 6.41×10-4), linoleic acid metabolism (impact = 

0.25; P = 0.016), and glycerophospholipid metabolism 
(impact = 0.12; P = 0.005) were among the top 
enriched pathways associated with GC and gastric 
lesion progression (Table S3). 

Latent profiles of key individual lipids 
Latent profiles of the 11 validated lipids were 

extracted by VAEN based on the validation set, where 
the resultant latent matrix was selected with an 
average R2 = 0.90 (Figure S3). Applying PAM on the 
latent profiles, we defined 5 lipidomic-based clusters 
of the prospective cohort subjects. The clusters were 
visualized by principle component analysis (PCA) 
with different gastric histopathology and the 
progression of gastric lesions during follow-up 
(Figure 4A). Among subjects of the prospective 
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cohort, the time-varying trajectories of gastric lesion 
progression were plotted to depict the changing lesion 
severity for each cluster, revealing diverse 
progression patterns with various start points of 
lesion severity (Figure 4B). Analysis of the changing 
trajectories of gastric lesions found that the risk of 
gastric lesion progression varied by clusters (F = 
10.30, P = 2.3×10-8). Compared with cluster-1, the OR 
(95% CIs) for the risk of progression was 4.01 
(1.35-11.90) for cluster-2, 27.46 (7.09-106.30) for 
cluster-3, 11.59 (2.54-53.00) for cluster-4, and 4.87 
(1.01-23.04) for cluster-5. 

Integrative analysis of tissue proteomic and 
plasma lipidomic data 

Through annotation by HMDB, we identified 
179 proteins that were biologically related to the 11 
key lipids, 23 proteins among which were then 
matched in our published proteomics database (Table 
S4). The CCA showed statistically significant 
correlations between the matched protein expression 

and key lipid levels (Wilks' λ test P = 0.001) with 2 
significant CVs (CV1: Pearson’s r = 0.75, HLT P = 
0.001; CV2: Pearson’s r = 0.68, HLT P = 0.04). The 
standardized canonical coefficients of individual 
proteins with CV1 or CV2 are shown in Figure 4C. Of 
the proteins, 5 FFA-related proteins (PTGS1, ASAH1, 
SLC27A3, CES2, ACY1) and 7 phospholipids-related 
proteins (PEBP1, LYPLA2, PITPNB, PITPNA, 
PAFAH1B2, ATP8B1, BDH1), were significantly 
associated with the risk of GC compared with mild or 
advanced gastric lesions (Table S4). These significant 
proteins were enriched in the gene ontology 
pathways involving monocarboxylic acid metabolism 
(P = 4.02×10-4), lipid transport (P = 0.005) and catabolic 
process (P = 0.023) associated with GC (Figure S4). 

Prediction models for the risk of GC and 
gastric lesion integrating lipidomic signatures 

The trained XGBoost classifier was tested on the 
validation set. Compared with the model including 
only baseline characteristics, the model integrating 

 

 
Figure 4. Lipids latent profiles revealing clustered patterns of gastric lesion progression and the integrative analysis of the lipidomic and proteomic 
profiling. A. Clusters of the individuals generated through the unsupervised PAM clustering method. The clusters are visualized within the first and second components derived 
from PCA. Five clusters are displayed with different colors. Baseline gastric histopathology are shown for subjects with SG/CAG (triangles) and IM/LGIN (circles). The black and 
grey color indicates whether a subject had or did not have gastric lesion progression, respectively. B. Time-varying trajectories depicting the average change of gastric lesion 
severity for each cluster. The ORs (95% CIs) for gastric lesion progression of each cluster were calculated by the logistic regression, using cluster-1 as the reference. C. 
Standardized canonical coefficients for the significant CVs in CCA. The standardized canonical coefficients for each CV are displayed in each cell with gradient color from black 
to blue for lipids and from white to red for proteins. The lipids are linked to their biologically relative proteins by blue edges. CAG, chronic atrophic gastritis; CCA, canonical correlation 
analysis; CI, confidence interval; CV, canonical variate; FFA, free fatty acid; GC, gastric cancer; IM, intestinal metaplasia; LGIN, low-grade intraepithelial neoplasia; LPI, lysophosphatidylinositol; 
LysoPC, lysophosphatidylcholine; OR, odds ratio; PA, phosphatidic acid; PAM, partition around medoids; PC, phosphatidylcholine; PCA, principle component analysis; SG, superficial gastritis. 
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the lipid latent profiles in the validation set showed 
significant improvement in the prediction on the 
overall gastric histopathology (AUC (95% CI): 0.96 
(0.95-0.98) vs 0.67 (0.62-0.71), Delong’s P < 0.001, 
Figure 5A), and the prediction on total GC (0.97 
(0.94-1.00) vs 0.64 (0.55-0.73), P < 0.001, Figure 5B), 
either for invasive GC or early GC (Figure 5C-5D). 
Adding lipidomic signatures also yielded better 
prediction performance for the overall progression 
from any stage of gastric lesions (0.82 (0.76-0.89) vs 
0.68 (0.60-0.77), Delong’s P < 0.001, Figure 5E) and for 
the progression to IM or more advanced gastric lesion 
(0.94 (0.89-0.98) vs 0.76 (0.67-0.86), P < 0.001, Figure 
5F). A forward stepwise strategy using logistic 
regression was adopted to derive the best 
combination of key lipids levels for risk score 
calculation, where combining all the 11 lipids finally 
showed the best performance compared with 
combining several of them. The performance of the 
prediction model integrating the latent profiles 
exhibited advantageous performance than the model 
integrating the risk score (Figure 5B-5F). 

Discussion 
In our population-based targeted lipidomics 

study, we comprehensively revealed the lipidomic 
fingerprints associated with the progression of gastric 
lesions and risk of GC. Eleven key lipids were 

significantly associated with the risk of GC in both the 
discovery and validation stages, and were also 
inversely associated with the risk of gastric lesion 
progression in the prospective study, which was 
further corroborated by the analysis of the changing 
trajectories of gastric lesions during multi-time point 
endoscopic follow-up. These lipids were integrated as 
latent features to train XGBoost models, which 
significantly improved the ability to predict the 
progression potential of gastric lesions and risk of 
early GC. Integrative analyses were conducted 
utilizing our published proteomics data, which 
yielded significant associations between highlighted 
lipids, their biologically correlated proteins and the 
risk of GC, supporting the role of pathways involving 
monocarboxylic acid metabolism and lipid transport 
and catabolic process in GC. 

Previous metabolomics studies based on tissues, 
blood and urine samples have examined lipid 
metabolites in GC, as summarized in our systematic 
review [30] and other recent studies [14,31]. Despite 
limited coverage of lipids, often restricted by a modest 
sample size and lack of a validation stage, those 
studies provided evidence supporting possible lipid 
dysregulations, particularly the alterations of SMs, 
PCs, and PEs in GC, but consistent findings were 
sparse [30]. Few studies have focused on the broad 
lipidomic profile, which represents a comprehensive 

 

 
Figure 5. Prediction models for the risk of gastric lesion progression and GC occurrence integrating lipid profiles. A. Micro-average AUC displaying the overall 
performance of predicting gastric histopathology; B. AUC for predicting total GC (invasive GC + HGIN); C. AUC for predicting early GC (HGIN); D. AUC for predicting 
invasive GC; E. AUC for predicting overall gastric lesion progression; F. AUC for predicting individuals' progression to IM or more advanced lesions. For each outcome of 
interest, we developed a base model only including baseline characteristics, a model additionally integrating risk scores from individual lipid levels and a model additionally 
integrating lipid profiles. ROC curves were plotted by each model, and Delong’s tests were used to compare AUC of the ROC curves for the two models. Specifically, the 
micro-average AUC was calculated for evaluating the multi-class prediction model. AUC, area under the curve; CI, confidence interval; GC, gastric cancer; HGIN, high-grade intraepithelial 
neoplasia; IM, intestinal metaplasia; ROC, receiver operating characteristic. 
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collection of lipids within a biological system, 
associated with GC previously. Lee et al. compared the 
plasma lipid profile between 20 cases of GC and 20 
non-cancer controls, which revealed alterations of PCs 
(PC34:2, 36:3, and 36:4) and LPA18:2 in GC [32]. Hung 
et al. also conducted a small-scale study with 18 GC 
cases and reported distinct lipidomic profiles of GC 
from noncancerous tissues [13]. Two studies have 
focused specifically on phospholipids associated with 
GC. One study only included 36 samples (20 GCs and 
16 controls) [33]. The other study enrolled 199 subjects 
with several different gastric lesions but the scope was 
limited, with only 54 phospholipids tested [34]. 

In our study, the 11 highlighted key lipids 
included 8 phospholipids and 3 FFAs. Except three 
lipids (FFA18:0, LPI18:0, and PA32:1), FFA18:3 
(α-linolenic acid) and FFA20:4 (arachidonic acid) are 
polyunsaturated fatty acids (PUFAs), and other 
phospholipids contain PUFAs in chemical structure. 
FFA18:3 is an n-3 essential fatty acid mostly found in 
the chloroplast of green leafy vegetables, and FFA20:4 
is an n-6 essential fatty acid usually found in meat, 
eggs and dairy products [35]. These two PUFAs were 
covered in our recent untargeted metabolomics 
platform and significantly associated with GC risk 
[14]. Reduction of PUFAs in tumor microenvironment 
has been reported to aid the escape of tumor cells 
from ferroptosis, an iron-dependent and 
non-apoptotic form of cell death associated with 
oxidized lipids [36]. A recent study has shown that 
n-3 and n-6 PUFAs could selectively induced 
ferroptosis in cancer cells under ambient acidosis, and 
excess dietary intake of PUFAs might be a selective 
adjuvant antitumor modality [36]. Although FFA18:0 
does not belong to the group of PUFAs, it has been 
identified as a possible inhibitor of pyruvate 
dehydrogenase kinase, playing a pivotal role in 
metabolic reprogramming in cancers [37]. In addition 
to the lipid-level association, integrative analysis of 
the proteomic data further supported the enriched 
fatty acid metabolism in GC development. For 
example, PTGS1, a FFA20:4-related protein, was 
positively associated with risk of GC and involved in 
the monocarboxylic metabolic process, the 
up-regulation of which may be stimulated by H.pylori 
infection, contributing to gastric prostaglandin E2 
production, a pro-inflammatory eicosanoid in GC 
[38,39]. 

The newly unearthed phospholipids (3 PCs, 2 
LysoPCs, 2 LPIs, and 1 PA) substantiated their 
potential importance for the progression of gastric 
lesions to early GC. Phospholipids are composed of 
two hydrophobic fatty acyl chains and one 
hydrophilic head group, varying by the chain length 
and degree of saturation of fatty acyl moieties. Foods 

with high phospholipid content include eggs, organ 
and lean meats, fish, shellfish, cereal grains and 
oilseeds [40]. Phospholipids participate in lipid 
metabolism that provides biomass component for 
cancer cell proliferation and were shown to regulate 
the signaling molecules for uncontrolled cancer cell 
proliferation [41]. An increase in PUFA-containing 
phospholipids was shown to contribute to the 
induction of ferroptosis in human cancer cells [42], 
coherent with the inverse association of these 
phospholipids associated with GC in our study. 

PCs and LysoPCs are the major phospholipid 
subclasses with distinct levels between GC and 
non-neoplastic gastric lesions. PCs can be converted 
to LysoPCs via the cleaving action of phospholipase 
A2 or by the transfer of fatty acids to free cholesterol 
via lecithin-cholesterol acyltransferase [43]. The 
downregulated polyunsaturated PCs in GC that we 
observed might be related to the suppressed 
biosynthesis of polyunsaturated lipids in tumor 
microenvironment activated by de novo lipogenesis 
[44]. In addition, LysoPCs might be converted to 
lysophosphatidic acid that promotes cancer cell 
proliferation [45], leading to lowered LysoPC levels in 
cancer. Several key proteins biologically related to 
PCs and LysoPCs were significantly associated with 
GC risk, highlighting the potential importance of 
these phospholipids in gastric carcinogenesis. It is 
worth noting that a downregulated or absent PEBP1 
expression has been associated with GC onset and its 
ability to invade and metastasize [46]. 

LPIs have been well-known to activate signaling 
cascades relevant to cancer cell proliferation and 
tumourigenesis [47]. Although LPIs were found to be 
elevated in several types of cancers [47], findings on 
GC were sparse. The only one study that tested LPIs 
alterations reported prominently decreased level of 
the overall LPIs in GC [32], consistent with our 
findings. PA is the simplest phospholipid and can be 
found naturally in the vegetables, only in small 
quantities [48]. The observed decreased level of 
PA32:1 in GC might be attributed to the increased 
phosphohydrolase activity of lipins, enzymes of the 
de novo lipogenesis pathway [49]. Although our 
proteomics analyses did not cover the related 
proteins, recent data have demonstrated that lipin-1 
may amplify the inflammatory process, thereby 
promoting carcinogenesis and tumor progression [50]. 

We sought to integrate the highlighted lipids for 
the prediction of gastric lesion progression and GC 
risk. We did not resort to a risk score-based model by 
directly integrating the regression coefficients of 
validated lipids given the strong collinearity of 
validated lipids, which might lead to biased estimates 
of the risk score for subgroup identification and risk 
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prediction. Alternatively, we introduced the latent 
profile approach to extract the refined molecular 
pattern of lipids via generative neural networks, 
which has the advantage of capturing the complex 
non-linear relationship between multiple lipids and 
the research outcomes [51] and is appropriate for 
differentiating polytomous outcomes of interest with 
multi-classification [52]. 

Strengths of our study included a two-stage 
lipidomics study of different gastric lesions along the 
cascade of gastric carcinogenesis and GC, involving a 
total of 400 subjects with complete information on H. 
pylori infection and gastric histology for multivariate 
adjustment. We also had prospective follow-up of 
validation stage subjects, even with multi-time point 
endoscopic follow-up, allowing the longitudinal 
investigation of plasma lipids associated with the risk 
of gastric lesion progression to GC. This study has 
limitations. First, although we attempted to conduct a 
prospective study, only part of the subjects had 
multi-time point follow-up. The plasma lipidomic 
metabolites were measured only once at subject’s 
enrollment, which reduced the likelihood of reverse 
causation but has precluded us from analyzing the 
time-varying lipids level with the evolution of gastric 
lesions. Second, all participants were enrolled from an 
area with high GC mortality and all samples were 
handled in a standardized manner. Notwithstanding 
the minimized residual confounding from host 
genetic background of subjects and ensured internal 
validity, our results might not be necessarily 
extrapolated to other low-risk populations. Third, the 
extrapolation of our findings should be cautious also 
considering that most GCs in Linqu county are of 
intestinal type, but the distribution of GC subtypes 
has clear geographical differences. External validation 
studies are needed to evaluate the lipidomic profiles 
of GC and replicate the highlighted individual lipids 
associated with GC in the current study. Fourth, 
despite a thorough targeted lipidomics study and the 
efforts of integrative analyses with proteomics data, 
our study cannot answer the underlying mechanisms 
for the observed associations. Fifth, our study was 
underpowered for evaluating the possible interactions 
or mediation effects of other GC risk factors on the 
associations with lipids. Sixth, plasma lipid profiles 
may not be fully representative of those in the gastric 
tissue, so findings from the integrative analyses with 
tissue proteomic data in our study should be 
interpreted with caution. 

Conclusions 
In conclusion, our study revealed the lipidomic 

signatures may be associated with the risk of gastric 
lesion progression and GC occurrence, supporting the 

altered lipid metabolism in gastric carcinogenesis. 
Decreased plasma lipids show promise as 
noninvasive biomarkers for early detection of GC. The 
findings provide a solid reference for the primary 
intervention of GC and exhibit a translational value 
for precision medicine, aiming for early detection and 
management of GC. Future large-scale long-term 
prospective studies, particularly with repeated 
measurements of lipids level during the follow-up 
would be preferred for lipids validation before the 
translation of our findings into major public health 
strategies in large communities. 
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