
Theranostics 2022, Vol. 12, Issue 12 
 

 
https://www.thno.org 

5564 

Theranostics 
2022; 12(12): 5564-5573. doi: 10.7150/thno.74125 

Research Paper 

Identification of early invisible acute ischemic stroke in 
non-contrast computed tomography using two-stage 
deep-learning model 
Jun Lu1,2#, Yiran Zhou1#, Wenzhi Lv3, Hongquan Zhu1, Tian Tian1, Su Yan1, Yan Xie1, Di Wu1, Yuanhao Li1, 
Yufei Liu1, Luyue Gao1, Wei Fan2, Yan Nan2, Shun Zhang1, Xiaolong Peng1,4, Guiling Zhang1, Wenzhen 
Zhu1 

1. Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 
2. Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, China 
3. Department of Artificial Intelligence, Julei Technology, Wuhan, China 
4. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 

MA, USA 

#These authors contributed equally to this work.  

 Corresponding authors: Wenzhen Zhu, MD, Ph. D, Prof. Email address: zhuwenzhen8612@163.com; Tel and Fax: +86-27-83663258; Address: Department of 
Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China. Guiling 
Zhang, MD. Email address: glingzh@163.com; Tel and Fax: +86-27-83663258; Address: Department of Radiology, Tongji Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2022.04.18; Accepted: 2022.07.06; Published: 2022.07.18 

Abstract 

Rationale: Although non-contrast computed tomography (NCCT) is the recommended examination 
for the suspected acute ischemic stroke (AIS), it cannot detect significant changes in the early infarction. 
We aimed to develop a deep-learning model to identify early invisible AIS in NCCT and evaluate its 
diagnostic performance and capacity for assisting radiologists in decision making. 
Methods: In this multi-center, multi-manufacturer retrospective study, 1136 patients with suspected AIS 
but invisible lesions in NCCT were collected from two geographically distant institutions between May 
2012 to May 2021. The AIS lesions were confirmed based on the follow-up diffusion-weighted imaging 
and clinical diagnosis. The deep-learning model was comprised of two deep convolutional neural 
networks to locate and classify. The performance of the model and radiologists was evaluated by the area 
under the receiver operator characteristic curve (AUC), sensitivity, specificity, and accuracy values with 
95% confidence intervals. Delong’s test was used to compare the AUC values, and a chi-squared test was 
used to evaluate the rate differences. 
Results: 986 patients (728 AIS, median age, 55 years, interquartile range [IQR]: 47-65 years; 664 males) 
were assigned to the training and internal validation cohorts. 150 patients (74 AIS, median age, 63 years, 
IQR: 53-75 years; 100 males) were included as an external validation cohort. The AUCs of the model 
were 83.61% (sensitivity, 68.99%; specificity, 98.22%; and accuracy, 89.87%) and 76.32% (sensitivity, 
62.99%; specificity, 89.65%; and accuracy, 88.61%) for the internal and external validation cohorts based 
on the slices. The AUC of the model was much higher than that of two experienced radiologists (65.52% 
and 59.48% in the internal validation cohort; 64.01% and 64.39% in external validation cohort; all P < 
0.001). The accuracy of two radiologists increased from 62.00% and 58.67% to 92.00% and 84.67% when 
assisted by the model for patients in the external validation cohort. 
Conclusions: This deep-learning model represents a breakthrough in solving the challenge that early 
invisible AIS lesions cannot be detected by NCCT. The model we developed in this study can screen early 
AIS and save more time. The radiologists assisted with the model can provide more effective guidance in 
making patients’ treatment plan in clinic. 
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Introduction 
Stroke is the second leading cause of death and 

the top-ranked cause of disability-adjusted life-years 
in the 50-year and older groups [1,2], with ischemic 
stroke accounting for almost 80% [3]. The major 
randomized placebo-controlled trials showed that the 
treatment is beneficial if administered early after 
stroke onset, decreasing in value over time [4]. Early 
and accurate diagnosis is critical in acute ischemic 
stroke (AIS) to ensure that patients with fibrinolysis (< 
4.5 hours) and mechanical thrombectomy (6-24 hours) 
receive treatment in the fastest possible onset-to- 
treatment time [5-7].  

Time-efficient neuroimaging plays an important 
role in AIS diagnosis. Although MRI can reliably 
detect brain abnormalities in AIS [8], its clinical 
application is limited by contraindications, patient’s 
incoordination, and high cost. Comparatively, 
non-contrast CT (NCCT) has the advantages of fast 
execution, effective exclusion of intracerebral 
hemorrhage, broad application in emergencies, and 
low cost. It is strongly recommended as the requisite 
examination for all patients with suspected AIS 
according to 2019 AHA/ASA guidelines [9]. 
However, NCCT imaging hardly shows significant 
changes until 12-24 hours after the onset of stroke. The 
sensitivity of CT to detect AIS with more than 12 
hours of onset time is only 16% and lowered to 12% 
within the first three hours [10]. Additionally, even 
with abundant experience, radiologists may miss or 
misdiagnose when evaluating imaging data under 
emergency pressure [11]. Hence, accurate and timely 
NCCT imaging diagnosis before treatment is a great 
challenge for radiologists. 

Emerging artificial intelligence (AI) techniques, 
such as convolutional neural networks, hold promise 
and demonstrate efficiency and accuracy in 
performing imaging-based tasks [12-14]. Using AI for 
image post-processing and interpretation in stroke 
can recognize in-depth information and reduce the 
differences between radiologists [15]. The AI model 
has shown great performance in detecting large vessel 
occlusion through the cerebral artery hyperdense sign 
in NCCT, and automated Alberta Stroke Program 
Early CT Score (ASPECTS) rating with lesions in the 
middle cerebral artery area [16-19], but few studies 
discussed the invisible multi-size lesions distributed 
over the entire brain.  

This study aimed to develop a new diagnosis 
model for identifying invisible and various AIS 
lesions in NCCT. We exploited the advantages of the 
two deep-learning models and a large sample of data 

to determine the location and the probability of 
disease risk and evaluated the model’s diagnostic 
performance and ability to assist radiologists in 
making decisions.  

Materials and Methods  
Study population 

The data were retrospectively collected from two 
different institutions (Institution A: Tongji Hospital, 
including three districts, the Main Hospital Area, the 
Optical Valley Branch (Sino-German Friendship 
Hospital), and the Sino-French New City Branch; 
Institution B: The First Affiliated Hospital, School of 
Medicine, Shihezi University). Patients were included 
according to predefined criteria; any inconsistency 
was resolved by consensus. Inclusion criteria were (a) 
clinical manifestations with suspected AIS of limb 
numbness, limb weakness, dizziness, discomfort, etc., 
(b) head NCCT (slice thickness ≤ 5mm) within 24 
hours after experiencing onset of stroke symptoms, (c) 
head MRI, including diffusion-weighted imaging 
(DWI) within 72 hours, and (d) based on the clinical 
history, manifestations, laboratory tests, treatment 
feedback, and typical radiologic appearance, the 
cohort was divided into AIS patients (AIS lesions in 
NCCT images were invisible, which was defined as 
AIS was not diagnosed by the junior radiologists) and 
imaging-negative patients(no AIS lesions and other 
abnormalities were in the images). Exclusion criteria 
were (a) a history of head injury or brain tumors, (b) 
head NCCT images did not match their DWI, and (c) 
strong artifacts on NCCT images. Slices of patients 
from institutions A were divided into training and 
internal validation groups by stratified random 
sampling at an 8:2 ratio. Patients from institutions B 
were assigned to the external validation cohorts 
(Figure 1). 

Image acquisition 
All NCCT scans were obtained from one of the 

seven CT scanners (Optima 660, Discovery CT750 HD 
or Lightspeed VCT, GE Healthcare, America; 
Somatom Definition AS+, Siemens Healthineers, 
Germany; Brilliance iCT, Philips Healthcare, 
Netherlands; Aquilion ONE TSX 301A, Toshiba, 
Japan; uCT 780, United Imaging, China;) at institution 
A or one of the two CT scanners (Discovery CT750 
HD and Lightspeed VCT, GE Healthcare, America) at 
institution B. CT protocols were 70-130 kVp, 
automatic tube current modulation(100-300 mA), 5 
mm section thickness.  



Theranostics 2022, Vol. 12, Issue 12 
 

 
https://www.thno.org 

5566 

 
Figure 1. Inclusion and exclusion workflow. AIS = acute ischemic stroke, INP = imaging-negative patients 

 

Manual label of AIS NCCT images in the 
training cohort 

The AIS NCCT images in the training cohort 
were labeled by two junior radiologists (SY and YX, < 
3 years of experience). Using Pair software (RayShape 
Medical Technology, Shenzhen, China. http:// 
www.aipair.com.cn/), a rectangular box was labeled 
at the AIS lesion in head NCCT images for detection. 
DWI images corresponding to the head CT images 
were juxtaposed slice-by-slice during the labeling 
process. The two junior radiologists participated in a 
training process until they had achieved 95% 
agreement in labeling the same 30 patients. After 

labeling, the intersection of union was greater than 0.8 
between the random samples of the regions of interest 
delineated by the two radiologists (Figure S1). 

Preprocessing 
The image contrast of all head NCCT images was 

standardized according to brain windows (window 
level: 30 HU, window width: 60 HU). Images were 
subjected to online image augmentation techniques 
such as horizontal flipping, cropping, and random 
rotation while training the models. The data 
augmentation strategy has been proven to help 
prevent network overfitting and memorization of the 
exact details of the training images. 
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Figure 2. Model training process. The deep learning model is comprised of a localization model and a classification model. To train the localization model, the labeled AIS 
NCCT slices (green box) and negative NCCT slices were input, and the suspected regions were labeled and output (red box). The regions were cropped from the slice and 
normalized then input the classification model for training, output the diagnosis probabilities of AIS (AIS-risk) in these regions. The final results of this model are the lesions’ 
location and probabilities of AIS (yellow box with AIS-risk). AIS = acute ischemic stroke, INP = imaging-negative patients. 

 

Deep-learning model and network 
architectures 

We constructed a deep-learning model 
comprised of two deep convolutional neural networks 
(localization model and classification model) for 
diagnosing early invisible AIS in NCCT (Figure 2). 
The AIS localization model took an NCCT slice with 
an AIS label as the input and produced spatial 
coordinates as the output by the localization network. 
The classification model took the normalized AIS 
region in an NCCT slice and produced a final 
probability on whether it is negative or AIS by a 
classification network.  

The localization model was based on YOLO v3, 
which could directly output the class probability and 
spatial coordinates. In the model training phase, the 
dataset was the AIS NCCT slices from the primary 
and internal validation cohorts. Before training, all 
NCCT slices were resized to the 416 × 416 dimensions, 
and intensities were normalized to (0, 1) range to 
balance computation cost and accuracy. The 
localization network was trained for 200 epochs with 
batch size at 8. The transfer learning was used to 
improve the performance, and the localization 
network was initialized by the pre-trained weight 
from the Microsoft Common Objects in the Context 
(MS-COCO) dataset. We employed the Adam 
optimizer with an initial learning rate of 0.0001, β1 at 
0.9, β2 at 0.999. The learning rate decayed by a factor 
of 0.334 for every 5 epochs when there was no further 
improvement in the accuracy of the inter-validation 
set for 5 continuous epochs. Finally, the weight with 

the lowest validation loss was selected. 
The AIS region was cropped from the slice using 

the trained localization network and normalized to 
the 64 × 64 dimensions. The classification network 
took the predictive AIS region as the input and output 
diagnosis probability of AIS, based on the 50-layer 
Residual Network (ResNet 50). During training, the 
weight of the network was initialized according to the 
weight from the pre-trained model on ImageNet. The 
SGD optimizer was employed with an initial learning 
rate of 0.005, momentum at 0.9, and weight decay at 
0.0001. The learning rate decayed by a factor of 0.334 
for every 20 epochs. The training epoch was 500 in 
total. To prevent overfitting, we used dropout, L2 
regularization, and an early stopping strategy and 
finally selected the weight with lowest validation loss. 

All procedures were conducted using Python 
(version 3.6.2), Keras (version 2.3.1), and Tensorflow 
(version 2.0.0) on NVIDIA GeForce 2080Ti graphical 
processing units.  

Evaluation 
Internal validation cohorts. 516 AIS NCCT slices 

and 1291 negative NCCT slices in the internal 
validation cohorts were assessed by two experienced 
radiologists (YN and SZ, with 10 and 9 years of 
experience, respectively). The radiologists read 
images and signed the location and boundary of 
suspected AIS in NCCT slices without clinical 
diagnoses and MRI images of patients. 

External validation cohorts. 74 AIS patients (2006 
NCCT slices, 154 NCCT slices with AIS lesions, 1852 
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NCCT slices without lesions) and 76 imaging- 
negative patients (1954 negative NCCT slices) were 
read twice by two experienced radiologists. First, the 
radiologists read the images independently. 
Subsequently, they referred to the results of the 
deep-learning model and then decided whether to 
change the results of the first reading. The consistency 
between the regions of interest delineated by the 
radiologists and the output of the model was defined 
when the overlap was greater than 0.5. 

Statistical methods 
Receiver operating characteristic (ROC) analysis 

was used to evaluate response prediction 
performance. The area under the ROC curve (AUC), 
accuracy, sensitivity, and specificity values with 95% 
confidence intervals (CIs) were reported for both the 
deep-learning model and radiologists. Delong’s test 
was used to compare the AUCs. Pearson’s 
chi-squared test, McNemar's test, or Fisher's exact test 
was used to evaluate the different rates. 
Mann-Whitney U test was used to compare 
quantitative variables. All statistical tests were 
two-sided, P < 0.05 was considered statistically 
significant. Statistical analyses and graphing were 
done on R version 3.6.1 (http://www.Rproject.org) 
and SPSS Statistics (version 22.0.0, IBM SPSS Statistics, 
Armonk, New York). 

Results  
Patients’ images dataset and demographic 
characteristics 

This study included 1306 patients (Figure 1); 
among them, 51 patients had a history of head injury 
or brain tumors (Institution A, 35), 72 NCCT images 
did not match their DWI (Institution A, 67), and 47 
patients with strong artifacts on NCCT images 
(Institution A, 45) were excluded. The final number of 
patients included in this study was 1136. Of 986 
patients from institution A (median age, 55 years; 
interquartile range [IQR]: 47-65 years; 664 males), 728 
were diagnosed with AIS (569 males). NCCT was 
performed on these patients within a median of 8.03 
hours from onset to scan (IQR: 3.5-18.69 hours), and 
the median baseline NIHSS was 4 (IQR: 2-7). From 
institution B, 150 patients (median age, 63 years, IQR: 
53-75 years; 100 males) were included as the external 
validation group; NCCT was performed on 74 
diagnosed with AIS (59 males) within a median of 9.5 
hours from onset to scan (IQR: 5.75-16.07 hours). The 
median baseline NIHSS was 3 (IQR: 2-4.5). In 802 AIS 
patients, basal ganglia and corona radiata were most 
frequently affected, and most usually lesions diameter 
were 10-30 mm (Table 1). 

 

Table 1: Patient demographic data 

 Institution A (n 
= 986) 

Institution B (n 
= 150) 

P 

Subjects characters*    
 Diagnosis (n)   < 

0.0001¥ 
 AIS (slices) 728 (2580) 74 (2006)  
 INP (slices) 258 (6445) 76 (1954)  
 Age, years, median [IQR] 55 [47-65] 63 [53-75] < 

0.0001
§ 

 Gender (n)   0.8690¥ 
 Male  664 100  
 Female 322 50  

Clinical information※    

 TSS, hours, median [IQR] 8.03 [3.50-18.69] 9.50 [5.75-16.07] 0.7020
§ 

 NIHSS, median [IQR] 4.00 [2.00-7.00] 3.00 [2.00-4.50] 0.0090
§ 

Lesions features※    

 Number (n)   0.3010¥ 
 Single 509 56  
 Multiple 219 18  
 Location (n)   0.0050¥ 
 Left 341 32  
 Right 331 28  
 Bilateral 56 14  
Size (mm)    < 

0.0001¥ 
 0-10 257 42  
 10-30 522 50  
 30-50 151 8  
 50-100 102 3  
 ＞ 100 32 0  
 Area (n)   < 

0.0001
¶ 

 Frontal lobe 176 10  
 Parietal lobe 162 3  
 Temporal lobe 188 8  
 Occipital lobe 70 4  
 Insular lobe 105 3  
 Basal ganglia 273 35  
 Corona radiata 247 41  
 Centrum semiovale 88 6  
 Pons  54 6  
 Mesencephalon 50 7  
 Cerebellum 45 6  
 Cerebral peduncle 8 5  
 Thalamus 64 4  
 Corpus callosum 19 2  
 Hippocampus 12 2  
 Periventricular 20 2  

AIS = acute ischemic stroke, NIP = imaging-negative patients, TTS = time from 
onset to scan,  
NIHSS = National Institute of Health stroke scale, IQR = interquartile range  

* For the entire cohort of 1136 subjects. ※ For the lesions in 802 AIS patients. 
¥: The Pearson’s chi-squared test was performed.  
§: The Mann-Whitney U test was performed. 
¶: The Fisher's exact test was performed. 

 

Performance of the deep-learning model 
The deep-learning model performed well in 

diagnosing AIS lesions. The AUCs, sensitivities, 
specificities, and accuracies were 82.05% (95% CI: 
81.01-83.08%), 66.28% (95% CI: 64.10-68.32%), 97.81% 
(95% CI: 97.41-98.20%), and 88.81% (95% CI: 
88.06-89.53%), respectively, in training cohort and 
83.61% (95% CI: 81.01-83.08%), 68.99% (95% CI: 
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65.12-73.06%), 98.22% (95% CI: 97.44-98.92%), and 
89.87% (95% CI: 88.39-91.23%), respectively, in 
internal validation cohort (Table 2); these parameters 
in the external validation cohort were 76.32% (95% CI: 
72.46-80.17 %), 62.99% (95% CI: 55.19-70.13%), 89.65% 
(95% CI: 88.68-90.57%), and 88.61% (95% CI: 
87.58-89.58%), respectively (Table 3). 

Comparison between the deep-learning model 
and two radiologists in the internal validation 
cohort 

The AUCs obtained by the radiologists 1 and 2 
were 65.52% (95% CI: 63.40-67.65%) and 59.48% (95% 

CI: 57.62-61.34%). Their respective sensitivities, 
specificities, and accuracies were 35.08% (95% CI: 
30.81-39.34%), 95.97% (95% CI: 94.89-96.98%), and 
78.58% (95% CI: 76.62-80.45%), respectively, for 
radiologist 1 and 22.29% (95% CI: 18.60-25.78%), 
96.67% (95% CI: 95.66-97.60%), and 75.43% (95% CI: 
73.38-77.40%), respectively, for radiologist 2 (Table 3). 
The AUC of the deep-learning model was much 
higher than that from the two radiologists in the 
internal validation cohort (P < 0.001) (Figure 3A) as 
was the case for accuracy of the model (Figure 3D, 
Table S1). 

 

Table 2: Performance of deep learning model and two experienced radiologists in training and internal validation cohort  

 Results (n) Test performance (%)  
 TP TN FP FN AUC [95%CI] Sensitivity [95%CI] Specificity [95%CI] Accuracy [95%CI] P† 
Training 1368 5051 113 696 82.05 [81.01-83.08] 66.28 (1368/2064) [64.10-68.32] 97.81 (5051/5164) [97.41-98.20] 88.81 (6419/7228) [88.06-89.53]  
Internal Validation          
Deep-learning model 356 1268 23 160 83.61 [81.58-85.64] 68.99 (356/516) [65.12-73.06] 98.22 (1268/1291) [97.44-98.92] 89.87 (1624/1807) [88.39-91.23]  
Radiologist 1  181 1239 52 335 65.52 [63.40-67.65] 35.08 (181/516) [30.81-39.34] 95.97 (1239/1291) [94.89-96.98] 78.58 (1420/1807) [76.62-80.45] < 0.0001 
Radiologist 2  115 1248 43 401 59.48 [57.62-61.34] 22.29 (115/516) [18.60-25.78] 96.67 (1248/1291) [95.66-97.60] 75.43 (1363/1807) [73.38-77.40] < 0.0001 

TP = true positive, TN = true negative, FP = false positive, FN = false negative 
†: compare between radiologists and deep learning model. 
Delong’s test was used to compare the AUCs. 

 

 
Figure 3. Comparison of performance between the deep-learning model and experienced radiologists. A. Receiver operating characteristic curve (ROC) of the 
deep-learning model and that from the two experienced radiologists for AIS detection based on slices in the internal validation cohort; B. ROC of the deep-learning model and 
that from the two experienced radiologists with and without the assistance of the model for AIS detection based on slices in the external validation cohort; C. ROC of each of 
the two experienced radiologists with and without the assistance of the model for AIS detection based on patients in the external validation cohort; D. Sensitivity, specificity, and 
accuracy of the deep-learning model and that from the two experienced radiologists for AIS detection in the internal validation cohort; E. Sensitivity, specificity, and accuracy of 
each of the two experienced radiologists with and without the assistance of the model for AIS detection based on patients in the external validation cohort.* 0.01 ≤ P < 0.05; 
**0.001 ≤ P < 0.01; *** P < 0.001. 
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Table 3: Performance of the deep learning model and two experienced radiologists in external validation cohort 

 Results (n) Test performance (%)  
 TP TN FP FN AUC [95%CI] Sensitivity [95%CI] Specificity [95%CI] Accuracy [95%CI] P† P$ 
Based on slices           
Deep-learning model 97 3412 394 57 76.32 [72.46-80.17] 62.99 (97/154) [55.19-70.13] 89.65 (3412/3806) [88.68-90.57] 88.61 (3509/3960) [87.58-89.58]   
Radiologist 1 48 3686 120 106 64.01 [60.33-67.69] 31.17 (48/154) [24.03-38.33] 96.85 (3686/3806) [96.30-97.40] 94.29 (3734/3960) [93.52-94.50] < 0.0001 < 0.0001 
Radiologist 1 + model 107 3533 273 47 81.15 [77.48-84.83] 69.48 (107/154) [62.34-76.62] 92.83 (3533/3806) [91.96-93.59] 91.92 (3640/3960) [91.03-92.75] < 0.0001  
Radiologist 2 51 3641 165 103 64.39 [60.65-68.13] 33.12 (51/154) [25.97-40.91] 95.66 (3641/3806) [95.01-96.32] 93.23 (3692/3960) [92.41-94.00] < 0.0001 < 0.0001 
Radiologist 2 + model 110 3510 296 44 81.83 [78.22-85.43] 71.43 (110/154) [64.29-78.57] 92.22 (3510/3806) [91.33-93.09] 91.41 (3620/3960) [90.50-92.27] < 0.0001  
Based on patients           
Radiologist 1 14 46 30 60 39.72 [32.60-46.85] 63.51 (47/74) [52.67-74.32] 60.53 (46/76) [48.68-71.05] 62.00 (93/150) [53.72-69.79]  < 0.0001 
Radiologist 1 + model 40 66 10 34 70.45 [63.57-77.33] 97.30 (72/74) [93.24-100.00] 86.84 (66/76) [78.95-94.74] 92.00 (138/150) [86.44-95.80]   
Radiologist 2 16 42 34 58 38.44 [31.10-45.79] 62.16 (46/74) [51.35-72.97] 55.26 (42/76) [43.42-67.11] 58.67 (88/150) [50.35-66.64]  < 0.0001 
Radiologist 2 + model 41 55 21 33 63.89 [56.26-71.51] 97.30 (72/74) [93.24-100.00] 72.37 (55/76) [61.84-82.89] 84.67 (127/150) [77.89-90.02]   

TP = true positive, TN = true negative, FP = false positive, FN = false negative 
†: compare between radiologists and deep learning model.  
$: compare between the radiologists and radiologists +model. 
Delong’s test was used to compare the AUCs. 

 

Comparisons between two radiologists 
without and with the assistance of the 
deep-learning model in the external validation 
cohort 

For radiologist 1, 64.01% AUC (95% CI: 
60.33-67.69%), 31.17% sensitivity (95% CI: 24.03-38.33 
%), 96.85% specificity (95% CI: 96.30-97.40%), and 
94.29% accuracy (95% CI: 93.52-94.50%) were reported 
without the model, while with the assistance of the 
model, the values were 81.15% AUC (95% CI: 77.48- 
84.83%), 69.48% sensitivity (95% CI: 62.34-76.62%), 
92.83% specificity (95% CI: 91.96-93.59%), and 91.92% 
accuracy (95% CI: 91.03-92.75 %). Similarly, for 
radiologist 2, the values were 64.39% AUC (95% CI: 
60.65-68.13%), 33.12% sensitivity (95% CI: 25.97- 
40.91%), 95.66% specificity (95% CI: 95.01-96.32%), 
and 93.23% accuracy (95% CI: 92.41-94.00%) without 
the model and improved to 81.83% AUC(95% CI: 
78.22-85.43%), 71.43% sensitivity (95% CI: 64.29- 
78.57%), 92.22% specificity (95% CI: 91.33-93.09%), 
and 91.41% accuracy (95% CI: 90.50-92.27%) with the 
model (Table 3). Thus, both radiologists achieved 
greater predictive performances with the help of the 
model than without the model (P < 0.001). Based on 
the AUCs, the model exhibited a higher predictive 
performance than the radiologists (P < 0.001), but a 
lower performance compared to radiologists with the 
assistance of the model (P < 0.001) (Figure 3B). 

We performed analyses by converting the slices 
into patients. In accordance with the rules, when at 
least one AIS NCCT slice was detected, the AIS 
patient was recorded as true positive. In patients with 
negative imaging, the absence of lesions in all slices 
was considered true negative. Table 3 shows an AUC 
of 62.02% (95% CI: 54.20-69.84%), 63.51% sensitivity 
(95% CI: 52.67-74.32%), 60.53% specificity (95% CI: 
48.68-71.05%), and 62.00% accuracy (95% CI: 
53.72-69.79%) without the model and 92.07% AUC 
(95% CI: 87.82-96.32%), 97.30% sensitivity (95% CI: 
93.24-100.00%), 86.84% specificity (95% CI: 78.95-93.42 

%), and 92.00% accuracy (95% CI: 86.44-95.08%) with 
the model for radiologist 1. For radiologist 2, the 
reported values were 58.71% AUC (95% CI: 50.80- 
66.62%), 62.16% sensitivity (95% CI: 51.35-72.97%), 
55.26% specificity (95% CI: 44.74-67.11%), and 58.67% 
accuracy (95% CI: 50.35-66.64%) without the model 
and 84.83% AUC (95% CI: 79.44-90.22%), 97.30% 
sensitivity (95% CI: 93.24-100%), 72.37% specificity 
(95% CI: 61.84-81.58%), and 84.67% accuracy (95% CI: 
77.89-90.02%) with the model. The AUCs achieved by 
radiologists with the assistance of the model showed 
greater predictive performance than without the 
model (P < 0.001) (Figure 3C). Besides, sensitivity, 
specificity, and accuracy by radiologists with the 
assistance of the model were higher than those 
without the model (P < 0.001) (Figure 3E, Table S2). Of 
150 patients, the number diagnosed correctly 
increased by 45 (radiologist 1) and 39 (radiologist 2) 
while using the deep-learning model. Figure 4 
displays three examples without and with the 
assistance of the model reported by radiologists. 

Comparisons between different 
manufacturers  

In the internal validation cohort, NCCT was 
acquired by using GE Healthcare in 394 patients (236 
with AIS, 360 slices), SIEMENS in 55 patients (38 with 
AIS, 60 slices), Toshiba in 62 patients (22 with AIS, 31 
slices), United Imaging in 62 patients (44 with AIS, 64 
slices), and Philips in 1 patient (with AIS, 1 slice, not 
included in the comparison). The AUCs were 84.37% 
(95% CI: 81.97-86.77%), 80.34% (95% CI: 74.06-86.62%), 
82.05% (95% CI: 73.48-90.62%), and 82.31% (95% CI: 
76.37-88.26%) for GE Healthcare, SIEMENS, Toshiba, 
and United Imaging, respectively, without significant 
differences (for each pairwise comparison, P > 0.5). 
Thus, the comparison of model sensitivities and 
specificities across different manufacturers was not 
statistically significant (P > 0.1) (Table S3 and Figure 
S2).  
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Figure 4. Examples. Images show the results of two experienced radiologists without and with the assistance of the deep-learning model for diagnosing. 
The first two cases are AIS patients and the last was imaging-negative patient. Within each case, left column shows a NCCT image, second column shows the result of radiologist 
read, middle column shows result of model diagnose (the yellow box represents the location of AIS and the probabilities calculated by the model in this region are 0.99, 0.93), 
fourth column shows the result of “radiologist + model” (the green circle or line), and right column shows corresponding DWI. 

 

Discussion  
In this study, we developed a two-stage 

deep-learning model to diagnose the early invisible 
AIS lesions of diverse sizes distributed in all brain 
regions in NCCT and verified the model using a 
multi-center, multi-manufacturer platform. The 
model achieved satisfactory performance in diag-
nosing early invisible AIS in the training, internal and 
external validation cohorts with AUCs of 82.05%, 
83.61% and 76.32%, respectively. The model 
outperformed two experienced radiologists in the 
internal and external validation cohorts (AUC: 83.61% 
vs 65.52% and 59.48%, P < 0.001; 76.32% vs 64.01% and 
64.39%, P < 0.001). By incorporating the model in the 
analyses, the accuracy of two radiologists improved 
from 62.02% and 58.71% to 92.07% and 84.83%, 
respectively, based on patients in the external 
validation cohorts. 

Of the 1136 eligible patients enrolled in our 
study, 802 patients had AIS lesions distributed in all 
supra- and infra-tentorial brain regions, including 
pons, and could mistakenly be considered by 
radiologists as stroke lesions in clinical diagnosis. The 

maximum cross-sectional diameter of the lesions 
ranged between 3-158 mm, including lacunar 
infarction and large infarct. The inclusion of patients 
with entirely negative NCCT presentation, increasing 
the difficulty of model detection, showed the excellent 
specificity of the model. Qiu and colleagues combined 
manually defined and deep-learning features to detect 
and quantify infarcts on baseline NCCT images, but 
their study only included lesions in the M1 segment 
area of the middle cerebral artery [20]. Similarly, 
Kniep et al. studied only the posterior circulation 
stroke, which was not consistent with the diversity 
seen in the clinic [21].  

Our study was a multi-center and multi- 
manufacturer study. Institution A had three hospital 
districts, and the good performance of the model in 
the internal validation cohort could be used primarily 
to prove its robustness. Institution B was several 
thousand miles away from institution A with different 
demographic compositions and scanning parameters. 
Although there were differences in some clinical 
features between the two institutions, the results from 
the external validation set showed that the model 
could still make effective predictions and demonstrate 
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good generalizability and robustness. Also, the model 
showed comparable diagnostic performance using 
instruments from different manufacturers.  

Previously, a deep-learning model was used by 
Nishio et al. to detect AIS lesions [22]. In another 
study, Davis developed a method based on the 
symmetry of cerebral hemispheres for detecting the 
early stages of ischemic stroke [23]. However, the 
robustness of the methods was not verified. The 
model presented here displayed high generalizability 
and robustness. Our study considered a large number 
of patients, the diversity of lesion distribution and 
size, and the potential for easy misdiagnosis and 
underdiagnosis. The multi-center and multi- 
manufacturer application aspects made our model 
building more consistent with clinical reality and 
made it easier to apply it in clinical settings. 

Our study benefited from the rapid development 
of deep-learning techniques building on the 
innovative advances. The localization model was built 
on YOLO v3, which divides the entire image into 
multiple regions and predicts bounding boxes and 
probabilities for each region [24]. ResNet was used for 
classification, achieving accuracy from a substantially 
increased depth [25]. We combined the advantages of 
localization and classification networks, which could 
inform the region of the lesions and the degree of 
disease risk. The localization network trained the 
model by learning the labeled AIS NCCT slices but 
could not learn the negative NCCT slices. Although 
using NCCT slices could minimize the possibility of 
false information in the images, the trained 
localization network had high sensitivity in finding 
AIS with high a false-positive rate and did not 
theoretically predict negative NCCT images. We 
introduced the classification network as the second 
stage model and removed the category loss function 
to reduce the false-positive rate. Therefore, our 
two-stage model could automatically locate and 
classify AIS with high predictive performance. 

As for the ROC curves, this model significantly 
outperformed two experienced radiologists. Signifi-
cantly, the radiologists’ diagnostic accuracy of AIS 
improved with the assistance of the model. Wu et al. 
also proposed a model for identifying invisible 
ischemic strokes in NCCT [26] and Pan et al. used 
ResNet to detect infarct core on NCCT with an 
accuracy of 75.9% [27]. Their study did not compare 
the performance of radiologists to determine the 
effectiveness of model assistance. We have 
demonstrated that the deep-learning model we 
developed could significantly improve the diagnostic 
performance of radiologists. Artificial intelligence has 
the potential to fully assess the heterogeneity known 
to be associated with underlying biology. The 

radiologists can advise clinicians in deciding on 
treatment strategies and management by combining 
the results of the model with clinical information. 

This study has some limitations. Although the 
detailed clinical information may improve the 
performance, we did not incorporate it in the model 
for two reasons. First, from an objective clinical 
perspective, many emergency patients may not be 
able to provide enough clinical information, and 
second, similar clinical manifestations of normal 
patients and AIS may easily confuse the judgment of 
the doctors. Our premise for building this model was 
that the AI diagnostic system could still be efficacious 
even in cases of incomplete clinical information. 
Another limitation is the time interval between CT 
and MRI. CT was acquired within 24 hours of the 
onset of symptoms, while MRI (including DWI) was 
done within 72 hours, which potentially makes the 
lesion in MRI not fully representative of the actual 
lesion in CT. Considering this, we did not outline the 
boundary of the lesion exactly according to MRI in CT 
but used a box to visualize the location and size of the 
lesion. For AIS, which is invisible to the naked eye of 
the observer in CT, it is important to indicate the 
lesion location and size using the model. Besides, the 
sensitivity for AIS detection was relatively low as the 
AIS lesions were invisible in NCCT. Also, the AIS 
NCCT slices accounted for a small proportion of the 
AIS patients’ NCCT, leading to a large difference in 
the number of positive and negative slices. In future 
studies, we will focus on the ratio of the number of 
positive to negative slices to minimize the difference. 
Most importantly, we will increase the sample size by 
enrolling patients from multiple centers. 

Conclusions 
We developed a deep-learning model to 

diagnose early invisible AIS lesions in NCCT using 
two-stage deep convolutional neural networks with 
better robustness. The model has a much higher 
diagnostic power than experienced radiologists and 
can significantly improve the sensitivity and accuracy 
of the diagnosis. With the help of the model, 
radiologists can make better decisions and select more 
appropriate treatment methods.  
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