
Theranostics 2022, Vol. 12, Issue 15 
 

 
https://www.thno.org 

6809 

Theranostics 
2022; 12(15): 6809-6825. doi: 10.7150/thno.73336 

Research Paper 

High-dimensional Single-cell Analysis Delineates Peripheral 
Immune Signature of Coronary Atherosclerosis in Human 
Blood 
Lin Fan1,2*, Junwei Liu3,4,5,8*, Yang Zhang1*, Chenyun Zhang1,2, Beisheng Shi1,2, Xinyang Hu1,2, Wei 
Chen1,2,5,6, Weiwei Yin5,7, Jian’an Wang1,2 

1. Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China. 
2. Key Laboratory of Cardiovascular of Zhejiang Province, Hangzhou 310009, China. 
3. Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310000, China. 
4. Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 

310000, China. 
5. Key Laboratory for Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. 
6. School of Basic Medical Science, Zhejiang University, Hangzhou 310058, China. 
7. Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China. 
8. Present address: Guangzhou Laboratory, Guangzhou, Guangdong 510005, China. 

*These authors contributed equally to this work. 

 Corresponding authors: Jian’an Wang (wangjianan111@zju.edu.cn), Weiwei Yin (wwyin@zju.edu.cn), Wei Chen (jackweichen@zju.edu.cn), and Lin Fan 
(fanlin@zju.edu.cn). 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2022.03.28; Accepted: 2022.09.09; Published: 2022.09.21 

Abstract 

Rationale: Pathogenesis of human coronary atherosclerosis is tightly associated with the imbalance of 
inflammation and resolution in the local immune microenvironment of AS plaques. However, how the 
peripheral immune system dynamically changes along with disease progression in humans remains 
unclear. As a result, the minimally-invasive clinical biomarkers that can sensitively distinguish different 
stages of human coronary atherosclerosis are still lacking. 
Methods: We performed single-cell Cytometry by Time-Of-Flight (CyTOF) analyses to 
comprehensively profile the compositions and phenotypes of CD45+ cells derived from 83 human 
peripheral blood samples with two independent antibody-staining panels (T cell panel and myeloid cell 
panel). Clinical associations between the frequencies of peripheral immune cell subsets with AS plaque 
burdens of coronary arteries (Gensini score) and serum lipids were also examined. By integrating 
immune and clinical features, we established novel CVD risk prediction models to stratify patients in 
different disease stages. 
Results: We revealed the disease stage-associated peripheral immune features for patients with 
coronary atherosclerosis (CAS) and atherosclerotic cardiovascular disease (ASCVD), and also identified 
the specific peripheral immune cell subsets that were tightly associated with the disease severity of 
coronary arteries (Gensini score). By integrating these peripheral immune signatures with clinical 
features, we have established a disease progression prediction (DPP) model that could precisely 
discriminate CAS patients from ASCVD patients with high prediction accuracy (ROC-AUC = 0.88). 
Conclusion: The progression of coronary atherosclerosis is accompanied by significant alterations of 
the peripheral immune system, including the changes in the distributions as well as phenotypic functions 
of specific immune cell subsets. The indicated stage-specific peripheral immune signatures thus become 
promising minimally-invasive liquid biomarkers that could help to potentially diagnose and monitor the 
CVD progression in humans. 
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Introduction 
Cardiovascular disease (CVD) is the leading 

cause of global deaths, representing over one-third of 
all deaths worldwide [1]. Atherosclerosis (AS), as the 
primary underlying pathogenesis of CVD, is a chronic 
inflammatory disorder characterized by endothelial 
dysfunction, immune cell activations, and the 
formation of lipid-laden atheroma in the large and 
medium-sized arteries [2, 3]. Immune cells and 
immune responses are implicated in all stages of 
atherogenesis, from fatty streaks to mature plaques or 
even the rupture of vulnerable plaques [4]. Coronary 
artery inflammation is a key modulator in disease 
initiation and progression, which also influences the 
high-risk plaques and adverse cardiovascular events, 
e.g., stable angina pectoris (SAP), unstable angina 
pectoris (UAP), and acute myocardial infarction 
(AMI) [5-7]. Recent studies have revealed the 
unprecedented complexity of phenotypes and 
functionalities of intra-plaque immune cells at the 
single-cell levels [8-10]. Moreover, the elevated serum 
levels of C-reactive protein (CRP) and interleukin 
(IL)-6 are detectable in CVD patients [11, 12], 
suggesting systemic inflammatory responses accom-
panying the progression of coronary atherosclerosis. 

Atherogenesis is initiated by dysfunction of 
endothelial integrity and retention of cholesterol- 
carrying low-density lipoprotein (LDL) particles that 
elicit arterial inflammatory responses, which further 
recruit an influx of peripheral immune cells into the 
injured vascular endothelium [13, 14]. Monocytes 
accounting for nearly 5% of peripheral immune cells 
are playing crucial roles in bridging innate and 
adaptive immunity and driving inflammatory 
responses [15]. Monocyte-derived macrophage is one 
of the major immune cell subsets within AS plaques 
[16]. In the initiation phase, circulating monocytes 
mobilize to oxidized LDL (ox-LDL) or the other 
athero-antigens, triggering a continuous influx of 
monocytes towards sub-endothelial space and locally 
polarizing into diverse phenotypes of tissue-resident 
macrophages in response to the environmental 
stimulus. Based on the expressions of CD14 and 
CD16, peripheral monocyte subsets (i.e., classical-, 
intermediate-, and non-classical monocytes) are 
phenotypically and functionally varied, 
demonstrating diverse pro-inflammatory profiles and 
migratory potentials in atherogenesis [17]. Besides, 
the distributions and phenotypic shifting of diverse 
monocyte subsets have been proved to be correlated 
with CVD prognosis and also could be potential 
liquid biomarkers and immune targets for treating 
human atherosclerosis in coronary arteries [18, 19]. 

Besides monocytes, T cells in peripheral blood 
are also recruited into the inflamed plaques to closely 

interact with antigen-presenting cells (e.g., dendritic 
cells and macrophages) and thereby activate, 
differentiate, and elicit clonal expansion of antigen- 
specific TCR repertoires, producing inflammatory 
cytokines, and thereby deteriorating AS progression 
[20-23]. A previous study has demonstrated that 
systemic T cell activation also exists in the peripheral 
blood of patients with stable angina or acute coronary 
syndrome [24]. Further clinical evidence has linked 
the alterations of specific T cell populations in 
peripheral blood with CVD risks, including 
CD4+CD28null, T-helper 1 (Th1), T-helper 17 (Th17), 
regulatory T (Treg), and CD8+ T cells [25-27]. These 
studies indicate that the distributions and phenotypes 
of T cells have experienced great changes during 
atherogenesis, and thus could be served as promising 
liquid biomarkers to predict CVD risks [28-30]. 

In the past few decades, multiple CVD risk 
prediction models have been proposed and used 
[31-33]. Although some of them have achieved good 
performances in separating non-AS and AS patients 
[34, 35], the prediction models that could well 
discriminate patients with coronary atherosclerosis at 
different stages are still lacking. Despite the increasing 
of novel biomarkers (e.g., immune-based biomarkers) 
associated with CVD have been identified, none of 
these prediction models has considered the immune 
system (especially peripheral immune signature) as a 
risk factor in their models yet [36]. Given the 
important roles of immune cells and immunity in 
CVD pathogenies, in-depth characterization of the 
disease-specific changes in the distributions and 
phenotypes of peripheral immune cells could provide 
additional insight to portray CAS and CVD patients. 
Therefore, in this study, we comprehensively 
examined the compositions, phenotypes, and 
interplays of peripheral immune cells by using 
single-cell CyTOF analyses, aiming to precisely 
identify the disease-specific peripheral immune 
signatures of CAS and ASCVD in humans. 

Methods 
Human Specimens and Ethics Statements 

This study was approved by the Ethical 
Committee and Institutional Review Board of The 
Second Affiliated Hospital of Zhejiang University 
School of Medicine (ID: #2017-102). We obtained fresh 
peripheral blood (PB) samples from The Second 
Affiliated Hospital of Zhejiang University School of 
Medicine (Hangzhou, China). All sample donors have 
provided their informed consent before sample 
collection. 

Inclusion criteria are included: individuals who 
(1) do not have any AS plaque-induced stenosis in the 
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coronary artery, carotid artery, and lower-limb 
arteries are enrolled in the non-atherosclerosis healthy 
control (NC) group; (2) are diagnosed with AS 
plaque-induced stenosis < 50% in the coronary artery 
are enrolled in coronary atherosclerosis (CAS) group; 
(3) are diagnosed with AS plaque-induced stenosis 
between 50% and 99% in the coronary artery are 
enrolled in the atherosclerotic coronary vascular 
disease (ASCVD) group. Exclusion criteria are 
included: the individual who (1) has tumor diseases, 
infectious diseases, severe liver/renal damages, or 
any systemic inflammatory conditions; (2) has 
received chemotherapy, radiotherapy, or any 
medications that might impair the systemic immune 
system; (3) has a history of vasculitis, myocardial 
infarction, myocarditis, heart failure, or stent/ 
pacemaker implantation; (4) is in pregnancy or 
perinatal period. In total, we have obtained 83 PB 
samples, including 13 for NC, 38 for CAS, and 32 for 
ASCVD. The demographic parameters of sample 
donors are listed in Table 1, and the date of individual 
recruitment is listed in Table S1. 

Single-cell Processing of Peripheral Blood 
Samples 

PB samples were stored in 10 ml EDTA 
anti-coagulation tubes (BD Biosciences, Cat. No. 
366643) at 4 °C after acquisition and processed into 
single-cell suspensions of whole blood immune cells. 
Briefly, the samples were centrifuged for 5 min (400 to 
500 g, 4 °C) to remove plasma, transferred into a 50 ml 
tube, and resuspended with a 30 ml ACK Lysis Buffer 
(Solarbio Life Sciences, Cat. No. R1010) to lyse red 
blood cells, followed by centrifugation for 5 min (400 
to 500 g, 4 °C) to remove supernatant. Afterward, the 
cells were washed twice with PBS buffer, 
resuspended, counted, and stored on ice. 

Antibody Labeling, Staining, and Barcoding by 
CyTOF 

Two pre-defined antibody-staining panels, 
including T cell panel (Table S2) and myeloid cell 
panel (Table S3), were independently used for single- 
cell CyTOF analyses. Metal-tag-conjugated antibodies 
were either directly purchased, or in-house made by 
conjugating the pure antibodies with corresponding 
metal tags using MAXPAR Antibody Labeling Kit 
(DVS Sciences) by following the standard protocol as 
previously described [37]. Metal-tag-conjugated 
antibodies were titrated into the optimized staining 
concentration and diluted to 0.5 mg/ml in Antibody 
Stabilization Solution (CANDOR Bioscience, Cat. 
No.55514) for storage at 4 °C. 

A total of 6 × 106 cells from each PB sample were 
collected and split into two equal aliquots, which (3 × 

106 cells per sample) were stained with the indicated 
conjugated antibodies of the T cell panel and myeloid 
cell panel, respectively. Briefly, the cells were 
resuspended and stained with Live/Dead 194Pt 
Cisplatin (Fluidigm, Cat. No. 201194) for 5 min and 
incubated with Fc Receptors Blocker Mixture 
(Equitech-Bio; anti-human/mouse/hamster/rat IgG) 
to block the non-specific Fc binding. Next, the cells 
were washed twice and incubated with a pre- 
configurated-antibody cocktail of cell surface markers 
for 30 min on ice, and then washed twice by Cell 
Staining Buffer (CSB; BioLegend, Cat. No. 420201), 
followed by incubation with Fix and Perm Buffer 
(Fluidigm, Cat. No. 1960962) that supplemented with 
250 μM 191Ir and 193Ir DNA Intercalator (Fluidigm, 
Cat. No. 201192B) at 4 °C for overnight. On the next 
day, the stained cells were washed twice by CSB and 
then incubated with a pre-configurated-antibody 
cocktail of intracellular markers in Permeabilization 
Buffer (eBioscience, Cat. No. 00-5523-00) for 30 min on 
ice. To minimize the batch effects, the stained cells 
from different PB samples were barcoded with 
palladium isotopes, i.e., 104Pd, 105Pd, 106Pd, 108Pd, and 
110Pd (Trace Sciences) by following the standard 
protocol [38, 39]. Afterward, the stained cells were 
washed twice by CSB, counted, and pelleted until 
loaded to the CyTOF platform (Fluidigm, USA). 

CyTOF Analysis 
Single cells of PB samples were analyzed by 

CyTOF as previously described [40]. Before loading 
the single-cell suspensions of PB samples into CyTOF, 
we performed a tuning and quality control procedure 
to calibrate CyTOF with Tuning Solution (Fluidigm, 
Cat. No. 201072) and EQ Four Element Calibration 
Beads (Fluidigm, Cat. No. 201078). The cells then were 
pelleted and resuspended to 1×106 cells/ml in double- 
distilled water (ddH2O; mixed with 20% EQ Beads) 
and passed through a 35 μm filter cap into a FACS 
tube (BD Biosciences, Cat. No. 352054). All parameters 
of CyTOF were set on the default mode, and raw data 
of PB samples were collected at an average rate of 300 
to 500 events/s. 

CyTOF raw data (.fcs) was firstly de-barcoded by 
using a doublet-filtering scheme [41], and EQ Four 
Element Beads were used as a standard reference to 
normalize the expression intensities of markers [42]. 
Debris and dead cells were manually gated out with 
FlowJo (v10.0.7, Tree Star) based on the following 
parameters: Event length, DNA Intercalator iridium 
(191Ir and 193Ir), and Cisplatin (194Pt) as previously 
described [43]. Then, the data for each sample was 
transformed by using the Arcsinh function with a 
cofactor of 5 and then pooled together for the 
downstream clustering analyses. Phenotyping by 
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Accelerated Refined Community-partitioning (PARC) 
algorithm [44] was applied to cluster the targeted cells 
and partition these immune cells into distinct 
phenotypes based on the expressions of typical 
immune lineage markers. Manual gating in FlowJo 
(v10.0.7, Tree Star) was applied to partition the cells 
into different immune cell types [39, 40], and major 
cell types were identified by using the conventional 
lineage markers (e.g., CD45, CD66b, CD3, CD4, CD8, 
CD19, CD56, CD14, CD16, CD33). t-distributed 
stochastic neighbor embedding (t-SNE) [45], a 
dimensionality reduction algorithm, was used to 
visualize the distributions of cell types and clusters of 
immune cells and their marker expressions. 

Quantification of AS Plaque Burden from 
Coronary Angiography 

AS plaque burdens of coronary arteries for 
individual patients from CAS and ASCVD groups 
were evaluated and quantified by Gensini Scoring 
System based on quantitative coronary angiography 
(QCA) as previously described [46, 47]. 

Gensini score =
lesion 1 (severity score × weighting factor) +

 lesion 2 (severity score × weighting factor) + ⋯+
lesion n (severity score × weighting factor). 

Briefly, the severity scores (1, 2, 4, 8, 16, and 32) 
indicate the relative reductions of lumen diameters 
(25%, 50%, 75%, and 100% accordingly) in the 
coronary artery. And, the weighting factors of 
different vascular segments are including the main 
left coronary artery (× 5); the proximal- (× 2.5), 
middle- (× 1.5), and distal (× 1) segment of the left 
anterior descending; the first (× 1) and second (× 0.5) 
diagonal; the proximal- (× 2.5) and distal (× 1) 
segment of the circumflex branch; the proximal- (× 1), 
middle- (× 1), and distal (× 1) segment of the right 
coronary artery. Gensini score evaluation of the 
patients from CAS and ASCVD groups was 
performed in a double-blind manner by two 
investigators. 

Establishment of Disease and Disease 
Progression Prediction Models 

We established two risk prediction models: one 
(called “Disease Prediction” model; DP model) was 
used to discriminate non-AS healthy individuals (NC 
group) from AS patients (CAS and ASCVD groups), 
and the other (called “Disease Progression Prediction” 
model; DPP model) was particularly designed to 
discriminate the low-severity patients (CAS group) 
from high-severity AS patients (ASCVD group). The 
model construction mainly consisted of two parts: one 
was for immune feature selection, and the other was 
for building up the Random Forest Model. 

Immune feature selection 
To balance the sample sizes across 3 groups, we 

(i) randomly sampled 25 cases from the pooled CAS 
and ASCVD groups (n = 70) and used the bootstrap 
resampling strategy [48] to obtain 25 cases from NC 
group (n = 13) for DP model; (ii) randomly sampled 
15 cases from CAS group (n = 38) and ASCVD group 
(n = 32) for DPP model. After data normalization, we 
used Random Forest Model [49] with a 10-fold 
cross-validation strategy to obtain the average feature 
importance for each immune cell cluster. We repeated 
this process for 1,000 times and selected the 
frequencies of immune cell clusters as the final 
immune features for modeling as they satisfied the 
following criteria: (1) when the importance of the 
feature > 0.04, counted as 1; otherwise, as 0; (2) it had 
more than 500 times as counted as 1. The finally 
selected immune features (i) for the DP model are 
M02, M03, M06, M11, M13, T05, T20, and T23; (ii) for 
the DPP model are M02, M06, M11, M15, NK04, T05, 
T15, T17, T20, and T23 (Figure 5B-C). The detailed 
information and calculated importance of selected 
immune features, clinical features, and combined 
features used for model construction are listed in 
Table S10. 

Modeling process 
We randomly selected 70% of samples for 

training and 30% of samples for testing. Specifically, 
for the DP model, we randomly sampled 50 cases 
from AS groups (25 samples each from CAS and 
ASCVD groups) and 50 cases from NC group (n = 13, 
using the bootstrap resampling strategy [48]) as the 
training dataset, and the remaining samples (n = 20 
for NC group; and n = 20 for CAS and ASCVD 
groups) were used for testing (Table S11). For the 
DPP model, we randomly sampled 25 cases 
respectively from CAS (n = 38) and ASCVD (n = 32) 
groups as the training dataset, and the remaining 
samples (n = 13 for CAS group; n = 7 for ASCVD 
group) were used for testing (Table S12). Using the 
selected peripheral immune features or clinical 
features or combined features, the Random Forest 
Models were trained via 10-fold cross-validation, and 
the average result of 10 models was considered as the 
final average model. The testing dataset was used to 
test the prediction accuracy of the constructed models 
by receiver operating characteristic curves (ROC). 
Furthermore, net benefits [50] were also examined to 
compare the prediction accuracies of DP and DPP 
models built with different feature sets. 

Statistical Analyses 
Clinical variables of three patient groups were 

either represented as mean ± standard deviation (SD) 
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for continuous variables or as the number (n) and 
percentage (%) for categorical variables. Chi-squared 
test was used for statistical analysis of categorical 
variables and the one-way ANOVA test was used for 
statistical analysis of continuous variables across 3 
groups. All boxplots for comparing the cell 
frequencies and marker expressions across 3 groups 
are shown as median ± inter-quartile range (IQR). 
Linear regression was used for analyzing the 
Spearman correlation coefficients (r-value) and 
p-values between the cluster frequencies and clinical 
characteristics (e.g., Gensini scores and serum lipids) 
across groups. Statistical analysis of each independent 
experiment was performed with a two-sided 
Student’s t-test with Benjamini-Hochberg adjustment. 
Adjusted p (p.adj) < 0.05 was considered statistically 
significant, with *p.adj < 0.05, **p.adj < 0.01, ***p.adj < 
0.001, and ****p.adj < 0.0001. All statistical analyses 
were calculated by using R software (version 4.1.1; 
https://www.r-project.org). 

Results 
Single-cell Immune Atlas of Peripheral Blood 
in Human Coronary Atherosclerosis 

To comprehensively delineate the peripheral 
immune landscapes and exploit the critical immune 
biomarkers specifically characterizing the initiation 
and progression of human CVD, we performed a 
single-cell CyTOF analysis of CD45+ cells derived 
from PB samples of the enrolled patients and healthy 
individuals. We obtained 83 PB samples, including 38 
for coronary atherosclerosis (CAS) group, 32 for 
atherosclerotic coronary vascular disease (ASCVD) 
group, and the other 13 for the non-atherosclerotic 
healthy control (NC) group. The clinical 
characteristics of the enrolled individuals were 
summarized in Table 1. Each PB sample was 
independently stained with two pre-defined 
antibody-staining panels (T cell panel, Table S2; 
myeloid cell panel, Table S3) to interrogate the 
lymphoid cells and myeloid cells, respectively. And 
we obtained approximately 8 × 107 CD45+ cells in 
total, with an average of 1 × 106 cells per sample for 
each antibody-staining panel, allowing us to 
implement a thorough characterization of disease- 
specific immune alternations at the different disease 
stages. 

After data pre-processing, we applied the 
Phenotyping by Accelerated Refined Community- 
partitioning (PARC) algorithm [44] to partition CD45+ 
cells into diverse cell clusters for the two antibody- 
staining panels, respectively (Figure S1A, S1D; Table 
S4, S5). And heterogeneous marker expressions 

across these identified immune cell clusters were 
displayed accordingly in t-SNE plots for T cell panel 
(Figure S1B-C) and myeloid cell panel (Figure S1E-F), 
respectively. We annotated 5 major immune cell types 
based on the expressions of typical immune lineage 
markers, including CD3+ T cells, CD19+ B cells, 
CD14+/-CD33+ myeloid cells, CD56+ NK cells, and 
CD45low CD66b+ granulocytes (Figure 1A-B). And the 
frequencies of these major immune cell types for two 
parallel experiments using two independent 
antibody-staining panels were highly correlated 
(r-values range from 0.97 to 0.99), demonstrating the 
high quality and consistency of our CyTOF data 
(Figure S1G). 

 

Table 1. Demographic and Clinical Features of the Cohorts 

Parameters NC (n=13) CAS (n=38) ASCVD (n=32) p-value 
Basic characteristics     
Age (years) 56.38 ± 5.04 56.50 ± 7.94 60.03 ± 7.59 0.111 
Male, n (%) 6 (46.2) 20 (52.6) 23 (71.9) 0.156 
BMI (kg/m2) 23.78 ± 2.98 23.48 ± 3.21 25.35 ± 3.63 0.053 
Ever smoker, n (%) 3 (23.1) 13 (34.2) 18 (56.3) 0.063 
Hypertension, n (%) 2 (15.4) 15 (39.5) 22 (68.8) 0.002 
Systolic pressure 
(mmHg) 

118.80 ± 11.74 127.00 ± 18.20 133.10 ± 20.31 0.058 

Diastolic pressure 
(mmHg) 

74.77 ± 7.80 76.65 ± 10.20 80.83 ± 8.20 0.069 

Hyperlipidemia, n (%) 2 (15.4) 14 (36.8) 21 (65.6) 0.004 
Diabetes, n (%) 0 (0) 5 (13.2) 4 (12.5) 0.390 
Laboratory 
examinations 

    

CK (U/L) 94.56 ± 38.85 72.87 ± 28.82 103.5 ± 42.72 0.003 
CK-MB (U/L) 16.14 ± 8.47 9.66 ± 5.14 13.13 ± 6.71 0.004 
LDH (U/L) 185.80 ± 28.34 177.70 ± 43.76 176.40 ± 29.23 0.724 
FBG (mmol/L) 6.41 ± 1.06 5.09 ± 0.94 5.96 ± 2.05 0.009 
UA (μmol/L) 324.10 ± 75.19 379.30 ± 121.40 384.40 ± 79.04 0.168 
AST (U/L) 19.81 ± 10.23 22.34 ± 17.72 28.01 ± 18.53 0.244 
ALT (U/L) 28.17 ± 6.11 27.84 ± 12.22 30.06 ± 10.19 0.675 
Cre (mg/dL) 62.77 ± 15.25 61.97 ± 13.10 74.28 ± 17.55 0.003 
WBC (×109/L) 5.94 ± 1.73 6.27 ± 1.54 6.48 ± 1.63 0.587 
Neutrophils (× 109/L) 3.67 ± 1.23 3.87 ± 1.18 4.10 ± 1.30 0.535 
Lymphocytes (× 109/L) 1.66 ± 0.41 1.76 ± 0.49 1.74 ± 0.54 0.796 
Monocytes (× 109/L) 0.46 ± 0.21 0.45 ± 0.15 0.45 ± 0.14 0.954 
Eosinophil (× 109/L) 0.13 ± 0.14 0.16 ± 0.17 0.15 ± 0.11 0.828 
Basophil (× 109/L) 0.04 ± 0.03 0.03 ± 0.01 0.03 ± 0.01 0.131 
TC (mmol/L) 5.02 ± 0.90 4.40 ± 0.77 4.22 ± 0.96 0.022 
TG (mmol/L) 1.35 ± 0.48 1.62 ± 0.91 1.87 ± 0.65 0.110 
HDL-C (mmol/L) 1.40 ± 0.26 1.31 ± 0.30 1.10 ± 0.24 <0.001 
LDL-C (mmol/L) 2.60 ± 0.57 2.19 ± 0.61 2.14 ± 0.67 0.074 
FFA (μmol/L) 238.00 ± 90.68 315.50 ±167.30 445.10 ± 169.50 <0.001 
Medications     
Statins, n (%) 0 (0) 12 (31.6) 19 (59.4) <0.001 
Aspirin, n (%) 0 (0) 7 (18.4) 18 (56.3) <0.001 
β-blocker, n (%) 0 (0) 5 (13.2) 14 (43.8) 0.001 
Ca2+ blocker, n (%) 0 (0) 7 (18.4) 13 (40.6) 0.008 
Clopidrogrel/Plasugrel, 
n (%) 

2 (15.4) 9 (23.7) 10 (31.3) 0.515 

Gensini Score 0 3.71 ± 2.30 29.05 ± 17.10 <0.001 

Categorical variables are shown as number (n) and frequency (%), and continuous 
variables are shown as mean ± SD. Chi-squared test and one-way ANOVA test are 
used for statistical analysis. 
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Figure 1. Immune Landscapes of Peripheral CD45+ Cells. (A and B) t-SNE plots of major immune cell types in CD45+ cells from 83 PB samples derived from NC, CAS, 
and ASCVD groups, analyzed with T cell panel (A) and the normalized expressions of major immune lineage markers (B). (C) t-SNE plots of density distributions of CD45+ cells 
across groups, with an equal number (3 × 104) of cells from each group. (D) Comparisons of frequencies of major immune cell types in (A) across groups. (E) Scatter plots of 
Pearson’s correlation coefficients (r-value) between the frequencies of 5 major immune cell types (T cells, B cells, myeloid cells, NK cells, and granulocytes) with Gensini scores 
in the diseased (CAS and ASCVD) groups. Unpaired Student’s t-test with Benjamini-Hochberg adjustment was used in (D), with *p.adj < 0.05. Pearson’s correlation coefficients 
(r-value) and p-value were labeled in (E). 

 
The overall distribution patterns of 5 major 

immune cell types are similar between CAS and 
ASCVD groups but distinct from NC group as 
displayed in their density t-SNE plots (Figure 1C). 
Frequency comparisons of major immune cell types 

across 3 groups revealed a distinct reduction of 
myeloid cells in CAS group as compared to NC (p.adj 
= 0.06) and ASCVD (p.adj < 0.05) groups (Figure 1D). 
Moreover, the frequency of myeloid cells shows a 
significantly positive correlation (r = 0.25, p = 0.041) 
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with AS plaque burdens of coronary artery 
(quantified by Gensini score [47], see Methods) in 
diseased (CAS and ASCVD) groups (Figure 1E). 
These results are well consistent with previous studies 
[19, 51] and further indicate the critical roles of 
peripheral myeloid cells in responding to or 
regulating the initiation and progression of 
atherogenesis in the human coronary artery. 
However, we did not observe any significant 
alternations in the frequencies of other major immune 
cell types (T cells, B cells, NK cells, and granulocytes) 
or their clinical associations with the disease 
conditions, or AS plaque burdens (Figure 1D-E), 
which may require further in-depth profiling. 

Functional Shifting of Peripheral Myeloid Cells 
during CVD Development 

Myeloid cells are the key drivers in innate 
immunity that initiate and aggravate AS progression 
[2, 22]. To interrogate how their phenotypes and 
distributions are altered along with AS development 
in peripheral blood, we grouped myeloid cells and 
partitioned them into 15 cell clusters with distinct 
phenotypes by using the PARC algorithm [44] (Figure 
2A-B; Figure S2A-B; Table S6). We annotated 9 
clusters of classical monocytes (cMon; M07-M15), 1 
cluster of intermediate monocytes (iMon; M04), 2 
clusters of non-classical monocytes (ncMon; M03 and 
M05), 2 clusters of myeloid-derived dendric cells 
(mDC; M01 and M06), and 1 cluster of monocytic 
myeloid-derived suppressor cells (M-MDSC; M02) 
(Figure 2B-C). 

Distribution comparisons of major myeloid cell 
subsets revealed their distinct distributions across 3 
groups, particularly in cMon and ncMon subsets 
(Figure 2C-D). cMon subset, the dominant phenotype 
of monocytes in peripheral blood (~75%), shows no 
significant frequency changes across groups, whereas 
the iMon subset slightly increases (by comparing CAS 
group vs NC group, p.adj = 0.058) and then decreases 
(by comparing ASCVD group vs CAS group) along 
with AS progression (Figure 2E). Moreover, we also 
observed a similar alteration pattern (firstly increased 
and then decreased; p.adj < 0.05) along with the 
disease development in the M-MDSC subset (Figure 
2E), which happened to be opposite to the changing 
trend of overall myeloid cells (Figure 1D), indicating 
the necessity of detailed characterization of myeloid 
cell subsets to reveal their heterogeneous alteration 
patterns. Besides, distinct from other myeloid cell 
subsets, the mDC subset shows a slightly decreasing 
trend (by comparing ASCVD group vs NC group, 
p.adj = 0.069) along with AS progression (Figure 2E), 
again demonstrating the heterogenous phenotypical 
shifting of myeloid cell subsets as the disease 

condition progresses from NC to CAS or even 
ASCVD. 

We further compared the frequencies of diverse 
myeloid cell clusters and found M03 (CCR2-CD64- 
ncMon) slightly decreased (p.adj = 0.09) in the 
advanced stage of disease (lower in ASCVD group 
than in the other two groups) (Figure S2C). M06 
(FceRIa+ mDCs) demonstrates a slightly declining 
trend in the diseased groups (especially ASCVD 
group; p.adj = 0.063) as compared to NC group (Figure 
S2C), which might be the result of recruiting 
circulating DC precursors into the inflamed plaques 
[52]. Despite the lower abundance in PB samples, M15 
(CD169+ cMon) significantly increases in ASCVD 
group as compared with CAS group (Figure S2C). 

Classical monocytes could undergo lineage 
transitions into non-classical monocytes via 
intermediate monocytes in multiple inflammatory 
conditions [53]. To explore the dynamic continuum of 
monocytes, we next compared the expressions of 
functional molecules on major subsets of monocytes 
(Figure 2F). Most cMon clusters (M08-M15) highly 
express molecules related to cell migration (CD11b, 
CCR2, and CX3CR1) and antigen presentation (CD36 
and HLA-DR), except for M07 cluster (CD54- cMon). 
In contrast, ncMon cells, patrolling along the 
endothelium during early atherogenesis with 
anti-inflammatory effects [54], only express high 
levels of CXC3R1 and HLA-DR but relatively low 
levels of CCR2, CD36, and CD11b. Besides, the 
phenotype of iMon subset is somewhere in between 
cMon and ncMon subsets. 

We next analyzed the expressions of functional 
molecules on myeloid cells across 3 groups to reveal 
their phenotypic alterations in different disease 
conditions. We identified significant down-regulation 
of CD14 expression on mDC subset and CXCR4 on 
M-MDSC subset in the diseased groups in contrast 
with NC group, suggesting that these cells could be 
recruited to pro-inflammatory sites through engaging 
with macrophage migration-inhibitory factor (MIF) 
[55] (Figure S2D). CD36L1 (SR-B1), which could 
inhibit AS progression by mediating cholesterol 
trafficking and limiting inflammation and oxidation 
(56), is decreased significantly on cMon subsets in 
CAS group (p.adj < 0.01) and slightly in ASCVD group 
(p.adj = 0.057) in contrast with NC group (Figure S2E). 
We also noticed that the expressions of CD68 (which 
can bind and internalize ox-LDL and apoptotic cells 
[57, 58]) and CD32 (FcγRIIA, significantly decreased 
on peripheral monocytes in AS patients [59]) were 
both significantly (p.adj < 0.05) downregulated on 
ncMon in the diseased groups rather than NC group, 
accompanied by upregulated CD11b expression in 
CAS (p.adj < 0.05) and ASCVD (p.adj = 0.062) groups 
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(Figure S2F). The changes in these critical marker 
expressions are crucial for regulating monocytes’ 
adhesion to and transmigration across the 
endothelium into the vascular wall [60]. Taken 
together, peripheral monocytes show the 

heterogeneous expression patterns of surface and 
intracellular molecules in different disease conditions, 
which might enable them to perform distinct pro- or 
anti-inflammatory functions along with CVD 
progression. 

 

 
Figure 2. Heterogeneous Cell Composition and Phenotypes in Peripheral Myeloid Cells. (A) Heatmap showing the normalized expressions of indicated markers for 
15 myeloid cell clusters identified by PARC algorithm by staining with myeloid cell panel. Cluster IDs are labeled on the left and relative frequencies are displayed as a bar graph 
on the right. (B and C) t-SNE plots of myeloid cells, colored by cell clusters (M01-M15) in (B) and major myeloid cell subsets (cMon, iMon, ncMon, mDC, and M-MDSC) in (C). 
(D) t-SNE plots of the density distributions of myeloid cells across groups, with an equal number (3 × 104) of cells from each group. (E) Comparisons of frequencies of major 
myeloid cell subsets across groups. (F) Density plots of functional marker expressions on different monocyte clusters (cMon, iMon, and ncMon). (G and H) Scatter plots of 
Pearson’s correlation coefficients (r-value) between the frequencies of myeloid cell clusters (M03 and M15) (G) and ncMon subset (H) with Gensini scores in the diseased (CAS 
and ASCVD) groups, respectively. (I) Scatter plots of Pearson’s correlation coefficient (r-value) between the frequencies of major myeloid cell subsets (iMon and mDCs) with 
serum lipids (e.g., LDL, TG, and HDL) across groups. Unpaired Student’s t-test with Benjamini-Hochberg adjustment was used in (E), with *p.adj < 0.05. Pearson’s correlation 
coefficient (r-value) and p-value were labeled in (G), (H), and (I). 
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To delineate the clinical association of myeloid 
cells in different disease stages, we next examined the 
correlations between myeloid cell clusters and the 
Gensini scores. M03 cluster (CCR2-CD64- ncMon) is 
negatively correlated (r = -0.26, p = 0.033) and M15 
cluster (CD169+ cMon) is positively correlated (r = 
0.23, p = 0.059) with Gensini scores in the diseased 
individuals (Figure 2G). Among the major myeloid 
cell subsets, the ncMon subset is the only subset 
significantly correlated (r = -0.25, p = 0.036) with 
Gensini scores (Figure 2H and S2G). Moreover, we 
also identified the significant associations between the 
frequencies of 5 major myeloid cell subsets and serum 
lipid profiles. iMon subset is negatively correlated 
with LDL levels (r = -0.24, p = 0.027) but positively 
with triglyceride (TG) levels (r = 0.19, p = 0.078), 
whereas mDC subset is positively correlated with 
high-density lipoprotein (HDL) levels (r = 0.23, p = 
0.035) (Figure 2I), indicating the tight relationships 
between serum lipids and the modulated peripheral 
myeloid cells [61]. 

Phenotypic Alterations of Peripheral T Cells 
during CVD Development 

T cells are critical participants of adaptive 
immunity in maintaining the homeostasis of arterial 
inflammations, and distinct T cell populations in AS 
plaques have been identified [8, 9]. To explore the 
disease-specific changes of peripheral T cells along 
with CVD development, we re-clustered CD3+ T cells 
and partitioned them into 26 distinct cell clusters, 
which included 13 CD4+ T (T01-T13), 9 CD8+ T 
(T18-T26), 3 γδT (T15-T17), and 1 double-negative T 
(DNT; T14) cell clusters (Figure 3A-B; Figure S3A-B; 
Table S7). We noticed a similar distribution pattern 
(although with subtle differences) of T cells between 
CAS and ASCVD groups, both of which were distinct 
from NC group (Figure 3C-D). Despite this, we did 
not identify any significant changes in the frequencies 
of major T cell subsets (e.g., CD4+ T, CD8+ T, γδT, and 
NKT) across 3 groups (Figure S3C). 

We next compared the distributions of major 
functional T cell subsets annotated by typical lineage 
markers across groups and found a significant 
increase of CD4+ effector memory T (Tem) cells in the 
diseased (CAS and ASCVD) groups compared to NC 
group (Figure 3E). However, we did not identify any 
significant frequency changes in individual T cell 
clusters (T01-T26) (Data not shown). By examining 
how these periphery T cell clusters were relevant to 
AS plaque burdens of coronary arteries (Gensini 
scores), we found that T01 (co-expressed Granzyme B 
and T-bet; Th1), T13 (co-expressed CD161; Th17), and 
CD4+ Teff were positively correlated with Gensini 
scores in the diseased individuals (T01: r = 0.24, p = 

0.046; T13: r = 0.25, p = 0.038; CD4+ Teff: r = 0.24, p = 
0.046) (Figure 3F-G). Notably, we also identified the 
clinical associations between the frequencies of 
peripheral T cell subsets and serum lipid profiles, 
including the positive correlation between γδT and 
HDL levels (r = 0.25, p = 0.021), the relatively weaker 
positive correlation between CD4+ Treg and total 
cholesterol (TC) levels (r = 0.21, p = 0.059), and the 
negative correlation between NKT and TG levels (r = 
-0.20, p = 0.073) (Figure 3H). Herein, these results 
together indicate that serum lipids are also closely 
related to the alterations of peripheral T-cell 
distribution in both disease initiation and progression, 
suggesting the potential bridging of lipid metabolism 
and peripheral immune system to coordinately 
regulate the atherogenesis of human coronary 
arteries. 

To reveal the functional modulations of T cells 
during human coronary atherogenesis, we then 
analyzed the expressions of functional molecules on T 
cells. CD11b expression is significantly upregulated 
on CD4+ and CD8+ T cell subsets (e.g., Tn, Tem, and 
Treg) as well as γδT and DNT cells in the diseased 
groups (Figure 3I). Moreover, we noticed that PD-1 
(programmed cell death protein 1) expression on 
CD4+ Tem cells but not on CD8+ Tem cells was 
significantly declined in the diseased groups 
compared to NC group (Figure S3D-E). Besides, the 
expression of HLA-DR declines on CD4+ Teff in CAS 
(p.adj < 0.05) and ASCVD (p.adj = 0.068) groups in 
comparison to NC group, whereas significantly 
increases on CD4+ Treg in ASCVD group rather than 
CAS group (Figure S3D). Similar expression patterns 
exist for HLA-DR on CD8+ Tem and CD8+ Teff as 
well. As the minor T cell populations in peripheral 
blood, DNT, γδT, and NKT cells experience a similar 
phenotypical remodeling along with disease 
progression, with the significantly decreased 
expression of HLA-DR in the diseased groups as 
compared to NC group (Figure S3F). 

Taken together, we have not only identified 
subtle but significant changes in peripheral T-cell 
composition and the functional molecule expressions 
on T cells in the diseased groups but also 
demonstrated some of these frequency or phenotypic 
changes are closely associated with different disease 
conditions or clinical characteristics. 

Distinct Modulation in Circulating B and NK 
Cells during CVD Development 

To explore the disease-specific changes in the 
compositions and phenotypes of B cells during 
disease development, we further analyzed two B cell 
clusters (C34 and C35) identified by clustering CD45+ 
cells with T cell panel (Figure S1A-B). By examining 
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the distributions of B01 (CD27- CD38+; C34 in Figure 
S1A) and B02 (CD27+ CD38-; C35 in Figure S1A) 
across 3 groups (Figure 4A-B; Figure S4A-B; Table 
S8), we neither found significant changes in their 
frequencies nor their clinical correlations with AS 
plaque burdens (Figure 4C and S4C). We only 

identified the significantly higher expression of 
CD11b in the initiation phase of the disease (by 
comparing NC group with CAS group), and no other 
significant changes exist for the functional molecule 
expressions (e.g., HLA-DR) across 3 groups (Figure 
4D). 

 

 
Figure 3. Heterogeneous Cell Composition and Phenotypes in Peripheral T Cells. (A) Heatmap showing the normalized expressions of indicated markers for 26 T 
cell clusters identified by PARC algorithm by staining with T cell panel. Cluster IDs are labeled on the left and relative frequencies are displayed as a bar graph on the right. (B 
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and C) t-SNE plots of T cells, colored by cell clusters (B) and major T cell subsets (C). (D) t-SNE plots of the density distributions of T cells across groups, with an equal number 
(3 × 104) of cells from each group. (E) Comparisons of frequencies of major subsets of CD4+ and CD8+ T cells (Tn, Tcm, Tem, Treg, and Teff) across groups. (F and G) Scatter 
plots of Pearson’s correlation coefficients (r-value) between the frequencies of T cell clusters (T01 and T13) (F) and CD4+ Teff (G) with Gensini scores in the diseased (CAS and 
ASCVD) groups. (H) Scatter plots of Pearson’s correlations (r-value) between the frequencies of major T cell subsets (γδT, CD4+ Treg, and NKT) with serum lipids (e.g., HDL, 
TG, and TC) across groups. (I) Comparisons of expression intensities of CD11b on major T cell subsets across groups. Unpaired Student’s t-test with Benjamini-Hochberg 
adjustment was used in (E) and (I), with *p.adj < 0.05. Pearson’s correlation coefficient (r-value) and p-value were labeled in (F), (G), and (H). 

 
Figure 4. Immune Profiling of Peripheral B and NK Cells. (A and E) Heatmaps showing the normalized expressions of indicated markers on 2 B cell clusters (A) and 4 
NK cell clusters (E) by staining with T cell panel by the PARC algorithm. Cluster IDs are labeled on the left and relative frequencies are displayed as a bar graph on the right. (B 
and F) t-SNE plots of B cells (B) and NK cells (F), colored by cell clusters. (C and G) Comparisons of the frequencies of B cell clusters (C) and NK cell clusters (G) across 
groups. (D) Comparisons of expression intensities of the functional markers (CD11b and HLA-DR) on B cells. (H) Scatter plots of Pearson’s correlation coefficient (r-value) 
between the frequencies of NK cell clusters (NK01 and NK03) with serum lipids (e.g., HDL, LDL, TG, and TC) across groups. Unpaired Student’s t-test with Benjamini-Hochberg 
adjustment was used in (C), (D), and (G), with *p.adj < 0.05. Pearson’s correlation coefficient (r-value) and p-value were labeled in (H). 



Theranostics 2022, Vol. 12, Issue 15 
 

 
https://www.thno.org 

6820 

NK cells are important cytotoxic lymphocytes in 
innate immunity, which promote the development of 
AS plaque lesions by secreting Granzyme B and 
perforin in the local inflamed lesions [62]. However, 
the phenotypes and roles of peripheral NK cells in 
human coronary atherogenesis are unclear. We then 
analyzed NK cells (C25, C26, C27, and C28) by using 
the CD45+ cell clustering results with T cell panel 
(Figure S1A-B). Four distinct NK cell clusters 
(NK01-NK04) were identified, among which NK02 
(Granzyme B++ CD45RARA++) and NK03 (CD11cdim 

T-betdim) were the dominant phenotypes in peripheral 
blood, whereas NK01 (CD38++) and NK04 (CD11+ 

T-bet+ HLA-DR-) were the minor subtypes (Figure 
4E-F; Figure S4D-E; Table S9). Although the 
frequencies of NK cell clusters do not statistically vary 
along with the disease progression (Figure 4G), they 
show significant associations with serum lipid 
profiles, including the negative correlations of NK01 
with LDL levels (r = -0.30, p = 0.006) and TC levels (r = 
-0.29, p = 0.007), the positive correlation between 
NK03 and HDL levels (r = 0.21, p = 0.06), and the 
negative correlation between NK03 and TG levels (r = 
-0.22, p = 0.045) (Figure 4H). However, neither NK cell 
clusters exhibit any clinical correlations with Gensini 
scores (Figure S4F), nor do the expressions of 
cytotoxic-related molecules (e.g., Fas and Granzyme 
B) are significantly changed across 3 groups (Figure 
S4G). 

Distinct Immune Cell Interactions Among 
CAS and ASCVD Groups 

To comprehensively explore the potential 
immune cell interactions between major peripheral 
immune cell subsets (including T cells, B cells, 
myeloid cells, and NK cells) among the diseased (CAS 
and ASCVD) groups, we calculated the Spearman 
correlations of cell frequencies between the identified 
immune cell subsets and revealed 22 pairs of the 
significant correlations in CAS group (Figure 5A, left 
panel; Figure S5A), and 7 pairs in ASCVD group 
(Figure 5A, right panel; Figure S5B). Specifically, we 
identified significant and positive correlations 
between CD4+ Tn and CD8+ Tn cells, CD4+ Tn and 
CD4+ Treg cells, and CD4+ Teff and CD8+ Teff cells 
both existed in CAS and ASCVD groups. 
Comparatively, the correlations we found in ASCVD 
groups mainly existed between the major subsets of 
lymphoid cells, e.g., CD4+ T, CD8+ T, and B cells 
(Figure S5B). Whereas the immune cell interactions 
found in CAS group are more complex and diverse, 
including the interactions between the functional 
subsets of myeloid cells (e.g., cMon, iMon, and mDC) 
as well as the cross-talks between the myeloid cell 
subsets and lymphoid cell subsets (Figure S5A). 

Taken together, these results revealed the distinct but 
complex immune cell interactions during the early 
stage (CAS) and advanced stage (ASCVD) of 
atherogenesis in human coronary arteries, suggesting 
heterogeneous immune regulations and disease- 
related signatures can be fully captured in peripheral 
blood. 

Establishment of Immune-signature-based 
CVD Risk Prediction Models 

The peripheral immune atlas of human coronary 
atherosclerosis reveals the complex and distinct 
immune alternations at different disease stages, which 
enable us to utilize these peripheral immune features 
for discriminating individuals in different groups. We 
built two risk prediction models by using the Random 
Forest algorithm [49] (see Methods), including the 
disease prediction (DP) model and the disease 
progression prediction (DPP) model. DP model is 
used to discriminate non-AS individuals (NC group) 
from AS patients (CAS and ASCVD groups), and the 
DPP model is designed to particularly separate the 
low-severity patients (CAS group) from the 
high-severity AS patients (ASCVD group). As the 
sample size (n = 13) in NC group was much fewer 
than the other two groups, we adopted a bootstrap 
resampling strategy [63] to boost the sample size of 
NC group to a similar level as the total size of CAS 
and ASCVD groups (see Methods). 

We used the selected immune features 
(represented by the relative frequencies of immune 
cell clusters) for the DP model (i.e., M02, M03, M06, 
M11, M13, T05, T20, and T23) and DPP model (i.e., 
M02, M06, M11, M15, NK04, T05, T15, T17, T20, and 
T23), and integrated them with the clinical features 
(age, BMI, TC, TG, HDL, and LDL) as the combined 
features (Figure 5B-C; Table S10). We randomly 
selected 70% of the samples as the training dataset, 
and the left 30% of samples as the testing dataset to 
evaluate the performance of DP model (Table S11) 
and DPP model (Table S12). We then applied 10-fold 
cross-validation to train the DP and DPP models that 
were built with either immune features, clinical 
features, or combined features (Figure S6A-F). 

The averaged receiver operating characteristic 
curves (ROC) for prediction models with different 
feature sets were generated using the testing datasets 
(Figure 5D-E). Comparing these averaged ROC 
curves, we observed the superior performance of 
using the combined features than using one kind of 
feature set (clinical or immune features) alone. On the 
testing dataset (including 40 samples for DP model, 
and 20 samples for DPP model), the predictions 
combined features can achieve high accuracy for both 
DP model (AUC = 0.99) and DPP model (AUC = 0.88) 
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(Figure 5D-E). The predictions using immune features 
alone also exhibited superior performances (AUC = 
0.99 for DP model; AUC = 0.80 for DPP model) than 
the one using clinical features alone (AUC = 0.96 for 
DP model; AUC = 0.75 for DPP model), strongly 
indicating that peripheral immune features were 
valuable traits for CVD risk prediction. Further, we 
compared the net benefits [50] of our prediction 
models built with different feature sets and confirmed 
that the models built with combined features also 
achieved the highest net benefits, followed by the 
models built with immune features alone (Figure 
5F-G), consistent with the ROC analysis. Of note, the 
specificity and sensitivity analysis of DP and DPP 
models that are built with combined features showed 
varied cutoffs, among which 0.6 for the DP model and 
0.5 for the DPP model appeared as the best cutoff, 
respectively (Figure 5H-I). 

Discussion 
Atherosclerosis is a chronic and lipid-driven 

inflammatory disease of the arterial intima, and 
atherosclerotic cardiovascular diseases (ASCVD) have 
become a global concern. Recently, the Canakinumab 
Anti-inflammatory Thrombosis Outcomes Study 
(CANTOS) has confirmed that anti-inflammatory 
therapies targeting the NLRP3 inflammasome to IL-1 
to IL-6 to CRP signaling pathway could benefit AS 
patients for the lower CVD risks [64-66], indicating 
the feasibility of anti-inflammatory therapy as a novel 
therapeutic approach to combat atherosclerosis [67, 
68]. Here, we comprehensively delineated the 
peripheral immune atlas of human CAS and ASCVD, 
and utilized the periphery immune features as liquid 
indicators for CVD risk prediction models, providing 
a deep insight into the early detection and long-term 
management of disease progression at the molecule 
level. 

Our study has revealed the significant changes in 
peripheral myeloid cells in different stages of human 
coronary atherosclerosis. These disease-specific 
changes are reflected not only in the composition of 
total myeloid cells in CD45+ cells (Figure 1D) but also 
in the frequencies of myeloid cell subsets (M-MDSC 
and CD169+ cMon) (Figure 2E and S2C). iMon subset 
is functionally linked with neo-vascularization in the 
advanced AS plaques by producing inflammatory 
cytokines, i.e., IL-1β, IL-6, and TNF-α [69], and 
previous studies also have confirmed the important 
roles of serum LDL and TC-rich lipoproteins in 
driving human atherosclerosis [70, 71]. Our findings 
reveal that iMon subset negatively correlates with 
serum LDL levels, suggesting the potential 

transmigration of iMon subsets from peripheral blood 
into the inflamed plaques after exposure to 
athero-antigens (e.g., ox-LDL). M-MDSC subset is a 
distinct population of myeloid cells that performs 
immunosuppressive functions by inhibiting the 
activation of T and myeloid cells [72]. The significant 
increase of M-MDSC particularly in CAS group 
indicates they might swiftly be recruited from bone 
marrow and accumulated in peripheral blood in 
response to the artery inflammations once the disease 
initiates [73]. Moreover, we also found some of these 
changes significantly correlated with clinical 
characteristics, e.g., Gensini scores and serum lipids 
(Figure 2G-I; Figure S2G). These results together 
demonstrate the heterogenous alternations of 
peripheral myeloid cells along with disease 
development, which can be precisely detected by 
single-cell analyses once the disease initiates. 

T cells, as the dominant immune cell type 
infiltrating human AS plaques [9], are the key 
modulators in the formation and maturation of AS 
plaque lesions. In this study, we revealed subtle but 
significant changes in peripheral T cells in different 
disease conditions, including the continuous increase 
of CD4+ Tem cells from NC group to the diseased 
groups (Figure 3E). In atherosclerosis, diverse CD4+ T 
cell subsets (e.g., Th1, Th2, and Th17) influence AS 
progression either by activating or suppressing the 
immune system or by interacting with B cells to secret 
antibodies [74]. Beyond the distinct changes in the 
frequencies, we also observed significant alterations 
in the expressions of functional molecules (e.g., 
CD11b, HLA-DR, and PD-1) on major T cell subsets 
along with the initiation and progression of disease 
(Figure 3I; Figure S3D-F), reflecting T-cell activation 
and remodeling in periphery blood during human 
coronary atherogenesis. Positive correlations between 
the frequencies of T cell clusters (T01, T13, and CD4+ 
Teff) and Gensini scores (Figure 3F-G) demonstrate 
their tight connections to clinical characteristics, 
suggesting the pro-atherogenic roles of these T cells in 
AS progression are not only restricted within AS 
plaques [23, 75] but also reflected in peripheral blood. 
Further, our findings also reveal the close associations 
between serum lipids (e.g., HDL, TC, and TG) and 
specific T cell subsets (e.g., γδT, Treg, and NKT) 
(Figure 3H). These results together have 
demonstrated that once atherogenesis initiates, 
peripheral T cells are tightly involved and 
continuously changed along with the disease 
development, and more importantly, these disease- 
specific changes can be fully captured via single-cell 
analyses of peripheral immune cells. 



Theranostics 2022, Vol. 12, Issue 15 
 

 
https://www.thno.org 

6822 

 
Figure 5. Immune-signature-based CVD Risk Prediction Model. (A) Heatmap showing the Pearson’s correlation coefficients for relationships between major immune 
cell subsets in CAS (left) and ASCVD (right) groups. (B and C) The selected variables of clinical features, immune features, and combined features are used for building the 
disease prediction (DP) model (B) and disease progression prediction (DPP) model (C). (D and E) The receiver operating characteristic curves (ROC) of DP model (D) and DPP 
model (E), colored by the testing datasets with different feature sets. (F and G) The decision curve analysis (DCA) for comparing the net benefits of DP model (F) and DPP (G) 
model, colored by the testing datasets with different feature sets, and the additional “all negative” and “all positive” lines represent the net benefit of none of diseased AS patients 
or all diseased AS patients, respectively. (H and I) The sensitivity and specificity comparisons of DP model (H) and DPP model (I) that both built with combined features at 
different cutoffs. Pearson’s correlation analysis was used in (A), and the black square box represents p < 0.05. AUC scores were labeled in (D) and (E). 
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Coronary computed tomography angiography 
(CCTA) is becoming the first-line and non-invasive 
test for examining and diagnosing patients with CAS 
and ASCVD. It could characterize coronary AS 
plaques, evaluate patients’ risks of future clinical 
events, assess coronary artery stenosis, and infer the 
presence of ischemia from functional modeling [76]. 
However, patients who are allergic to contrast agents 
or with severe renal function damage are the 
contraindications for CCTA, and its evaluation 
efficacy is significantly restrained in patients with 
severe coronary calcification and arrhythmia. To 
enhance the prediction accuracy of CVD risk, CCTA is 
still required to identify biological procedures that 
drive AS progression, such as inflammation. 
Therefore, more molecular biomarkers and their 
underlying biological process are critical for 
predicting the progression of AS and the risk of CVD 
events, including systemic inflammatory responses. 
However, compared with CCTA, there is no absolute 
contraindication for individuals to detect their 
periphery immune features in blood samples by 
high-dimensional CyTOF analysis, and it 
comprehensively reflects the disease-specific 
inflammatory responses which could commendably 
fill up the gap in CCTA. Although the immune 
systems and inflammations are tightly involved in the 
pathogenesis of CVD, peripheral immune features 
have not yet been considered in the existing CVD risk 
prediction models [36]. Here, we have established two 
disease prediction models (DP and DPP models) for 
discriminating the patients in different disease 
conditions and revealed that integrating the immune 
and clinical features (as the combined features) could 
achieve superior prediction accuracy (Figure 5D-G) 
with AUC = 0.99 for DP model and AUC = 0.88 for 
DPP model, demonstrating the crucial necessity of 
using peripheral immune features as valuable traits 
for CVD risk prediction. 

Our study still has some limitations. First, the 
relatively small cohort sample size in the current 
study might lead to a slight overestimation of the 
performance of the constructed DP model. Larger 
independent human cohorts are required in the future 
to further validate the prediction performance of our 
proposed models. Second, our study is focusing on 
the disease-specific changes in the compositions and 
phenotypes of peripheral immune cells at the 
single-cell protein level, whereas the exact biological 
functionalities of these immune cells and their 
contributions to disease development are not 
determined yet, and thus future studies on their 
regulation mechanisms are worthy of further 
exploration. 

Conclusion 
In conclusion, we have systematically character-

ized the peripheral immune atlas of patients with CAS 
and ASCVD and identified the significant changes of 
peripheral immune cell subsets on both cell 
distributions and the functional marker expressions 
for individuals in different disease conditions. With 
these newly identified immune features in peripheral 
blood, we established CVD risk prediction models 
that could effectively predict the presence and 
severity of coronary atherosclerosis in humans. 
Therefore, our findings together have pointed out an 
applicable and minimally invasive liquid immune 
biomarker that could potentially serve as a novel and 
potent assessment tool for the early detection and 
long-term monitoring of coronary AS development 
and also provided further insights into the 
immune-targeted therapies for the management of 
CVD patients. 
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