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Abstract 

Rationale: Cerebral cavernous malformation (CCM) is prone to recurring microhemorrhage, which can 
lead to drug-resistant epilepsy. Surgical resection is the first choice to control seizures for 
CCM-associated epilepsy. At present, removal of resection-related tissue only depends on cautious visual 
identification of CCM lesions and perilesional yellowish hemosiderin rim by the neurosurgeon. Inspired 
by the resection requirements, we proposed quantitative multiphoton microscopy (qMPM) for a 
histopathology-level diagnostic paradigm to assist clinicians in precisely complete resection. 
Methods: A total of 35 sections specimens collected from 12 patients with the CCM-related epilepsy 
were included in this study. First, qMPM utilized a label-free multi-channel selective detection to image 
the histopathological features based on the spectral characteristics of CCM tissues. Then, qMPM 
developed three customized algorithms to provide quantitative information, a vascular patterns classifier 
based on linear support vector machine, visualization of microhemorrhage regions based on 
hemosiderin-related parameters, and the CCM-oriented virtual staining generative adversarial network 
(CCM-stainGAN) was constructed to generate two types of virtual staining. 
Results: Focused on CCM lesion and perilesional regions, qMPM imaged malformed vascular patterns 
and micron-scale hemosiderin-related products. Four vascular patterns were automatically identified by 
the classifier with an area under the receiver operating characteristic curve of 0.97. Moreover, qMPM 
mapped different degrees of hemorrhage regions onto fresh tissue while providing three quantitative 
hemosiderin-related indicators. Besides, qMPM realized virtual staining by the CCM-stainGAN with 
98.8% diagnostic accuracy of CCM histopathological features in blind analysis. Finally, we provided 
pathologists and surgeons with the qMPM-based CCM histopathological diagnostic guidelines for a more 
definitive intraoperative or postoperative diagnosis. 
Conclusions: qMPM can provide decision-making supports for histopathological diagnosis, and 
resection guidance of CCM from the perspectives of high-resolution precision detection and automated 
quantitative assessment. Our work will promote the development of MPM diagnostic instruments and 
enable more optical diagnostic applications for epilepsy. 
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Introduction 
Cerebral cavernous malformation (CCM) is a 

congenital cerebrovascular disease characterized by 
recurrent microhemorrhage, which can lead to 
drug-resistant epilepsy [1-4]. Within 5 years, the 
recurrence rate of epilepsy in CCM patients with 
new-onset seizures can reach 94% [5]. Surgical 
resection is the first choice to control seizures for CCM 
associated with epilepsy. The CCM lesion and the 
surrounding hemosiderin are critical factors to be 
considered in determining the extent of resection [2, 3, 
6-8]. Neurosurgeons frequently rely on the naked eye 
to detect the yellowish hemosiderin rim in the 
resection. In fact, there are some low concentrations of 
hemosiderin that sporadically remains in the 
surrounding brain parenchyma. From an imaging 
standpoint, incomplete excision of hemosiderin may 
be a potential reason for postoperative epilepsy 
recurrence. Therefore, it is significant to develop a 
higher-resolution imaging method that can effectively 
visualize the resection-related histopathological 
features in CCM tissues. 

Magnetic resonance imaging (MRI) has been 
currently recognized as the most specific and sensitive 
technique for the preoperative diagnosis of CCM. The 
lesions and surrounding hemosiderin rings typically 
show heterogeneous low signal in T2* weighted 
gradient echo sequences and magnetic sensitivity 
weighted imaging [9]. Besides, through quantifying 
CCM vascular permeability and iron deposition, 
dynamic contrast-enhanced quantitative perfusion 
and magnetically sensitive quantitative imaging 
techniques can reflect disease progression [10]. 
However, due to the spatial resolution limitations of 
MRI, intraoperative CCM examination must rely on 
the histopathological diagnosis to reflect the 
distribution of hemosiderin and other microstructures 
at the cellular level. Inevitably, current clinic 
histopathological techniques still have multiple 
workflows, such as complex protocols and exogenous 
labeling. Additionally, with the current shortage of 
pathologists and the increasing biopsy demand for 
various diseases, the traditional pathological 
diagnosis method has further increased the burden 
and responsibility of pathologists.  

Advanced optical microscopy, such as 
light-sheet microscopy [11] and ultraviolet surface 
excitation microscopy [12], enable the rapid imaging 
of intact tissues at high-resolution, but their imaging 
specimens need fluorescent labeling or even tissue 
clearing. Photoacoustic microscopy [13] and optical 
coherence tomography [14] can achieve clinical in vivo 
images at higher penetration depth without tissue 
processing or staining. Computational diffraction 

tomography has also recovered macroscale cellular 
membrane structures, subcellular organelles, and 
microorganism tissues [15]. However, the single- 
channel images acquired by these techniques often 
combine physical model-based algorithms. Femto-
second pump-probe microscopy has been applied to 
differentiate hemoglobin and hemosiderin [16]. 
Remarkably, this optical system requires experienced 
optical engineers to adjust two femtosecond laser 
beams with overlap spatially and temporally, which 
may be inadequate for medical researchers to operate. 
Compared with the clinical imaging and optical 
histopathological methods, multiphoton microscopy 
(MPM), which is based on the second harmonic 
generation (SHG) and two-photon excited fluores-
cence (TPEF), has developed into a reliable and 
easy-to-use imaging instrument for in-depth clinical 
research [17-19]. Label-free MPM can simultaneously 
excite several endogenous signals in various compo-
nents of biological tissues and acquire multi-channel 
multi-color images at the histopathology-scale 
resolution, making it the most likely to implement 
non-destructive tomography in clinical medicine [20]. 

Here, we proposed quantitative MPM (qMPM), 
combined the front-end multi-channel selective 
detection modalities with the back-end multiple 
custom-developed image processing algorithms, and 
comprehensively verified the diagnostic capabilities 
of qMPM on CCM, inspired by the resection require-
ments. This work presented two main highlights 
(Figure 1). First, from the lesion to perilesional 
histopathological features, we utilized qMPM to 
excite multiple endogenous molecules based on the 
spectral characteristics, focused on the vascular 
patterns and the micron-scale hemosiderin-related 
products (Figure 1A). Second, from the optical 
imaging to clinical applications, qMPM realized three 
custom-developed algorithms, including a classifier of 
vascular patterns, a quantitative visualization of 
hemorrhage regions, and an unsupervised deep- 
learned model that can generate two types of virtual 
staining, assisting neuropathologists and neurosur-
geons in making more precise CCM intraoperative 
resection guidance and histopathological diagnosis 
(Figure 1B). 

Results 
Multiphoton imaging and quantitative 
classification of vascular patterns in CCM 
lesion 

Histologically, the CCM lesions are character-
ized by a mulberry-like, multilobulated appearance 
within the brain parenchyma. To verify that qMPM 
imaging can identify vascular histopathological 
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features, we first focused on the vascular patterns in 
the CCM lesions (Figure 2A). The morphologically 
normal vessels showed distinct layered structures, 
which were collagen fiber (arrow 1), smooth muscle 
(arrow 2), and elastic fibers (arrow 3). Collagen had a 
strong SHG signal due to its non-centrosymmetric 
structure. Both smooth muscle and elastic fiber 
showed TPEF signal. Elastic fibers presented the high 
TPEF signal and low SHG signal with a curled shape, 
which distinguished them from yellowish muscle 
fibers. Compared with normal blood vessel, we found 
three representative malformed vascular patterns 
(Figure 2A, the right three columns). Malformation 
vessels were comprised of multiple dilated 
blood-filled caverns with little or no intervening brain 
parenchyma, and they lacked the smooth muscle and 
elastic fiber observed in mature vascular vessels. 
Hyaline degeneration is the most common form of 
degeneration observed in CCM lesions. This 
degeneration was the formation of a homogeneous 
translucent zone in the vessel wall, displaying 
remarkable deposition of dense fibrillar collagen 
without an obvious vascular cavity (Figure 2A, 
arrowheads). The increasing dense SHG signal and 
intensified TPEF signal of hyaline can be 
distinguished from malformation vessels. Besides, we 
also found another type of twisted blood vessel with a 
vascular cavity (Figure 2A, dashed circles). The 
yellowish vessel wall displayed weak SHG and strong 
TPEF signals, which appeared blue in the 

corresponding hematoxylin-eosin (H&E) staining, 
indicating collagen aging vessels. The corresponding 
H&E staining confirmed the position and morphology 
of the vessels, while the Elastic van Gieson (EvG) 
staining highlighted blood vessel walls. The overlaid 
results were highly consistent with H&E and EvG 
stained images, indicating that qMPM could identify 
histopathological features of different vascular 
patterns in CCM lesions more efficiently than H&E 
staining. The slight differences primarily originated 
from the minor morphological shifts caused by tissue 
processing. 

To quantitatively classify the vascular patterns in 
CCM lesions, we performed a spectral analysis of the 
vascular composition (Figure 2B). Collagen fibers 
showed a clear SHG signal at 430 nm. The positions of 
different vascular emission peaks were similar, which 
were mainly associated with nicotinamide adenine 
dinucleotide (NADH) (peak around 455 and 475 nm), 
elastin (peak around 511 nm), flavin adenine 
dinucleotide (FAD) (peak around 543 nm), and 
porphyrin derivatives (peak around 630 nm) [21]. 
However, it was still difficult to distinguish between 
hyaline and aging vessels based on the spectral 
signatures and morphology. Therefore, to achieve 
more accurate vascular pattern classification, we 
extracted 142 spatial features of collagen fiber using 
collagen feature extraction algorithm (Table S1) [22, 
23]. Total 23 best potential predictors were selected 
from all features (Figure 2C). Subsequently, we 

 

 
Figure 1. Schematic diagram of qMPM and the capability for histopathology-based diagnostic applications. (A) Inspired by the resection requirements, unstained 
CCM tissues were used for label-free imaging based on SHG, TPEF-1, and TPEF-2 channels to distinguish histopathological features with multicolor-coded. (B) Based on the 
principle of endogenous multiphoton imaging, qMPM has the capability to provide more accurate, rapid, and efficient clinical diagnostic guidance combined with custom-developed 
post-processing algorithms. 
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developed the linear support vector machine (SVM) 
classifier using these 23 features to automatically 
classify vascular patterns, which showed performance 
with AUC value of 0.969 (Figure 2D). Besides, 
collagen fiber length, mean, entropy and correlation 
were jointly selected by LASSO logistic regression and 
ANOVA statistical approach, revealing the difference 
among the vascular patterns (Figure 2E). The 
significant correlation difference between hyaline and 
aging showed the potential to be utilized as indicators 
for vascular identification. These results suggested 
that qMPM has the ability to assist pathologists in 
automatically classifying and quantifying the four 
vascular patterns, which may reduce their workload 
and ensure adequate accuracy.  

Multiphoton imaging and spectral analysis of 
hemosiderin in CCM perilesional region  

Chronic deposition of blood breakdown 
products caused by recurrent microhemorrhages is 
the most critical feature in determining the extent of 

resection during CCM-associated epilepsy surgery. 
As a result, we proceeded to image the CCM 
perilesional regions that associated with resection. 
The red blood cells (RBCs), hemosiderin-laden 
macrophages, and hemosiderin have represented the 
progression of blood breakdown products (Figure 3A, 
the first three columns). The first stage was RBCs, 
which had an oval shape and were tightly packed in 
the blood vessels (Figure 3A, white arrows). Once 
RBCs are diffused into the brain tissue, they may be 
captured by macrophages, resulting in the production 
of hemosiderin-laden macrophages and further 
hemosiderosis. The phagocytosis of macrophages was 
involved in the degradation of hemoglobin and the 
formation of hemosiderin. Hemosiderin-laden macro-
phages were the second stage, which always 
presented in perilesional tissue and within the lesions. 
Hemosiderin-laden macrophages showed a foam-like 
shape and the nucleus of the dark hole surrounded by 
granular hemosiderin with a relatively strong TPEF 
signal (Figure 3A, white dashed circles). Besides, we 

 

 
Figure 2. qMPM can classify vascular patterns in CCM lesions. (A) Representative vascular patterns with distinguishable features in MPM images. Normal vessels in 
overlaid images showed layered structures, collagen fiber (arrow 1), smooth muscle (arrow 2), and elastic fibers (arrow 3), corresponding to the black arrows in EVG staining 
images. Malformation vessels appeared as multiple dilated blood-filled caverns. Hyaline degeneration was homogeneous translucent without distinct vascular cavities (white 
arrowheads), similar to the black arrowheads in H&E staining images. Collagen aging was a vascular cavity with both SHG and TPEF signals (dashed circles). (B) The emission 
spectrum of different vascular patterns at an excitation wavelength of 860 nm. (C) The potential predictors were selected using LASSO logistic regression. (D) The ROC curves 
of the vascular pattern classifier were shown as the mean (n = 82). (E) The features selected by LASSO logistic regression and ANOVA statistical approach, shown as mean ± 
SEM (n = 82) in box plots. Centerlines, medians; limits, 75 and 25%; whiskers, maximum and minimum. 
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can also capture specks of extracellular hemosiderosis 
(Figure 3A, white arrowheads). The third stage was 
hemosiderin. The rim of hemosiderin was frequently 
surrounded by CCM lesions, which was the 
significantly epileptogenic region due to iron 
deposition from recurrent hemorrhage. In the 
overlaid images, hemosiderin presented two intensity 
distributions. The first one showed red color, 
generating a strong TPEF signal without a SHG signal 
(Figure 3A, cyan arrows). The other showed yellow 
color, producing both strong SHG and TPEF signals 
(Figure 3A, cyan arrowheads). The corresponding 
Perls Prussian Blue (PPB) staining validated that these 
two intensity distributions were related to the 
different degrees of hemosiderosis, with only the 
hemorrhage center areas producing strong SHG 

signals. Capillaries and neurons showed orderly 
distribution with homogeneous TPEF signal in 
structurally normal gray matter (Figure 3A, yellow 
circles, and arrows). The last hallmark was gliosis, 
similar to hemosiderin, a potential epileptogenic 
feature caused by repetitive microhemorrhages. 
Gliosis had a higher cell density than gray matter due 
to focal proliferation, and it also had different degrees 
of hemosiderosis (Figure 3A, cyan arrows, and white 
arrowheads). In addition, the degenerated vessel wall 
exhibited a weak SHG signal due to collagen 
hyperplasia caused by the vascular lumen occlusion. 
qMPM, H&E, and PPB staining methods generated 
well-correlated images and validated qMPM revealed 
a similar distribution of perilesional features as the 
corresponding staining methods. 

 
 
 

 
Figure 3. qMPM can identify hemosiderin-related products in CCM perilesional region. (A) MPM imaging of hemosiderin-related products. The red blood cells 
(RBCs), hemosiderin-laden macrophages, and hemosiderin represented the progression of blood breakdown products. (B-D) The spectral analysis of RBCs, hemosiderin-laden 
macrophages, and hemosiderin at three different excitation wavelengths. (E) The emission spectrum of three hemosiderin-related products. 
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To quantitatively describe the progression of 
blood breakdown products, we conducted spectral 
analysis of RBCs, hemosiderin-laden macrophages, 
and hemosiderin at three different excitation 
wavelengths (Figure 3B-D). The signals of RBCs and 
hemosiderin-laden macrophages were mainly 
contributed by TPEF. The broad emission spectrum 
from RBCs had been assigned to several sources, 
including NADH (455 and 475 nm), hemoglobin (515 
nm), FAD (543 nm), and porphyrins (585 nm and 630 
nm) (Figure 3B) [24-26]. RBCs were densely packed 
with large amounts of hemoglobin. The peaks at ~585 
and 630 nm were due to two different forms of 
porphyrins released from RBCs [25]. The spectrum 
was mostly emitted by cellular NADH and FAD in 
hemosiderin-laden macrophages (Figure 3C). In 
hemosiderosis, the emission spectrum had a minor 
SHG peak, and high-intensity broad TPEF peaks at 
630 nm and 690 nm (Figure 3D). Because porphyrin 
molecules also existed in iron-binding complexes such 
as heme and ferritin containing hemosiderosis [21, 
27], both porphyrins and iron complexes presented at 
higher concentrations in hemosiderin spectrum. As 
result, we considered that the TPEF peaks were 
primarily originated from porphyrin. Since most of 
the biophysical and biological properties of 
hemosiderin remain unknown, we hypothesized that 
the SHG signal might be generated by ferritin with a 
non-centrosymmetric structure in a condensed 
iron-protein complex. Finally, we compared the 
spectrum of three products at 860 nm excitation 
wavelength (Figure 3E). Spectral differences can be 
used to identify RBCs, hemosiderin-laden macro-
phages, and hemosiderin. In particular, the spectral 
intensity of hemosiderin was much stronger than the 
other two products at longer wavelengths (600-695 
nm). The spectral and spatial differentiation of the 
three hemosiderin-related products not only 
demonstrated the interpretability of the imaging 
results, but also accurately characterized the 
hemorrhagic degree of CCM. 

Detection of CCM histopathological features 
in large-scale specimen by multichannel qMPM 

qMPM had an excellent histopathological-level 
correlation between the morphology of CCM in 
multiphoton and staining images. We performed 
qMPM on large-scale CCM specimens containing 
CCM lesions, perilesional regions, and structurally 
normal regions. An MRI of a left temporal CCM 
revealed hemosiderosis surrounding the lesion, which 
was emphasized by a hypo-intense ring on the T2 
sequence (Figure 4A, dashed circle). The fresh tissues 
were removed from the gross margin of the lesion, 
including the CCM lesion and the surrounding areas. 

CCM was well-circumscribed lesions (Figure 4B). 
Hemosiderin rim appeared ambiguous yellowish 
color around the CCM lesions, which closely related 
to epilepsy. Therefore, intraoperative visualization of 
the CCM lesion and the hemosiderin in the CCM 
perilesional region is required to assist the 
neurosurgeons in the completely removing the 
surrounding hemosiderin.  

We used two-channel MPM to grossly detect the 
microscopic morphology of the large-scale specimen. 
Gray matter, white matter, hippocampus, and CCM 
lesions can be clearly distinguished (Figure 4C). 
Inspired by the distinct spectral differences among 
hemosiderin-related products, we performed 
three-channel MPM to achieve higher contrast 
hemosiderin rim (Figure 4E). The first channel 
detected vascular collagen and severe hemosiderosis 
(SHG, 395 to 415 nm). The second channel was used to 
image cellular NADH and FAD, as well as blood 
vessel components other than collagen (TPEF-1, 428 to 
570 nm). The third channel was mainly used to 
identify hemosiderosis (TPEF-2, 600 to 695 nm). We 
focused on five representative regions of interest in 
perilesional regions of the CCM gross sample (Figure 
4B, dashed boxes). The enlarged images were 
presented in Figure 4B and Figure 5. The single- 
channel images can differentiate components based 
on spectral pseudo-color. The multi-color composite 
images can highlight the signal intensity and feature 
distribution. When the features appeared pink (Figure 
4E), the signal of the TPEF-1 channel was relatively 
strong, indicating that the location was the vessel wall 
or the brain parenchyma contained NADH and FAD. 
If the image showed purple or even white, the signal 
of the TPEF-2 channel was stronger, implying that 
there was a certain amount of hemosiderosis at this 
location. In summary, we can select two-channel 
MPM to rapidly scan the large-scale specimen, or 
utilize three-channel MPM to more accurately 
diagnose CCM histopathological features and further 
perform quantitative histopathological analysis.  

Quantitative visualization of hemorrhage 
regions based on multichannel MPM images 

Three-channel MPM images can precisely 
display the distribution of hemosiderin compared 
with the gross sample. Therefore, the fifth position 
selected the larger perilesional region containing 
hemosiderin at different deposition levels (Figure 5). 
There was obvious hemosiderosis near the blood 
vessels, as well as scattered hemosiderin deposition in 
the surrounding regions (Figure 5A). To enhance the 
applicability of qMPM in resection decisions, we 
quantitatively visualized the hemorrhage and 
hemosiderosis extent based on three hemosiderin- 



Theranostics 2022, Vol. 12, Issue 15 
 

 
https://www.thno.org 

6601 

related parameters (i.e., serious hemorrhage ratio 
(SHR), hemorrhage extent (HRE), and cumulative 
hemosiderosis level (CHSL)). The SHR and HRE 
reflect different degrees of hemorrhage, respectively. 
The CHSL can reflect the accumulation of all 
hemosiderin, which is related to the pixel intensity 
and area of TPEF-2 channel. In Figure 5B, hemorrhage 
center area (HRCA, color-coded red), hemorrhage 
edge area (HREA, color-coded yellow), and 
perihemorrhagic hemosiderosis area (PHSA, 
color-coded blue) were visualized as a heatmap 
overlaid with gross sample. The uncovered area was 

considered to be the histologically normal area 
(HNA). The calculation of SHR, HRE, and CHSL in 
the four regions verified that the descent of parameter 
values was consistent with the distance from the 
hemorrhage center. Moreover, there were significant 
differences in the three hemosiderin-related 
parameters between perihemorrhagic hemosiderosis 
area and histologically normal area. Therefore, we 
believed that the blue perihemorrhagic hemosiderosis 
area could rapidly determine the extent of 
hemosiderosis. The visualization of the first position 
in the gross sample can be detailed in Figure S1. 

 

 
Figure 4. qMPM can detect CCM histopathological features in the large-scale specimen. (A) MRI of a left temporal CCM featured with a hypo-intense ring on the 
T2 sequence (dashed circle). (B) The corresponding fresh tissues including the CCM lesion and perilesional region. (C, D) Corresponding two-channel MPM image and 
H&E-stained image. (E) Perilesional areas of interest (dashed boxes) in the CCM gross sample (B) were captured for MPM imaging. 
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Figure 5. qMPM can quantitatively visualize the hemorrhage-related areas. (A) The enlarged image of the fifth position (dashed boxes in Figure 4B), with 
three-channel MPM and single-channel images respectively. Blue to yellow pseudo-color represents increased deposition intensity in the TPEF-2 channel, the strongest is red. (B) 
Quantitative visualization of hemorrhage-related areas and calculation of hemosiderin-related parameters (nHRCA = 211, nHREA = 245, nPHSA = 610, nHNA = 567, n depends on the size 
of the area, field of view (FOV) = 816 μm × 816 μm). SHR: serious hemorrhage ratio; HRE: hemorrhage extent; CHSL: cumulative hemosiderosis level. (C) The comparation of 
different degrees of hemosiderosis. The box plots quantitatively represent the hemosiderin diameter in these different deposition degrees (nHRCA = 152, nHREA = 90, nPHSA = 96, nHNA 
= 50, n depends on the quantity of hemosiderin, measured in twelve FOVs of 2041 μm × 2041 μm). Centerlines, medians; limits, 75 and 25%; whiskers, maximum and minimum. 

 
In addition, qMPM can also select to acquire the 

multiphoton histopathological features in the visua-
lized areas. Figure 5C qualitatively and quantitatively 
showed significant differences in hemosiderosis 
among the four areas. These perihemorrhagic 
hemosiderosis, like the infiltrating tumor cells, spread 
beyond the gross and radiographic margins, 
indicating that MPM can detect hemosiderin at 
various accumulation levels. Significantly, we found 
that 5 μm of hemosiderin deposits can often be 
detected in the perihemorrhagic hemosiderosis area, 
but rarely in the histologically normal area. As a 
result, qMPM provided a hemosiderin diameter- 
associated resection marker, that is, the location of the 
5 μm hemosiderin could be used to precisely deter-
mine the hemosiderosis area. Therefore, combined the 
visualization areas, the diameters of hemosiderin 
deposits with the multichannel MPM images, qMPM 

could aid neurosurgeons in their analysis of the 
corresponding parameters, then provide a resection 
guidance for the yellowish hemosiderin rim and even 
a larger area. 

Evaluation of the histopathology-based qMPM 
diagnostic capability on CCM  

Although MPM can compensate for the 
shortcomings of traditional histopathological diagno-
sis, clinicians must be trained on MPM images before 
using them for auxiliary diagnosis. To tend the 
diagnostic capability of qMPM, we constructed an 
unsupervised deep learning model, the CCM-oriented 
virtual staining generative adversarial network 
(CCM-stainGAN), which can transform two-channel 
and three-channel MPM images into virtual H&E and 
PPB stained images respectively (Figure 6A). Typical 
CCM histopathological features such as normal 
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vessels, vascular malformation and hemosiderosis 
were well preserved with high fidelity, accurately 
reconstructing an effect comparable to that of real 
H&E and PPB staining from MPM images (Figure 6B). 
To test the transformation of large-scale images, we 
partitioned them into multiple tiles and then stitched 
the predicted tiles together to obtain the final results. 
Compared to the CycleGAN, our model reconstructed 
richer and more realistic stained details from MPM 
images (Figure 6B). Notably, we compared the 
reference time consumed by MPM imaging combined 
with CCM-stainGAN and H&E digital scanning 
according to the scale of CCM histopathological 
features (Figure 6C). As a result, MPM imaging and 
virtual staining processes in qMPM can assist 
clinicians in more efficient diagnosis, which facilitated 
the adoption of qMPM in CCM histopathological 
diagnosis workflows. 

Subsequently, we performed a blind diagnostic 
analysis of MPM, virtual-stained, and H&E-stained 

images on three pathologists to verify the legibility of 
MPM and virtual-stained images (Table S2). The 
diagnostic accuracies of MPM were comparable to 
H&E for vascular malformation, hyaline degenera-
tion, hemosiderin, and gray matter. The represen-
tative error types were shown in Figure 7. MPM 
images can distinguish between normal and aging 
vessels more effectively than H&E staining (Figure 
7A), instead of hyaline and aging vessels with 
resembled morphology. While H&E-stained images 
might be beneficial for pathologists in distinguishing 
between aging and hyaline vessels (Figure 7B). In 
contrast, virtual staining, including H&E and PPB, 
performed the best diagnostic accuracy without 
requiring MPM training for pathologists (Table S2). 
The qMPM that MPM combined with CCM- 
stainGAN not only inherited the advantages of MPM 
but compensated for the deficiencies by allowing the 
unique characteristics of hyaline and aging vessels to 
be recreated realistically (Figure 7C).  

 

 
Figure 6. qMPM images can be transformed into virtual stained images using CCM-stainGAN. (A) The flowchart of CCM-stainGAN. Input MPM images are 
transformed into the virtual stained images by the forward generator (G), and then reconstructed to MPM images by the backward generator (F). Two classifiers (CMPM and Cstain) 
are built for inferring the category of tissue component. Two discriminators (DMPM and Dstain) are trained together with generators to evaluate the quality of transformed images 
and to improve the fidelity of generators. The cycle consistency constraint is enforced to guarantee the cycle-reconstructed MPM images as close to the input MPM images as 
possible. The deep feature consistency and the tissue component consistency ensure that the output virtual stained images have both the histopathological detailed features and 
the MPM image information. (B) The transformation results of typical CCM histopathological features. The images of adjacent stained sections were presented as ground truth 
(GT). Compared with CycleGAN, CCM-stainGAN preserved more histopathological structures and exhibited superior restorability in large-scale images. (C) Comparison of 
reference time consumption between multiphoton imaging combined with virtual staining and H&E digital scanning on images at different scales. 
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Figure 7. qMPM implements with virtual staining have the capacity to assist neuropathologists in diagnosis. (A) Confusion matrix of MPM diagnosis. Errors 
occurred mainly in mistaking aging for hyaline (8/33) and mistaking hyaline for aging (3/66). (B) Confusion matrix of H&E diagnosis. Mistakes occurred mainly between normal and 
aging vessels, with error rates of 4/33 and 2/33. (C) Diagnostic results of virtual staining. Reconstructed details of hyaline and aging vessels were improved compared with MPM. 
Besides, the normal vessels were correctly diagnosed in 31/33 due to the CCM-stainGAN preserving the histological structures in MPM images. 

 

Table 1. CCM histopathological features observed in MPM and the corresponding H&E-stained images. 

Histopathological features MPM H&E 
Normal vessels Distinct three-layered vascular structures, consisting collagen fiber (SHG), smooth muscle 

(TPEF), and elastic fibers (TPEF) 
Vascular layer structures (pink color), 
endothelial cells (blue color) 

Vascular malformation Multiple dilated blood-filled caverns with little or no intervening brain parenchyma (TPEF). 
Vascular wall appears elongated collagen fiber (SHG) without the smooth muscle and elastic 
fiber  

Multiple dilated blood-filled caverns with 
little or no intervening brain parenchyma 

Hyaline degeneration Homogeneous translucent regions (SHG) and dense fibrillar collagen deposition (TPEF) in the 
vascular wall, displaying unobvious vascular cavity 

Dense and homogeneous fibrillar collagen 
without obvious vascular cavity 

Vascular collagen aging Twisted vascular wall (both SHG and TPEF) Twisted vascular wall (blue color) 
Gliosis Higher cell density (TPEF) associated with hemosiderosis or vascular degeneration (TPEF or 

SHG) 
Proliferation or hypertrophy of glial cells 

Hemosiderin-storing 
macrophages 

Dark nucleus surrounded by granules (strong TPEF) Foamed shape macrophages (need confirmed 
by PPB) 

Hemosiderin Granular deposition (both strong SHG and TPEF) Granular deposition (some appear yellow or 
brown color, need confirmed by PPB) 

CCM: Cerebral cavernous malformation; MPM: multiphoton microscopy; H&E: hematoxylin-eosin; SHG: second harmonic generation; TPEF: two-photon excited 
fluorescence; PPB: Perls Prussian Blue. 

 
 
Finally, we clarified the MPM histopathological 

diagnostic criteria in CCM by comparing it to their 
H&E histopathology (Table 1). The results showed 
that these two modal images were consistent in 
identifying the vascular structure, but the MPM 
images can display the layered structure of the blood 
vessels with higher contrast (Figure 7B). In terms of 
perilesional hemosiderosis, MPM can identify 
hemosiderin particles at a micron scale. H&E had 
higher specificity for the nuclear atypia. Table 2 

overviewed the qMPM functions and promising 
clinical significance related to CCM histopathological 
features. The combination of Table 1 and 2 can serve 
as guidelines for pathologists and surgeons to train 
image-assisted diagnosis of qMPM. Our results 
suggested that qMPM could complement traditional 
histopathological diagnostic methods in the clinical 
workflows, which will make a more definitive 
intraoperative or postoperative CCM diagnosis. 
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Table 2. The guidelines for qMPM histopathological diagnosis of CCM. 

Histopathological 
features 

Vascular structure Cellular structure  Gliosis Hemosiderin-laden 
macrophages 

Hemosiderin 

Modality/target 
substances  

SHG/collagen fiber; 
TPEF-1/smooth muscle; SHG, 
TPEF-1/elastic fiber 

TPEF-1/ 
hemoglobin, NADH, FAD, 
porphyrin 

TPEF-1/ 
NADH, FAD 

TPEF-2/ 
hemoglobin, NADH, FAD 

SHG/ferritin;  
TPEF-2/iron-binding 
complexes 

Excitation wavelength 
(nm) 

790-860 (810, optimum) 770-890 (810, optimum) 

Customized 
post-processing 
algorithms 

The classifier of vascular patterns  
Quantitative visualization of hemorrhage regions, deep-learned virtual staining (CCM-stainGAN) 

Observed events  Structural changes of vascular 
wall, vascular hyaline 
degeneration, collagen aging 

Cell morphologic changes, 
metabolic changes 

Visualization of the perilesional hemorrhage regions, visualization of 
microhemorrhages sites, hemosiderin-related parameters 

Potential clinical 
applications 

Postoperative prognosis 
evaluation 

Histopathological diagnosis Intraoperative resection guidance, CCM-related seizures analysis, surgical 
endoscopy 

Imaging advantages High specificity and sensitivity Single-cell resolution Multiple 
molecular signal 

Micron-scale hemosiderin Strong autofluorescence 
signal 

Imaging limitations Microvascular signal is slightly 
weak 

Lack of intranuclear details may impair ability 
to detect small morphological changes in glial 
cells 

Smaller iron deposits might 
be confused with impurities 

Photodamage risks caused 
by long time excitation 

Histopathological 
staining methods 

Masson/EVG H&E GFAP PPB PPB 

CCM: Cerebral cavernous malformation; qMPM: quantitative multiphoton microscopy; SHG: second harmonic generation; TPEF: two-photon excited fluorescence; NADH: 
nicotinamide adenine dinucleotide; FAD: flavin adenine dinucleotide; H&E: hematoxylin-eosin; EVG: Elastin van Gieson; PPB: Perls Prussian Blue; GFAP: glial fibrillary 
acidic protein. 

 

Discussion 
The International League Against Epilepsy 

(ILAE) Commission has reported the predictors of 
CCM postoperative seizure freedom, including the 
small size of the CCM lesion, a lower preoperative 
seizure frequency, and removal of the surrounding 
hemosiderin rim [2]. The extent of resection is the 
strongest but controversial predictor [3, 6-8, 28]. The 
malformed blood vessels in the CCM lesion are prone 
to rupture and lead to microhemorrhage, and may 
eventually develop hyaline degeneration, collagen 
aging, gliosis, hemosiderin, and even focal cortical 
dysplasia in the adjacent tissue, therefore could make 
the diagnosis complicated [29]. Moreover, hemoside-
rosis in the perilesional parenchyma has been 
proposed to induce epileptogenesis due to free iron 
and radicals generating a multitude of intracellular 
reactions [2, 30, 31]. Therefore, the visualization of 
cavernous diseased vessels and hemosiderin-related 
deposition can assist neurosurgeons to determine the 
extent of resection more precisely. 

MPM is the most suitable tool for imaging the 
histopathological features according to the spectral 
differences of endogenous molecules. Inspired by the 
resection requirements of CCM-associated epilepsy, 
we focused on two critical regions, the vascular 
pattern in the lesion and the hemosiderosis in the 
perilesional region. In this study, we firstly identified 
four vascular patterns using two-channel multiphoton 
imaging modality and then revealed three micron- 
scale hemosiderin-related products with three- 
channel multiphoton imaging modality. Following 
that, we developed three post-processing algorithms 
for CCM multiphoton images, combined as qMPM, to 

provide more effective guidance for resection. The 
first is a classifier that can automatically inform 
clinicians about vascular patterns based on SHG 
image features with 96.9 % AUC value, which provide 
a postoperative evaluation tool and will contribute to 
the examination of the association between different 
vascular patterns and the risk of CCM hemorrhage. 
The second is a quantitative visualization that can 
map different degrees of hemorrhage regions and 
cumulative hemosiderin onto fresh tissue like 
intraoperative fluorescence, and provide three 
quantitative hemosiderin-related parameters, which 
has the potential to guide neurosurgeons to perform 
label-free intraoperative resection more precisely. The 
third is deep-learned virtual staining. Virtual H&E 
and PPB stained images combined original staining 
information with unique MPM features to achieve 
higher histopathological diagnostic accuracy in blind 
analysis, validating the legibility of multiphoton 
images. In comparison to conventional MPM, qMPM 
solved the CCM diagnosis issues from the both 
dimensions of imaging capability expansion and 
customized algorithm development, provided MPM 
with more comprehensive quantitative information, 
as well as demonstrated the potential application 
value of qMPM in CCM resection. 

Different resection strategies, such as pure 
lesionectomy, lesionectomy including hemosiderin 
rim, and extended resections, are critical to the 
prognosis of CCM-associated epilepsy. Most studies 
have reported significantly better outcome of 
CCM-associated epilepsy when the surrounding 
hemosiderin rim and gliosis were removed [1, 2, 5, 
30-37]. However, there is also some debate on the 
lesions and the outcomes of epilepsy [35, 38-40], and 
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the duration of epilepsy is associated with multiple 
underlying factors (e.g., white matter volume loss or 
asymmetrical brain morphologic changes) [41-43]. To 
be sure, the histopathological changes in CCM 
surrounding or remote tissue definitely play a 
significant role in the generation of seizures [1, 30, 32, 
38, 44]. In addition to hemosiderin and gliosis 
visualized in this study, MPM also has been shown to 
be capable of detecting secondary epileptogenic 
contributors that affected resection, such as neuronal 
damage, cortical dyslamination, and hippocampal 
sclerosis [23, 45-47]. Hence, the proposed qMPM not 
only contributes to the histopathology-level resection 
of CCM-associated epilepsy, but will provide 
additional insights into the controversial discussion 
on the value of removing hemosiderin tissue for 
seizure outcomes. 

However, it is also worth mentioning that the 
several practical considerations for clinical adoption 
of this approach. Firstly, although qMPM has the 
potential to assist clinicians for resection, micro-
hemorrhage is not the only predictor that induces 
epilepsy. It is currently difficult to detect all 
epileptogenic zone using label-free optical imaging 
[33, 38, 40], because some remote epileptic foci and 
eloquent cortex need to be identified in combination 
with functional techniques, such as intraoperative 
electrocorticography (iECoG) or intraoperative MRI 
(iMRI) [33, 39]. More importantly, if the hemosiderin- 
related lesion is involving or closer to eloquent 
regions, removal of hemosiderin is not recommended 
in order to prevent neurological deficits, even when 
epileptogenic foci have been identified by iECoG [31, 
33]. Therefore, qMPM can currently minimize the 
postoperative seizures rather than completely achieve 
seizure freedom. We are trying to collect more 
multicenter samples to provide stronger evidences for 
the prediction of the margins, and the robust of 
algorithmic models. On the other hand, the 
customized image algorithms are post-processing tool 
implemented in qMPM, which needs to acquire the 
images first and then process them. From bench to 
bedside, clinical qMPM need integrate the image 
processing algorithms into multiphoton imaging 
system with the heterogeneous parallel computing 
platform, resulting in a fully automatic and real-time 
intraoperative resection diagnosis. 

As label-free MPM has progressed in clinical 
fundamental research, clinical limitations such as low 
intraoperative imaging resolution and insufficient 
imaging depth have emerged. Fortunately, these 
challenges have guided the advancement of 
multi-mode [48] and miniaturization [49, 50] 
multiphoton instruments, presenting a series of 
cutting-edge imaging technologies with multiple 

endogenous contrasts, smaller device size, and faster 
scanning speed. As a result, our preliminary results 
laid the foundation for the clinical requirements of 
CCM. The adoption of qMPM will promote the 
development of MPM diagnostic systems. With the 
iterative optimization of GRIN lens [51], photonic 
crystal fiber [52], laser source [53], as well as 
intelligent algorithm [54], future miniaturized 
hand-held quantitative multiphoton fiberscope will 
combine iMRI, iECoG, and functional navigation to 
assist neurosurgeons in tailoring resection of CCM 
lesions, most of the non-functional hemosiderin rim, 
and epileptogenic foci [33]. This fusion of multimodal 
and multiscale features not only avoids damage to 
surrounding eloquent areas, but also has the greater 
potential to design a suitable approach and trajectory 
for precise resection [33, 37, 55, 56]. In addition, the 
joint research of qMPM and clinical instruments could 
also develop a link between clinical needs and 
imaging researchers, so that qMPM can be applied in 
more disease diagnosis, and further enhance the 
translational potential of qMPM. 

Materials and methods 
Sample preparation 

A total of 35 specimens were collected from 12 
patients with CCM-related epilepsy. The imaging 
results and corresponding histological diagnosis were 
jointly reviewed by an imaging researcher (S.W.), a 
trained neuropathologist (X.W.), a neurosurgeon 
(S.S.), and a radiologist (R.L.). All patients either 
provided written informed consent or had an 
authorized representative consent on their behalf for 
tissue biopsy collection. All processes were approved 
by the Fujian Medical University Clinical Research 
Screening Committee for Studies Involving Human 
Subjects.  

After tissue resection, the tissue sample was cut 
into serial sections of 10 μm thickness by a freezing 
microtome. For multiphoton microscopic imaging 
experiment, the section was perfused with a small 
amount of phosphate-buffered saline (PBS) to avoid 
tissue shrinkage, and placed a cover slip on the 
PBS-moistened specimens. The adjacent sections were 
stained with H&E, EVG, and PPB according to the 
standard protocol for the histopathological control 
experiment. These three different stainings were used 
to verify the multiphoton imaging results of CCM 
histopathological features, vascular structure, and 
hemosiderosis, respectively. 

MPM system 
The MPM system mainly included a laser 

scanning microscope (Zeiss LSM 880 META, Jena, 
Germany) and an external mode-locked Ti: sapphire 
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laser (140 fs, 80 MHz), tunable from 690 to 1064 nm 
(Chameleon Ultra, Coherent, Inc., Santa Clara, 
California). The MPM system schematic was 
presented in Figure S2. In our experiment, the optimal 
imaging excitation wavelength was 810 nm. The 
SHG/TPEF signals were generated on the sample 
using an average laser power of 30 mW. The emission 
signals were either spectrally separated by passing 
through a grating onto the 32-channel GaAsP 
photomultiplier tube (PMT) array detectors to obtain 
the TPEF signal and onto a flanking PMT detector to 
get the SHG signal. Additionally, the 32-channel 
GaAsP PMT array detectors (410-695 nm) also used to 
obtain the emission spectrum intensity. The spectral 
resolution was 9 nm. 

To rapidly detect large-scale multiphoton 
images, two independent channels were set as 
follows: (i) SHG channel (395-415 nm, color-coded 
green) was used to visualize the vascular structures; 
(ii) TPEF channel (428-695 nm, color-coded red) was 
mainly used to visualize the cellular structures. To be 
more specific, we set up three independent channels 
to identify CCM histopathological details: (i) SHG 
channel (395-415 nm, color-coded green); (ii) TPEF-1 
channel (428-570 nm, color-coded red) was mainly 
used to visualize NADH and FAD from cells; (iii) 
TPEF-2 channel (600-695 nm, color-coded cyan to 
white) was used to detect hemosiderin-related 
products. The large-scale multiphoton images were 
obtained by a Plan-Apochromat objective (10×/N.A.= 
0.45, Zeiss) for evaluating the tissue architecture. We 
acquired histopathological details at different scales 
by switching to a Plan-Apochromat objective 
(20×/N.A.=0.8, Zeiss) or zooming in on the region of 
interest (ROI). To obtain whole-slide multiphoton 
pathological images, the mosaic imaging of the 
sample was performed by transverse (xy) scanning of 
the motorized microscope stage (H1P2SLSM, Prior 
Scientific Instruments Ltd., Cambridge, UK). All 
frames (1024 × 1024 pixels, 12-bit pixel depth) were 
automatically recorded and stitched by Zeiss 
software, and the adjacent frames had 20% overlap. 
The acquisition time of a single frame (512 × 512 
pixels) took 0.077 s by the bidirectional scanning 
mode. 

Classification of vascular patterns 
A total of 142 features, including 8 morphologic 

features and 134 textural features, were extracted 
based on SHG images (n = 82) performed the collagen 
feature extraction algorithm [22, 23]. The least- 
absolute shrinkage and selection operator (LASSO) 
logistic regression was used to select the most 
potential predictors from high-dimensional data. 
Subsequently, the 23 most instructive features, consist 

of 5 morphological features and 18 texture features, 
were selected according to the optimal value of λ 
(0.006579) determined by five-time cross-validations. 
The SVM classifier was established to automatically 
discriminate the vascular patterns utilizing the 23 
features. The leave-one-out cross-validation method 
was used to prevent overfitting and to evaluate the 
generalization ability of the model. We used a receiver 
operating characteristic (ROC) curve as the ultimate 
evaluation criterion of the classifier’s performance. 

Quantitative visualization of hemorrhage 
regions 

We calculated three hemosiderin-related 
parameters in a three-channel MPM image, including 
serious hemorrhage ratio, hemorrhage extent and 
cumulative hemosiderosis level, to quantitatively 
visualize the hemorrhage-related areas. The area of 
SHG signal (SSHG), TPEF-1 signal (STPEF-1), and TPEF-2 
signal (STPEF-2) were obtained by summing up the 
pixels of each channel. The intensity of TPEF-2 signal 
(ITPEF-2) was quantified by calculating the total 
intensity of pixels in TPEF-2 channel. The above 
parameters are given by  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℎ𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑆𝑆 𝑆𝑆𝑎𝑎𝑟𝑟𝑆𝑆𝑆𝑆 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−1

     (1) 

𝐻𝐻𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑆𝑆 𝑆𝑆𝑒𝑒𝑟𝑟𝑆𝑆𝑒𝑒𝑟𝑟 =  𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−2
𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−1

      (2) 

𝐶𝐶𝑆𝑆𝑒𝑒𝑆𝑆𝐶𝐶𝑎𝑎𝑟𝑟𝑆𝑆𝐶𝐶𝑆𝑆 ℎ𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶 =  𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−2 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−2      
(3) 

The hemorrhage center area was mapped in 
color-coded red according to the value of serious 
hemorrhage ratio. The hemorrhage edge area was 
visualized based on the difference set of hemorrhage 
extent and serious hemorrhage ratio, mapped in 
color-coded yellow. The perihemorrhagic hemoside-
rosis area was the difference set of cumulative 
hemosiderosis level and hemorrhage extent, mapped 
in color-coded blue. Then, three areas were visualized 
in form of a heatmap onto the fresh tissue. The above 
processes were implemented by Python 3.9.6 (Python 
Software Foundation). Finally, the neurosurgeon 
(S.S.) and neuropathologist (X.W.) verified the 
visualization results. 

CCM-stainGAN  
CCM-stainGAN can transform label-free MPM 

images to the corresponding H&E or PPB histopatho-
logical stained images without pixel-level registered 
MPM-staining training pairs based on the CycleGAN 
framework [57]. CycleGAN has the capacity to learn 
the transformation from the MPM images to the 
stained images, but shows weak constraint in the 
complex histopathological domains. Therefore, 
CCM-stainGAN additionally introduced the deep 
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feature consistency and tissue component consistency 
for more reliable transformation task of complex 
histopathological features in CCM (Fig. 6A). The 
tissue component consistency was mainly reflected in 
the classification of tissue components, such as 
various vascular patterns and hemosiderin-related 
products, which was crucial information for correct 
transformation of the different tissue component. A 
classifier was built independently from the generator, 
which adds classification constraint to the 
transformation of images. The tissue component 
consistency requires the component outputs of 
classifier to be identical as well for the corresponding 
domains. The deep feature consistency contained 
de-staining feature constraint and saliency content 
constraint [58], which was used to achieve high-level 
transformation of the same tissue component. More 
details can be found in Note S1 and Note S2 in 
Supplementary Material. Furthermore, an ablation 
study was performed to determine the contribution of 
loss functions to the performance of CCM-stainGAN 
(Figure S3 and Figure S4). 

The generator architecture of CCM-stainGAN 
was modified based on the skip connection and 
residual net (Figure S5). The generator concatenated 
the encoder and decoder by using the skip connection 
to improve structure details and utilized residual 
block to prevent the gradients vanish in deep 
network. For the discriminator, we adopted the 
PatchGAN classifier, which encouraged high- 
frequency details of the image. In the training process, 
the network parameters were optimized by the Adam 
optimizer, and the model was trained by end-to-end 
backpropagation. The learning rate is initially set at 
0.0002, and the exponential decay rate is 0.999. The 
above processes used Python 3.6 based on the 
open-source deep-learning library PyTorch on a 
single NVIDIA RTX 3090 with 24 G memory for 
training and testing. 

Statistical analysis 
Statistical analyses were performed using 

GraphPad Prism software (version 9.0.0, GraphPad 
Software). To compare three or more groups, a 
one-way analysis of variance (ANOVA) was utilized, 
followed by Tukey's multiple comparisons test. If the 
normality test failed, Kruskal-Wallis test and Dunn's 
multiple comparisons test were used. The significance 
level is displayed as asterisks, and the value P < 0.05 is 
considered to be statistically significant (*P < 0.05, **P < 
0.01, ***P < 0.001, ****P < 0.0001; NS, not significant).  

Blinded analysis  
We subjected datasets from 10 specimens to a 

blind diagnostic analysis. MPM images were 

randomly divided into ‘training set’ and ‘validation 
set’ according to the ratio of 2:8. The ‘training set’ 
consisted of 28 MPM images (5 normal vessels, 3 gray 
matter, 5 vascular malformation, 6 hyaline degenera-
tion, 4 aging vessels, and 5 hemosiderin) and 
corresponding H&E-stained images. The remaining 
MPM images, H&E-stained images, and virtual- 
stained images (a total of 333 images) were assigned 
as the ‘validation set’. Three neuropathologists (L.Z., 
C.H., and X.W.) observed the ‘training set’ to learn 
and familiarize with the optical characteristics on 
MPM images. The training process took less than 30 
min. Afterward, the trained neuropathologists were 
shown the blinded MPM images in the ‘validation 
set’, and then classified categories of diagnostic 
features. One week later, the same neuropathologists 
diagnosed the corresponding H&E-stained images. 
Another week later, they diagnosed the 
virtual-stained images. Lastly, the results were 
compared to the blind codes for diagnostic accuracies 
and further analysis.  
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