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Abstract 

Rationale: N6-methyladenosine (m6A) is involved in critical cancerous processes. Pseudogenes play 
various roles in carcinogenesis and progression. However, the functional roles of m6A-associated 
pseudogenes in head and neck squamous cell carcinoma (HNSCC) are largely unknown. 
Methods: We systematically analyzed the mRNA profile of 24 m6A regulators and 13931 pseudogenes 
from The Cancer Genome Atlas HNSCC dataset and ultimately identified 10 m6A-associated prognostic 
pseudogenes, which were validated in the Gene Expression Omnibus and our hospital datasets. Based on 
the risk score of m6A-associated pseudogenes, comprehensive analytical frameworks and experimental 
validation were implemented among pseudogene-defined low-/high-risk subtypes. 
Results: Here, we found expression pattern of m6A-associated pseudogenes was significantly associated 
with infiltrating immune cell compositions, and the expression of antitumor immune response markers, 
including T cell exhaustion, antigen presentation, interferon, and kinase genes. The m6A-associated 
pseudogenes, which had dramatic m6A peaks and higher m6A levels, could regulate the expression of 
targeted immune-involved genes through miRNAs. We experimentally validate the oncogene PDIA3P1, 
and tumor-suppressor RRN3P3, which promote the RNA and protein expression of their targeted 
immune-involved genes AKT1 and EZH2 via miR-34a-5p and miR-26b-5p, respectively. Moreover, 
HNSCC patients in the high-risk subtype could benefit more from immune checkpoint inhibitors therapy. 
Furthermore, doxorubicin and topotecan were considered to hold the most promising therapeutic 
potential robustly in silico evidence and in vitro experiments for HNSCC patients in the high-risk subtype. 
Conclusions: Our discovery revealed that the 10 m6A-associated prognostic pseudogenes significantly 
contribute to predicting immunotherapy benefits and therapeutic agents, which might bring some 
potential implications for both immunotherapy and chemotherapy in HNSCC. 
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Introduction 
Head and neck squamous cell carcinoma 

(HNSCC) accounts for over 900,000 cases and 
approximately 400,000 deaths per year worldwide [1], 
which is characterized by aetiological, phenotypic, 
and clinical heterogeneity. Smoking causes the rise of 
HNSCC in developing countries, and human papillo-
mavirus (HPV) is emerging as an important factor in 
the rise of oropharyngeal tumors of non-smokers in 
developed countries [2]. Although advances in 
surgery, radiation, and chemotherapy, around half of 
all patients, will die of the disease. Despite risk 
stratification for HNSCC by age, gender, anatomic 
site, TNM stage, HPV status, laterality, and 
histological characteristics, numerous molecular 
biomarkers that have been investigated have limited 
clinical utility. Therefore, seeking new promising 
prognostic biomarkers at the intrinsic molecular level 
is necessary, which contributes to identifying 
high-risk subtypes and making precise therapeutic 
strategies. 

Except for surgery, radiotherapy, chemotherapy, 
and targeted therapy based on molecular subtypes 
and the TNM stage of HNSCC, immunotherapy is an 
emerging treatment modality due to the promising 
therapeutic effect of selective immune checkpoint 
inhibitors (ICI), including monoclonal antibodies 
against programmed death 1 (PD-1), programmed 
death-ligand 1 (PD-L1) and cytotoxic T lymphocyte- 
associated protein-4 axes (CTLA-4) [3-5]. These 
expression levels of PD-1, PD-L1, and CTLA-4 in 
tumor tissue are currently used as predictive markers 
for immune response. And these predictive results 
were still not satisfactory, indicating that immune 
modulation in tumor tissue is a complex process and 
needs many more functional predictors [6]. Thus, it is 
necessary to identify new robust predictive 
biomarkers for the immune response process when 
executing clinical trials of immunotherapy. 

Pseudogenes played a pivotal role in many 
human diseases, including tumorigenesis and tumor 
progression [7, 8]. As non-functional homologs of 
protein-coding genes, Pseudogenes are commonly 
caused by the accumulation of multiple nonsense 
mutations within genes. Based on the unique 
biogenesis mechanisms, pseudogenes are divided into 
three categories: unitary pseudogenes, unprocessed 
pseudogenes, and processed pseudogenes [9]. 
Although pseudogenes were once considered 
“genetic fossils” due to their lack of protein-coding 
ability or cellular gene expression, increasing 
evidence indicates that some pseudogenes have been 
identified to participate in multiple biological 
functions and regulate their parental transcripts by 
acting as competitive endogenous RNAs (ceRNA) 

[10]. What’s more, dysregulation of pseudogenes is 
associated with diseases, which was immensely 
attributed to the discovery that the PTENP1 [11] and 
BRAFP1 [12] could upregulate their corresponding 
parental gene PTEN and BRAF via the ceRNA 
mechanism. 

N6-methyladenosine (m6A) RNA modification is 
pervasively a reversible internal RNA modification in 
most kinds of RNAs coving mRNAs and long 
noncoding RNAs (lncRNAs), which has been 
confirmed to participate in regulating RNA transcrip-
tion, processing, and so on [13]. It is installed by m6A 
methyltransferases (termed as “writers”) complicated 
with METTL3 as the catalytic subunit and reversed by 
demethylases (termed as “erasers”) FTO and 
ALKBH5 [14, 15]. In addition, m6A can be specifically 
regulated through a series of RNA binding proteins 
(termed as “readers”) and co-transcriptionally 
through a variety of transcription factors [14, 15]. As 
m6A readers, YTH domain-containing proteins can 
specifically read the m6A and regulate diverse 
post-transcriptional processes of host mRNAs [14, 15]. 
Accumulating evidence demonstrated that critical 
roles of m6A have been identified in the development 
of multiple cancers [16]. 

According to the genome-wide profiling of m6A, 
pseudogenes are also modified by m6A in non-tumor 
cell lines such as GM12878 and H1 [17]. Our previous 
research found that pseudogenes and m6A were 
significantly correlated with host antitumor immune 
response and might serve as potential biomarkers for 
immunotherapy in breast cancer [18, 19]. Furthermore, 
we investigated the function of the m6A sites on 
pseudogenes in non-tumor cell lines, which indicated 
a new evolutionary role of m6A in cleaning up the 
unnecessary processed pseudogenes to mitigate their 
interference of expression of cognate protein-coding 
genes [20]. However, little is known about what the 
function of m6A-associated pseudogenes is and 
whether they can predict immunotherapy benefits 
and therapeutic agents in HNSCC. 

In this study, as shown in the workflow (Figure 
S1), we systematically analyzed the RNA sequencing 
data of HNSCC patients and eventually identified and 
validated 10 m6A-associated prognostic pseudogenes, 
which were independently prognostic indicators in 
HNSCC patients. We further found a close association 
between the m6A-associated prognostic pseudogenes 
and the antitumor immune response from different 
aspects. Our convergent evidence showed that 
HNSCC patients could benefit more from immune 
checkpoint inhibitor therapy and the most promising 
potential therapeutic agents (doxorubicin and 
topotecan) for HNSCC patients. Our study indicated 
the 10 m6A-related prognostic pseudogenes could 
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predict immunotherapy benefits and potential 
therapeutic agents in HNSCC. 

Results 
Identification and validation of 10 
m6A-associated prognostic pseudogenes in 
TCGA and GEO datasets 

To study the functions of m6A-related 
pseudogenes in HNSSC, we first ask whether m6A 
regulators are expressed differently between HNSSC 
tissues with normal tissues. We collected 24 m6A 
regulators from studies that have been publicly 
reported (List S1) and explored their expression 
between 500 tumor tissues and 44 normal tissues in 
500 HNSSC patients with different clinicopathological 
features. Our research results showed that the 
expressions of m6A regulators differed enormously 
across subtypes (Figure 1A). For example, compared 
to normal tissues, the expressions of METTL3, 
METTL14, WTAP, VIRMA, ZCCHC4, FTO, ALKBH5, 
YTHDC1, YTHDF1, YTHDF2, YTHDF3, HNRNPC, 
HNRNPD, RBM15, RBM27, ZC3H7B, YWHAG, 
CAPRIN1 and PCIF1 increased significantly in tumor 
tissues, while the expressions of YTHDC2, ZC3H7B, 
TRA2A, GNL3, and MSI2 decreased (Figure S2). 
Besides, the expression pattern of m6A regulators was 
inconsistent among different clinicopathological 
features, which indicated the crucial but complicated 
roles of m6A regulators in tumorigenesis and the 
development of HNSCC (Figure 1A). On account, 
genes do not perform a function in isolation, and 
increasing evidence has manifested that collaboration 
among writers, erasers, and readers exists in the 
context of cancer. Thus the co-expression among 24 
m6A regulators by Pearson correlation analysis was 
investigated. We found not only that m6A regulators 
within the same functional class showed significant 
co-expression and highly correlated expression 
patterns, but that a close correlation also existed 
among writers, erasers, and readers (Figure 1B). For 
instance, the reader YTHDF2 was significantly 
correlated with writers, such as METTL14 (Figure 1B, 
R = 0.66 and P-value < 2.2e-16). Through the String 
database, we found that these 5 writers, 2 erasers, and 
17 readers interacted with each other frequently in 
protein-protein interaction networks (Figure 1C). The 
high degree of co-expression and strong interaction 
among 24 m6A regulators suggested that m6A RNA 
modification played an important and complex role in 
HNSCC. 

Then, a total list of 13931 pseudogenes was 
compiled from GENCODE, Vega, and psiCube 
databases (List S2), of which 6218 pseudogenes were 
obtainable in TCGA HNSCC datasets and thus used 

in the subsequent analyses. Firstly, we took advantage 
of the Pearson correlation analysis of expression 
between candidate pseudogene with 24 m6A 
regulators to filter a list of 2682 one-to-one pairs of 
pseudogenes and m6A regulators at | R | ≥ 0.3 and P 
< 0.05 (Table S1), including 842 pseudogenes with 
different numbers of m6A regulators. Secondly, 
through the univariate Cox proportional hazard 
regression, 53 pseudogenes were screened at P < 0.05 
(Table S2). Thirdly, based on the second step analysis 
above, the multivariate Cox proportional hazard 
regression was implemented. Using the above three 
methods, overlapping 10 m6A-associated prognostic 
pseudogenes (PDIA3P1, LDHAP4, LDHAP7, 
EEF1A1P6, EEF1A1P11, SDHAP1, SDHAP3, DDX12P, 
CLUHP3, RRN3P3) were ultimately identified (Figure 
1D). 

To further interpret the molecular mechanisms 
by which m6A regulators and pseudogenes are 
involved in cancer, we examined the Pearson 
correlation between the expression of individual m6A 
regulators and the 10 m6A-associated prognostic 
pseudogenes. We found that there were significantly 
higher correlations between YTHDC1 and WTAP with 
10 prognostic pseudogenes, which implies that 
YTHDC1 and WTAP play important roles in the 
function of m6A modification on these 10 
pseudogenes (Figure 1E). Forest plot of 10 
m6A-associated prognostic pseudogenes showed that 
the hazard ratio of PDIA3P1, LDHAP4, LDHAP7, 
EEF1A1P6, EEF1A1P11 was greater than 1, which 
indicated that these 5 pseudogenes may be factors 
with poor prognosis, while the hazard ratio of 
SDHAP1, SDHAP3, DDX12P, CLUHP3, RRN3P3 was 
less than 1, hinting these 5 pseudogenes may be 
factors with good prognosis (Figure 1F). What’s more, 
these 10 m6A-associated prognostic pseudogenes 
were further verified in the GEO GSE65858 dataset 
(Figure S3A). To raise the predictive effect of 
pseudogenes in the clinical outcomes of HNSCC, we 
applied the least absolute shrinkage and selection 
operator (LASSO) Cox regression algorithm to the 10 
m6A-associated prognostic pseudogenes and 
established a risk signature based on the minimum 
criteria using TCGA HNSCC data as the training set 
(Figure S3B-C) and GEO GSE65858 data as the 
validation set. Based on the coefficients of the 10 
pseudogenes (Table S3), the risk score was calculated 
on account of the survival risk score model formula. 
Then, according to the median risk score, the HNSCC 
patients were dichotomized into low or high-risk 
groups. We found that patients in the high-risk 
subtype displayed remarkably shorter overall 
survival than those in the low-risk subtype (TCGA 
dataset, log-rank test, P < 0.001, Figure 1G; GEO 
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dataset, log-rank test, P = 0.035, Figure 1H). The 
patients in high-risk group were significantly 
associated with female (P = 0.008), higher Pathologic 
T stage (P = 0.003) and higher Pathologic M stage (P = 
0.040) (Table S4). In addition, to better understand 
whether m6A-associated pseudogenes be able to 
effectively predict the prognosis of HNSCC patients, 

the receiver operating characteristic curve (ROC) 
curve analysis was performed. Results showed that 
the risk score based on m6A-associated pseudogenes 
was a good predictor of survival rates with an area 
under the curve (AUC) value of 0.722 in the training 
set (Figure 1I) and 0.773 in the validation set (Figure 
1J). 

 

 
Figure 1. Identification and validation of 10 m6A-associated prognostic pseudogenes in TCGA and GEO datasets. (A) Heatmap showing the expression of 24 m6A regulators 
across different clinicopathological features between normal tissues and tumor tissues. The expression value between normal and tumor tissues were compared through the Wilcoxon test. 
ns denotes no significance, * denotes P < 0.05, ** denotes P < 0.01, *** denotes P < 0.001 and **** denotes P < 0.0001. (B) Triangle heatmap of Pearson correlation among the expression of 
m6A regulators. The scatter plot shows the correlation of the expressions between METTL14 and YTHDF2. (C) Circular arc diagram of the protein-protein interactions among m6A regulators. 
(D) Venn diagram revealing the overlapping m6A-associated prognostic pseudogenes screened by three methods. (E) Heatmap showing Pearson correlation of the expression between 24 
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m6A regulators with 10 m6A-associated prognostic pseudogenes in TCGA dataset. (F) Forest plot of the hazard ratios (HR), 95% confidence intervals (CI) calculated by univariate Cox 
proportional hazard regression of 10 m6A-associated prognostic pseudogenes using TCGA dataset. (G) Kaplan-Meier survival curve reveals that the HNSCC patients from TCGA dataset in 
the high-risk group displayed significantly shorter overall survival than those in the low-risk group (P < 0.001). (H) Kaplan-Meier survival curve reveals that the HNSCC patients from the GEO 
dataset in the high-risk group displayed significantly shorter overall survival than those in the low-risk group (P = 0.035). (I) The ROC curve shows AUC for the risk score model in the TCGA 
dataset. (J) The ROC curve shows AUC for the risk score model in the GEO dataset. 

 

Screened 10 m6A-associated pseudogenes are 
an independent prognostic factor in HNSCC 
patients 

To intuitively understand the prognostic effect of 
m6A-associated pseudogenes, the distribution of the 
risk scores based on pseudogenes, overall survival of 
HNSCC, and corresponding pseudogene expression 
profiles in the TCGA dataset were displayed (Figure 
2A). The composite plot indicated that SDHAP1, 
SDHAP3, DDX12P, CLUHP3, and RRN3P3 
demonstrated high expressions in the low-risk 
subtype, which were categorized as tumor-suppressor 
pseudogenes in our study. However, the residual 
pseudogenes (PDIA3P1, LDHAP4, LDHAP7, EEF1 
A1P6, and EEF1A1P11) displayed high expressions in 
the high-risk subtype and therefore were classified as 
oncogene pseudogenes in our study (Figure 2A). 
Besides, our study also revealed that the risk score 
and prognostic pseudogenes were significantly 
related to different clinicopathological features of 
HNSCC patients. Compared to HPV negative, 
patients with HPV positive had significantly higher 
expressions of oncogene pseudogenes (SDHAP1, 
SDHAP3, DDX12P, CLUHP3, and RRN3P3), but there 
was no prominent difference in the expressions of 
tumor-suppressor pseudogenes (PDIA3P1, LDHAP4, 
LDHAP7, EEF1A1P6, and EEF1A1P11) (Figure S4A). 
In addition, patients with higher grades (such as G4) 
had significantly higher expressions of PDIA3P1, 
EEF1A1P6, EEF1A1P11, SDHAP1, SDHAP3, DDX12P, 
CLUHP3, and RRN3P3, but lower expressions of 
LDHAP4 and LDHAP7 than those with lower grades 
(Figure S4B). On the contrary, there were no striking 
differences in the expressions of the 10 m6A- 
associated prognostic pseudogenes among patients 
with different TNM (Figure S5A-C). 

On account of a series of factors, such as HPV 
status and different clinical features, which can affect 
the prognosis of HNSCC patients, we couldn't help 
asking whether m6A-associated prognostic pseudo-
genes are independent prognostic factors. To address 
the doubt, univariate and multivariate Cox regression 
analyses are simultaneously executed. Then our 
findings demonstrated that risk score, age, Gender, 
pathology T stage, and pathology N stage were all 
correlated with the overall survival by univariate Cox 
regression analysis. What’s more, when including 
these factors in the multivariate Cox regression, our 
analysis revealed that risk score (P < 0.001), age (P = 
0.005), and pathology N stage (P = 0.007) remained 

closely associated with the prognosis (Figure 2B), 
which proved that the risk score derived from these 
10 m6A-associated pseudogenes was able to 
independently predict the clinical outcome in HNSCC 
patients. 

To further demonstrate the prospect of 
m6A-associated pseudogene clinical application, 32 
HNSCC tissues (16 oral squamous cell carcinoma 
tissues and 16 thyroid cancer tissues) from the Tumor 
Resource Bank of Sun Yat-sen University Cancer 
Center were used to verify the relative RNA 
expression of these 10 m6A-associated by qPCR. 
Results show oncogene pseudogenes (PDIA3P1, 
LDHAP4, LDHAP7, EEF1A1P6, and EEF1A1P11) 
displayed high expressions in the low-OS subtype 
and that tumor-suppressor pseudogenes (SDHAP1, 
SDHAP3, DDX12P, CLUHP3, and RRN3P3) 
demonstrated high expressions in the high-OS 
subtype (Figure 2C-D), which was consistent with our 
above results (Figure 2A). 

Since the above screened 10 m6A-associated 
pseudogenes are an independent prognostic factor in 
HNSCC patients, we would expect to see a higher 
expression of oncogene pseudogenes in companions 
with worse survival outcomes, as well as higher 
expression of tumor-suppressor pseudogenes in 
companions with better survival outcomes. To test 
this, we examine the associations between the 
expression of m6A regulators and m6A-associated 
pseudogenes with overall survival in HNSCC patients 
from the TCGA dataset. We found that patients with 
high expression of three m6A regulators in TCGA 
dataset (Figure 2E) and nine m6A regulators in the 
GEO dataset (Figure S6A) had a significantly worse 
outcome than those with low expression, suggesting 
that high expression of m6A regulators might have 
accelerated the progression of the tumor. It's worth 
noting that WTAP, YTHDC1, and YWHAG 
represented significant differences both in TCGA and 
in the GEO dataset, implying the critical function of 
m6A regulators in HNSCC, in line with the pivotal 
roles of YTHDC1 and WTAP in the previous findings 
(Figure 1E). Patients with high expression of oncogene 
pseudogenes had strikingly shorter survival than 
those with low expression (log-rank test; PDIA3P1, P 
= 0.046; LDHAP4, P = 0.004; LDHAP7, P = 0.014; 
EEF1A1P6, P = 0.025; EEF1A1P11, P = 0.007; Figure 
2F), manifesting that high expression of oncogene 
pseudogenes might correlate with high malignancy of 
the tumor. In contrast, patients with high expression 
of tumor-suppressor pseudogenes had significantly 
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better outcome than those with low expression 
(log-rank test; SDHAP1, P = 0.023; SDHAP3, P = 0.036; 
DDX12P, P = 0.007; CLUHP3, P = 0.017; RRN3P3, P = 
0.014; Figure 2G), which explained that high 

expression of tumor-suppressor pseudogenes was 
associated with high benignancy of tumor. What’s 
more, this conclusion has been further verified in the 
GEO dataset (Figure S6B-C). 

 
Figure 2. Screened 10 m6A-associated pseudogenes are an independent prognostic factor in HNSCC patients. (A) The composite plot of the distribution of risk score, vital 
status, and the expression pattern of 10 m6A-associated prognostic pseudogenes in 500 HNSCC patients. The risk scores are arranged in ascending order from left to right. (B) Forest plot 
of univariate and multivariate Cox regression analyses of the association between clinicopathological factors (including the risk score) and overall survival (OS) of HNSCC patients. ns denotes 
no significance, * denotes P < 0.05, ** denotes P < 0.01, *** denotes P < 0.001 and **** denotes P < 0.0001. (C) The heatmap of the relative RNA expression (by qPCR) of 10 m6A-associated 
pseudogenes and OS of the corresponding patient in 32 HNSCC tissues from the Tumor Resource Bank of Sun Yat-sen University Cancer Center. (D) Barplot of the mean relative RNA 
expression of oncogene pseudogenes in 16 low-OS subtype tissues and tumor-suppressor pseudogenes in 16 high-OS subtype tissues. (E) Kaplan-Meier curves of association between the 
expression levels of m6A regulators and overall survival in patients with HNSCC from TCGA dataset. (F) Kaplan-Meier curves of association between the expression levels of oncogene 
pseudogenes and overall survival in patients with HNSCC from TCGA dataset. (G) Kaplan-Meier curves of association between the expression levels of tumor-suppressor pseudogenes and 
overall survival in patients with HNSCC from TCGA dataset. 
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To better show, the correlation between the 
expression of pseudogenes and the clinical outcome of 
patients, nomograms for evaluating the risk of 
HNSCC were developed for HNSCC patients based 
on risk factors identified by the multivariate logistic 
regression analysis. According to the results of the 
multivariate analysis, we included risk scores based 
on m6A-associated pseudogenes and some important 
clinical features to build a nomogram for predicting 
the 1-year, 3-year, and 5-year prognoses of HNSCC 
patients. Although our analysis did not identify 
Gender, Pathology_T_Stage, Pathology_M_Stage, 
Hpv_status, Laterality, and Histologic_grade as 
independent predictive factors, we took into account 
these variables in the nomogram. The total point was 
calculated according to the Oxford classification 
recommendations and principle, which was further 
transformed into probability (see the bottom scale) 
(Figure S7A). The calibration curves expressed a good 
consistency between the nomogram-predicted 
progression probability and the actual progression 
probability. And the calibration curves also showed 
our nomogram performing well in predicting the 
1-year, 3-year, and 5-year prognosis of HNSC patients 
(Figure S7B). The above evidence strongly proved that 
expressions of 10 m6A-associated pseudogenes are 
significantly associated with survival outcomes of 
HNSCC patients. 

The expression pattern of m6A-associated 
prognostic pseudogenes was significantly 
correlated with antitumor immune response 

To investigate and make clear the correlation 
between the expression pattern of m6A-associated 
pseudogenes and antitumor immune response in 
HNSCC, we compared the expressions of m6A- 
associated pseudogenes, estimated the immune cell 
infiltration through CIBERSORT, and assessed the 
expressions of T cell exhausted, antigen presentation, 
interferon activity, kinase, cytolytic and integrin genes 
in tumor tissues between low- and high-risk subtypes. 
The expression pattern of the 10 m6A-associated 
pseudogenes across low- and high-risk subtypes 
indicated that the low-risk subtype had lower 
expressions of oncogene pseudogenes as well as 
higher expressions of tumor-suppressor pseudogenes, 
while the high-risk subtype showed the opposite 
trends (Figure 3A). Studying the important role of 
immune-infiltrating cells in tumor immunity helps us 
to specify the best immunotherapy regimen. Through 
assessing the immune cell infiltration, we found that 
the low-risk subtype had a prominently higher 
number of tumor-infiltrating B cells, CD8+ T cells (as 
known as cytotoxic T cells), helper T cells, regulatory 
T cells, and a lower fraction of activated natural killer 

cells, M1 macrophage cells, M2 macrophage cells than 
high-risk (Figure 3B), suggesting an enhanced 
immunosurveillance in the low-risk subtype. Of note, 
CD4+ T cells, a renowned member of the helper T cell 
population, showed a significantly higher quantity in 
high-risk than in the low-risk subtype (Figure 3B). 
Evaluating the expression level of immuno-
modulatory genes in tumor immunity contributes to 
helping us to target specific immunotherapy targets. 
Then comparisons of expressions of immuno-
modulatory genes were conducted. In terms of T-cell 
exhausted genes, the low-risk subtype was 
dramatically associated with higher expressions of 
PD-1 than the high-risk subtype (Figure 3C), which is 
a key gene of T-cell exhaustion markers. However, the 
high-risk subtype had remarkably higher expressions 
of PD-L1 and PD-L2, which also account low-risk 
subtype having a longer Survival period (Figure 3C). 
Concerning antigen-presenting genes, our findings 
revealed that high-risk had significantly higher 
expressions of HLA-A, HLA-B, HLA-C, HLA-E, TAP1, 
and B2M than low-risk (Figure 3D), which can 
activate cytotoxic T cells. Regarding interferon 
activity genes, we surprisingly found that the 
expressions of CXCL9, CD24, and STAT1 were also 
significantly higher in high-risk than the low-risk 
subtype, while the expressions of CD27 and IRF3 
show the opposite trend (Figure 3E). In addition, the 
low-risk subtype was also associated with higher 
expressions of AKT1, E2F2, MECP2, HOXA1, and 
HOXA10 (Figure 3F), several important regulatory 
genes for kinase activity. Besides, there is a significant 
difference in the expressions of cytolytic genes 
(CYTH1, CYTH2, CYTH3) and integrin genes (ITGA 
family genes and ITGB family genes) (Figure S8A-C) 
between low- with high-risk subtype. 

In consideration of the large amounts of m6A- 
associated prognostic pseudogenes, we performed 
consensus clustering of the 10 m6A-associated 
prognostic pseudogenes through dimensionality 
reduction analysis in the subsequent study. Based on 
the similarity of pseudogenes expression, when 
clustering stability increased from k = 2 to 10, k = 2 
seemed to be the optimal selection in the TCGA 
dataset (Figure 3G-I). Thus, we divided the 500 
HNSCC patients into two subgroups by making 2 the 
k value, namely, P1 (Patients subgroup 1) and P2 
(Patients subgroup 2). We found that patients in the 
P1 subgroup had a significantly better outcome than 
those in the P2 subgroup by Kaplan-Meier analysis 
(median overall survival 7.5 years vs. 3.5 years, 
log-rank test, P = 0.008, Figure 3J). And our results 
indicated that the P1 subgroup had higher 
expressions of tumor-suppressor pseudogenes and 
lower expressions of oncogene pseudogenes, while 
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the P2 subgroup showed the contrary tendency 
(Figure 3K), which was highly consistent with the 
low-risk and high-risk subgroups. Specifically, 
compared with P2, the P1 subgroup had significantly 

higher expressions of 5 tumor-suppressor 
pseudogenes and significantly lower expressions of 5 
oncogene pseudogenes (Figure S9A).  

 
 

 
Figure 3. Expression pattern of m6A-associated prognostic pseudogenes was significantly correlated with antitumor immune response. (A) Boxplot revealing 
comparisons of expression levels of oncogenes (PDIA3P1, LDHAP4, LDHAP7, EEF1A1P6, EEF1A1P11) and tumor-suppressor genes (SDHAP1, SDHAP3, DDX12P, CLUHP3, RRN3P3) between 
low-risk and high-risk subtypes. (B) Boxplot showing comparisons of cell composition fraction of B cells, CD8+ T cells, CD4+ T cells, helper T cells, regulatory T cells, activated natural killer 
(NK) cells, M0 macrophages, M1 macrophages, M2 macrophages, monocytes, mast cells, and activated dendritic cells between low-risk and high-risk subtypes. (C) Boxplot displaying 
comparisons of expressions of PD-1, PD-L1, PD-L2, LAG3, TIGIT, and CTLA4 between low-risk and high-risk subtypes. (D) Boxplot manifesting comparisons of expressions of HLA-A, HLA-B, 
HLA-C, HLA-E, TAP1, and B2M between low-risk and high-risk subtypes. (E) Boxplot comparing the expressions of CCL5, CXCL9, CD24, CD27, STAT1, and IRF3 between low-risk and high-risk 
subtypes. (F) Boxplot comparing the expressions of kinase genes (AKT1, FOXM1, E2F2, MECP2, HOXA1, and HOXA10) between low-risk and high-risk subtypes. The P-value of comparisons 
between the two subtypes was calculated through the Wilcoxon test. Purple represents P-value < 0.05. (G) Plot of consensus clustering cumulative distribution function (CDF) for k = 2 to 
10. (H) Line graph showing the relative change in area under CDF curve for k = 2 to 10. (I) The plot of consensus clustering of 500 HNSCC with k = 2, indicates P1/2 subgroups were identified 
by consensus clustering of the 10 m6A-associated pseudogenes in the TCGA dataset. (J) Kaplan-Meier survival curve reveals that the HNSCC patients in the P1 subgroup displayed significantly 
longer overall survival than those in the P2 subgroup (P = 0.008). (K) Heatmap displaying the expression pattern of m6A-associated pseudogenes between P1 and P2 subgroups. 
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The correlation results between the expression 
pattern of m6A-associated pseudogenes and immune 
response across P1 and P2 subgroups were also 
consistent with the low-/high-risk subtype (Figure 
S9B-I). Besides, the P1 subgroup was significantly 
associated with few HPV infections (P = 0.009) and 
lower Pathologic M stage (P = 0.047) than P2 (Table 
S5). By comparing the difference between P1/P2 with 
the high/low-risk subtype, we found that the low-risk 
subtype contains 222 patients in the P1 and 28 patients 
in the P2 subgroup, and the high-risk subtype 
contains 95 patients in the P1 and 155 patients in the 
P2 subgroup. The P-value of the correlation between 
the low/high-risk subtype and Pathologic T stage, 
Pathologic M stage, and Vital status was more 
significant than the P1/P2 subgroup (Table S4 and 
S5). These observations were highly in line with those 
of the risk score mentioned above, which bolstered 
that the expression pattern of 10 m6A-associated 
pseudogenes was significantly associated with 
outcome in HNSCC. 

To better elucidate the association between 
m6A-associated pseudogenes and tumor malignancy, 
we identified the differentially expressed genes 
between the P1 and P2 subgroups and annotated their 
functions. GO analyses indicated that upregulated 
genes in P1 were strikingly enriched in tumor-related 
biological processes (Figure S10A), including STAT 
pathway and natural killer cell activation, etc. GO 
analysis also revealed that downregulated genes in P1 
were enriched in the cellular process involved in 
reproduction in the multicellular organism and so on 
(Figure S10B). Furthermore, “AKT_UP_MTOR_ 
DN.V1_UP”, “MTOR_UP.N4.V1_DN” and “GO_ 
SOMATIC_DIVERSIFICATION_OF_IMMUNE_REC
EPTORS_VIA_SOMATIC_MUTATION” were signifi-
cantly enriched in the P1 subgroup indicated by 
GSEA (Figure S10C). All these results indicate that the 
expression pattern of m6A-associated pseudogenes 
was closely associated with the malignancy of 
HNSCC. 

Our findings partially explained the above 
discovery that tumors in the low-risk and P1 
subgroups had stronger immunogenicity and thus 
presented a higher fraction of active immune cell 
infiltrations. Therefore, convergent evidence 
supported that m6A-associated prognostic pseudo-
genes played an important role in the antitumor 
response, which might serve as potential biomarkers 
for immunotherapy. 

m6A-associated pseudogenes can regulate 
targeted immune-involved genes via miRNAs 

To illuminate the potential mechanism of how 
m6A-associated pseudogenes regulated anti-tumor 

immune response, we constructed a pseudogene- 
miRNA-targeted immune-involved gene regulatory 
network. Underlying miRNAs binding to the 10 
pseudogenes were identified using the dreamBase 
and miRNA target genes were extracted by the 
miRTarBase, which were verified by at least two 
strong experiments (Table S6). We calculated 
expression correlations between each pseudogene and 
its miRNA target genes using Pearson correlation 
analysis. Target genes with | R | ≥ 0.3 and P < 0.05 
were picked up (Table S7). Ultimately, 4 
tumor-suppressor pseudogenes (SDHAP1, SDHAP3, 
DDX12P, RRN3P3) together with 26 microRNAs and 
138 targeted genes, and 4 oncogene pseudogenes 
(PDIA3P1, LDHAP7, EEF1A1P6, EEF1A1P11) together 
with 28 microRNAs and 58 targeted genes, were used 
to build the pseudogene-miRNA-target gene 
regulatory networks and visualized using Sankey 
diagram (Figure 4A; Figure S11A-F). Oncogene 
pseudogene PDIA3P1, acting as a decoy of 
hsa-miR-34a-5p, hsa-miR-10b-5p, hsa-miR-199a-3p, 
and hsa-miR-19a-3p downregulated the expression of 
AKT1 and then downregulated the infiltrations of 
some immune cells (including CD4+ T and M1 
macrophages cells) through calcium signaling and 
signal transduction (Figure 4A, left panel) in the low- 
risk subtype. Tumor-suppressor pseudogene RRN3P3 
upregulated the expression of EZH2 by competitively 
binding hsa-miR-26a-5p and hsa-miR-26b-5p, which 
explained the higher expression of EZH2 in the 
low-risk subtype (Figure 4A, right panel). Other 
pseudogenes also played regulatory roles in signaling 
pathways coving oncogenic transformation, cell 
proliferation, and cell migration as ceRNAs (Figure 
S11A-F). The pseudogene-miRNA-targeted immune- 
involved gene regulatory networks partially clarified 
the mechanism of how pseudogenes were involved in 
regulating the immune response in HNSCC. 

To experimentally test whether the m6A- 
associated pseudogenes affect the expression of their 
targeted immune-involved genes, we selected 
representative oncogene pseudogene PDIA3P1 and 
tumor-suppressor pseudogene RRN3P3 for further 
validation in ARO and Tca8113 cell lines, which were 
two representatives HNSCC cell lines. First, we tested 
whether oncogene pseudogene PDIA3P1 can regulate 
its targeted AKT1. We found knockdown of PDIA3P1 
using siRNA significantly down-regulated gene 
expression as well as the protein expression of AKT1 
(Figure 4B-D), consistent with our observation that 
their gene expressions were positively correlated 
(Figure 3A and 3F). To test whether PDIA3P1 
modules AKT1 via ceRNA mechanism, we first 
verified that knockdown of PDIA3P1 was able to 
promote the degradation of AKT1 (Figure 4E). Then 
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we selected miR-34a-5p for experimental validation. 
Our findings revealed that inhibition of miR-34a-5p 
significantly increased the mRNA and protein 
expression of both PDIA3P1 and AKT1, indicating 
that miR-34a-5p targets both PDIA3P1 and AKT1 
(Figure 4F-G). Next, we tested whether Tumor- 
suppressor pseudogene RRN3P3 can regulate its 
targeted EZH2. We found knockdown of RRN3P3 
using siRNA significantly down-regulated gene 
expression as well as the protein expression of EZH2 
(Figure 4H-J), in line with our observation that their 
gene expressions were positively correlated (Figure 
3A and 3F). Then to test whether RRN3P3 modules 
EZH2 via ceRNA mechanism, we first confirmed that 
knockdown of RRN3P3 could promote the 
degradation of EZH2 (Figure 4K). Then we selected 
miR-26b-5p for experimental validation. We found 
inhibition of miR-26b-5p significantly increased the 
mRNA and protein expression of both RRN3P3 and 
EZH2, indicating that miR-26b-5p targets both 
RRN3P3 and EZH2 (Figure 4L and 4M). 

To better study the function of m6A-associated 
pseudogenes, we utilized m6A-LAIC-seq to quantify 
the m6A levels on pseudogenes on a transcriptome- 
wide scale and used m6A seq technology to identify 
m6A peaks and m6A sites on pseudogenes. Here, we 
took advantage of our previously published m6A 
levels of pseudogenes [20], which were calculated 
from m6A-LAIC-seq data [17], to study the m6A levels 
of pseudogenes. And we used our previously 
published m6A peaks of pseudogenes, which were 
calculated from the m6A-seq data [21], to test whether 
the elevation of m6A levels on pseudogenes was due 
to de novo formation of m6A peaks on pseudogenes or 
promoted methylation on ancestral m6A sites. As 
shown in Figure 4N, m6A-seq identified two m6A 
peaks on oncogene pseudogene PDIA3P1 (left panel) 
and one m6A peak on tumor-suppressor pseudogene 
RRN3P3 (right panel), and the m6A-LAIC-seq data 
showed that full-length RNAs of pseudogenes were 
significantly enriched in m6A positive fraction. 
Similar results were also observed for other 
m6A-associated pseudogenes. The above results 
suggest that the m6A levels of m6A-associated 
pseudogenes are increased attributed to the de novo 
formation of m6A sites. Our previous discovery 
revealed that m6A on processed pseudogenes plays a 
novel evolutionary role in removing the unnecessary 
processed pseudogenes to mitigate their interference 
in the expression of protein-coding genes [20]. To 
determine the m6A methylation levels at each site on 
pseudogenes, we used absolute quantification in the 
m6A modification assay, which is a new and 

ultrasensitive quantitation assay for the accurate 
determination of m6A at single-nucleotide resolution. 
We found that METTL3 could significantly methylate 
PDIA3P1 mRNA on the Chr1:146650342 site and 
RRN3P3 mRNA on the Chr16:22431201 site (Figure 
4O). 

HNSCC patients in the high-risk subtype could 
benefit more from immune checkpoint 
inhibitors therapy 

To elucidate the benefits situation of ICI therapy 
in different low-/high-risk subtypes, we then used 
tumor immune dysfunction and exclusion (TIDE) to 
evaluate the potential clinical efficacy of 
immunotherapy in different low-/high-risk subtypes. 
A higher TIDE prediction score indicated a higher 
potential for immune evasion, which represented that 
the patients were less likely to benefit from ICI 
therapy. Here, we found that the high-risk subtype 
had a lower TIDE score than the low-risk subtype, 
suggesting that high-risk patients could benefit more 
from ICI therapy than low-risk patients (Figure 5A). 
Since a higher TIDE prediction score was associated 
with a worse outcome, the high-risk subtype with a 
low TIDE score might have a better prognosis than the 
low-risk subtype with a high TIDE score from 
immune checkpoint inhibitors therapy, which was 
consistent with that PD-L1 expression was positively 
correlated with the efficacy of immune checkpoint 
inhibitors. Moreover, we found that the low-risk 
subtype had a higher microsatellite instability (MSI) 
score, T cell exclusion, and tumor-associated 
macrophages M2 (TAM_M2) (Figure 5A), but there 
was no difference in T cell dysfunction (Figure 5B), 
myeloid-derived suppressor cell (MDSC) and 
cancer-associated fibroblasts (CAF) (Figure 5C) 
between the two subtypes. In addition, the tumor 
inflammation signature (TIS) score based on the 18 
signature genes (List S6) was calculated as an average 
value of the log2-scale normalized expression. And 
we also found that the high-risk subtype with a high 
TIS score than the low-risk subtype with a low TIS 
score, which suggested that the high-risk subtype 
might have a better outcome by estimating the TIS 
score (Figure 5D; Table S8). Besides, we evaluated the 
purity of the tumor through several methods 
including ABSOLUTE, IHC, CPE, and ESTIMATE, 
convergently suggesting that the low-risk subtype 
might have a higher purity than the high-risk subtype 
(Figure 5E), indicating a higher percentage of cancer 
cells, which might explain the reasons for the worse 
prognosis of patients in low-risk subtype after ICI 
therapy. 
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Figure 4. m6A-associated pseudogene can regulate targeted immune-involved genes via miRNAs. (A) Sankey showing pseudogenes together with binding miRNAs and target 
genes with | R | ≥ 0.3 and P < 0.05 were used to construct the pseudogene-miRNA-target gene regulatory networks by subtypes of oncogene pseudogene PDIA3P1 and tumor-suppressor 
pseudogene RRN3P3. The column on the left represented pseudogenes, which are located at the cores of the networks. The column in the middle and the column on the right stand for binding 
miRNAs and target genes, respectively. (B-G) Experimental validation of PDIA3P1 affects the expression of AKT1 via miR-34a-5p in ARO and Tca8113 cell lines. (B) Relative gene expression 
of PDIA3P1 after PDIA3P1 knockdown using siRNA. (C) Relative gene expression of AKT1 after PDIA3P1 knockdown using siRNA. (D) Western blot comparing the protein levels of AKT1 in 
control and PDIA3P1 knockdown cells. (E) The relative expression of AKT1 at different time points after transcription inhibition in control and PDIA3P1 knockdown cells respectively. Error 
bars represent standard errors. (F) The relative expression of PDIA3P1 and AKT1 after adding control inhibitor versus miR-34a-5p inhibitor. (G) Western blot comparing the protein levels 
of AKT1 after adding control inhibitor versus miR-34a-5p inhibitor. (H-M) Experimental validation of RRN3P3 affects the expression of EZH2 via miR-26b-5p in ARO and Tca8113 cell lines. 
(H) Relative gene expression of RRN3P3 after RRN3P3 knockdown using siRNA. (I) Relative gene expression of EZH2 after RRN3P3 knockdown using siRNA. (J) The relative expression of 
EZH2 at different time points after transcription inhibition in control and RRN3P3 knockdown cells respectively. Error bars represent standard errors. (K) Western blot comparing the protein 
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levels of EZH2 in control and RRN3P3 knockdown cells. (L) The relative expression of RRN3P3 and EZH2 after adding control inhibitor versus miR-26b-5p inhibitor. (M) Western blot 
comparing the protein levels of EZH2 after adding control inhibitor versus miR-26b-5p inhibitor. (N) UCSC genome browser tracks m6A-seq and m6A-LAIC-seq data indicating m6A peaks and 
m6A levels of oncogene pseudogene PDIA3P1 and tumor-suppressor pseudogene RRN3P3. Read-coverage tracks of input, m6A-negative, and m6A-positive fractions of m6A-LAIC-seq shown 
along with overlay tracks of m6A-seq (cyan for input and red for RIP; predicted m6A sites in m6A peaks are indicated by arrows). Read coverage (y-axis) of m6A negative and m6A positive are 
normalized as previously described [17] to reflect the calculated m6A levels (i.e., equal signals in m6A positive (eluate) versus m6A negative (supernatant) suggest m6A levels of 50%), while input 
and IP tracks of m6A-seq are shown for optimal viewing at the top panel. * P< 0.05; ** P< 0.01; *** P< 0.001 (two-tailed t-test). (O) The m6A methylation level of the pseudogenes at specific 
modification sites (Chr1:146650342, GG(m6A)CA on PDIA3P1; Chr16:22431201, GG(m6A)CG on RRN3P3) using SELECT in control and METTL3 knockdown ARO and Tca8113 cell. 

 

 
Figure 5. HNSCC patients in the high-risk subtype could benefit more from immune checkpoint inhibitors therapy. (A) Violin illustration showing comparisons of TIDE, 
MSI_Expr_Sig, Exclusion, and TAM_M2 values in different low-/high-risk subtypes, which represent TIDE, MSI, T cell exclusion dysfunction, and TAM score respectively. (B) Violin illustration 
comparing dysfunction value in different low-/high-risk subtypes, which stand for T cell dysfunction score. (C) Violin illustration comparing MDSC and CAF values in different low-/high-risk 
subtypes, which stand for MDSC and CAF scores respectively. (D) Violin illustration comparing TIS score in different low-/high-risk subtypes, which stand for TIS score. (E) Violin illustration 
indicating comparisons of purity calculated by four methods (ABSOLUTE, IHC, CPE, and ESTIMATE) in different low-/high-risk subtypes. The P-value of comparisons between the two 
subtypes was calculated through the Wilcoxon test. (F) Kaplan-Meier survival curve revealed that the UC patients from the Snyder cohort in the low-risk subtype displayed significantly longer 
overall survival than those in the high-risk subtype (P = 0.025). (G) Kaplan-Meier survival curve revealed that the UC patients from the Mariathasan cohort in the low-risk subtype displayed 
significantly longer overall survival than those in the high-risk subtype (P = 0.032). (H) The ROC curve shows AUC for the predictive value of m6A-associated pseudogene in the UC cohort 
from Snyder. (I) The ROC curve shows AUC for the predictive value of m6A-associated pseudogene in the UC cohort from Mariathasan. 

 
Since the high-risk subtype was able to benefit 

more from ICI therapy than the low-risk subtype, we 
would expect to see the high-risk subtype in 
companion with better survival outcomes after the 
treatment of ICI than the low-risk subtype. To test 
this, we assessed the prognostic value of m6A- 

associated pseudogenes in two urothelial cancer (UC) 
cohorts with anti-PD-L1 therapy [22, 23]. Surprisingly, 
we could find that high-risk patients had better OS 
than low-risk patients (Figure 5F-G). We could also 
find that the performance of m6A-associated 
pseudogenes was consistent in the UC cohort from 
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Snyder [22] and the UC cohort from Mariathasan [23], 
at 12 months of follow-up (Figure 5H-I). Thus our 
study indicated that the predictive value of the 
expression pattern of m6A-associated pseudogenes 
was comparable with TIDE and TIS for OS. 

Identification and experimental validation of 
potential therapeutic agents with higher drug 
sensitivity for HNSCC patients in the high-risk 
subtype 

In addition to HNSCC patients with m6A- 
associated pseudogene expression patterns who may 
benefit from immunotherapy, we also expect these 
patients to benefit from therapeutic agents. To solve 
this issue, we took advantage of two powerful 
datasets, which could quickly screen thousands of 
drugs from hundreds of human cancer models on an 
unprecedented scale. Specifically, the Cancer 
Therapeutics Response Portal (CTRP) and Profiling 
Relative Inhibition Simultaneously in Mixtures 
(PRISM) datasets, which contain the gene expression 
profiling and drug sensitivity profiling of hundreds of 
cancer cell lines (CCLs), can be used to build a 
prediction model of drug response. 160 of these 
compounds are shared between the two datasets. The 
CTRP has unique 322 compounds and the PRISM has 
unique 1288 compounds. Results showed that there 
were 1770 compounds both in the CTRP and PRISM 
datasets after removing duplication (Figure S12A). 
Compounds with NAs in more than 20% of the 
samples were excluded. Ultimately, 654 CCLs with 
354 compounds in the CTRP dataset, as well as 439 
CCLs with 1291 compounds in the PRISM dataset 
were utilized for subsequent analysis. 

To identify potential therapeutic agents in 
HNSCC patients, two different methods were used to 
confirm candidate drugs with higher drug sensitivity 
in high-risk score patients (Figure S12B). The analyses 
were conducted using CTRP and PRISM datasets, 
respectively. Firstly, differential drug response 
approaches between high-risk score (top decile) and 
low-risk score (bottom decile) groups were adopted to 
identify compounds with lower calculated AUC 
values in the high-risk score group with log2FC > 0.10 
(Table S9; Table S10). Secondly, Spearman correlation 
calculation between AUC value and risk score was 
performed to screen compounds through a negative 
correlation coefficient (Spearman’s R < -0.30 for both 
CTRP and PRISM). The above analyses yielded seven 
CTRP-derived compounds (including paclitaxel, 
doxorubicin, gemcitabine, vincristine, SB-743921, 
clofarabine, and rigosertib) (Figure 6A-B) and nine 
PRISM-derived compounds (including paclitaxel, 
docetaxel, NVP-AUY922, dasatinib, epothilone-b, 
talazoparib, topotecan, rubitecan, and vinblastine) 

(Figure 6C-D). These screened compounds had lower 
calculated AUC values in the high-risk score subtype, 
as well as a negative correlation with a risk score for 
CTRP (Figure 6B) and PRISM datasets (Figure 6D), 
which might be potential therapeutic agents in 
HNSCC patients with a high-risk score. 

Despite the 16 candidate therapeutic agents 
identified showing a higher drug sensitivity in high- 
risk score HNSCC patients, the above screening 
method alone was not able to support the conclusion 
that these agents had a therapeutic effect on HNSCC. 
Thus, multiple perspective analyses were subseq-
uently performed to investigate the therapeutic 
potential of these compounds in HNSCC. Firstly, fold- 
change differences in the expression levels (including 
mRNA-level and protein-level) of candidates’ drug 
targets between tumor and normal tissue were 
calculated. In the calculation results, a higher 
fold-change value manifested a greater potential and 
better efficacy of the candidate compound for HNSCC 
treatment (Table S11). Secondly, the CMap analysis 
approach was adopted to identify compounds in 
which gene expression patterns were contrary to the 
HNSCC-specific expression patterns (in other words, 
gene expression increased in tumor tissues but 
decreased by treatment of certain agents). Four 
compounds, including doxorubicin, clofarabine, 
NVP-AUY922, and topotecan, had CMap scores < -95 
(Table S12), on behalf, that these compounds might 
have a potential therapeutic effect on HNSCC (Figure 
6E-F). Thirdly, comprehensive analyses including 
drug data query in DrugBank and literature search in 
PubMed were conducted to look for the experimental 
validation and clinical evidence of candidate agents in 
treating HNSCC (Figure 6E-F). The above three 
results were presented on the middle, right, and left of 
the panel respectively (Figure 6E-F). Finally, 
doxorubicin, and topotecan, which had robust 
multi-level evidence including in vitro and in silico, 
were deemed to hold the most promising therapeutic 
potential in HNSCC patients with a high-risk score. 

To experimentally test whether potential 
therapeutic agents with higher drug sensitivity for 
HNSCC patients in high-risk subtype affect the tumor 
cell viability, we performed IC50 (in other words, the 
concentration of drug which causes 50% cell viability) 
assay of doxorubicin and topotecan in head and neck 
cell lines (ARO and Tca8113) and other corresponding 
sensitive cell lines (HeLa, GSCs-U251, and MDA- 
MB-231). The effect of doxorubicin and topotecan on 
cell viability after 24 h treatment was evaluated using 
a colorimetric MTT assay in both cell lines. The two 
therapeutic agents have their distinct effects on cell 
viability at 10 different concentrations. Our findings 
revealed that the cell survival rate was observed to 
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generally decrease with an increase in drug 
concentration, suggesting a dose-dependent behavior. 
The IC50 value of ARO cells for doxorubicin and 
topotecan were 1.6 nM, and 3.5 nM, respectively 
(Figure 6G-H). And the IC50 value of Tca8113 cells for 
doxorubicin and topotecan were 2.2 nM, and 4.6 nM, 
respectively (Figure 6I-J). The IC50 value of 

doxorubicin and topotecan for ARO and Tca8113 cells 
were less than those for HeLa, GSCs-U251, and 
MDA-MB-231 cells, as well as in previous studies, 
further verifying that HNSCC patients in the high-risk 
subtype could benefit more from doxorubicin and 
topotecan. 

 

 
Figure 6. Identification and experimental validation of potential therapeutic agents with higher drug sensitivity for HNSCC patients in the high-risk subtype. (A) 
Horizontal column diagram showing the correlation coefficient and P-value of Spearman’s correlation analysis of seven CTRP-derived compounds. (B) Boxplots displaying estimated AUC 
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value of differential drug response analysis of seven CTRP-derived compounds between high-risk score patients with low-risk score patients. Note that lower values on the y-axis of boxplots 
imply greater drug sensitivity. The value between the two subtypes was compared through the Wilcoxon test. ns denotes no significance, * denotes P < 0.05, ** denotes P < 0.01, *** denotes 
P < 0.001 and **** denotes P < 0.0001. (C) Horizontal column diagram showing the correlation coefficient and P-value of Spearman’s correlation analysis of nine PRISM-derived compounds. 
(D) Boxplots displaying estimated AUC value of differential drug response analysis of nine PRISM-derived compounds between high-risk score patients with low-risk score patients. Note that 
lower values on the y-axis of boxplots imply greater drug sensitivity. The value between the two subtypes was compared through the Wilcoxon test. ns denotes no significance, * denotes P 
< 0.05, ** denotes P < 0.01, *** denotes P < 0.001 and **** denotes P < 0.0001. (E) Identification of most promising therapeutic CTRP-derived agents for high-risk score patients according 
to the evidence from multiple sources. Combined heatmap showing seven CTRP-derived agents. mRNA or protein expression was compared by fold change (FC) differences of drug targets 
between tumor and normal tissue (FC >0 represents up-regulated in tumor tissue). (F) Identification of most promising therapeutic PRISM-derived agents for high-risk score patients 
according to the evidence from multiple sources. Combined heatmap showing nine PRISM-derived agents. mRNA or protein expression was compared by fold change (FC) differences of drug 
targets between tumor and normal tissue (FC >0 represents up-regulated in tumor tissue). (G-J) MTT assay to determine the IC50 value of the different drugs (doxorubicin and topotecan) 
and analyze their effect on head and neck cancer cell lines (ARO and Tca8113) and other sensitive cell lines (HeLa, GSCs-U251, and MDA-MB-231) viability. There are three biological 
replicates of cell viability per drug concentration. Line graph showing the different drug concentrations used and the corresponding cell viability between ARO with other cells treated with 
doxorubicin (G), between ARO with other cells treated with topotecan (H), between Tca8113 with other cells treated with doxorubicin (I) and between Tca8113 with other cells treated with 
topotecan (J). The IC50 values of ARO cells for doxorubicin and topotecan were 1.6 nM, and 3.5 nM, respectively. The IC50 values of Tca8113 cells for doxorubicin and topotecan were 2.2 nM, 
and 4.6 nM, respectively. 

 

Discussion 
In this study, 10 m6A-associated pseudogenes 

were confirmed as promising prognostic indicators 
for HNSCC by a comprehensive analytical framework 
and classified into oncogene pseudogenes (PDIA3P1, 
LDHAP4, LDHAP7, EEF1A1P6, EEF1A1P11) and 
tumor-suppressor pseudogenes (SDHAP1, SDHAP3, 
DDX12P, CLUHP3, RRN3P3) owing to their different 
effects in prognosis in TCGA dataset. Then a risk 
score model based on the 10 m6A-associated 
pseudogenes was constructed s and found very good 
in predicting clinical outcomes in HNSCC, which was 
further validated in the GEO dataset, as well as our 
clinical tissues. More importantly, we found that the 
expression pattern of these 10 pseudogenes was 
dramatically associated with the immune response in 
terms of some aspects. Then, m6A-associated 
pseudogene-miRNA-targeted immune-involved gene 
regulatory networks were further performed to 
elucidate the underlying mechanisms that 
pseudogenes with m6A RNA modification could 
regulate antitumor immune response via miRNAs. 
Up to now, this is the first research to systemically 
clarify the prognostic value of m6A-associated 
pseudogenes and their regulatory roles in the host 
antitumor immune response of HNSCC. The novel 
discovery in this study also unveiled that the therapy 
of immune checkpoint inhibitors and doxorubicin and 
topotecan could enable HNSCC patients with the 
specific expression pattern of m6A-associated 
pseudogene to obtain good therapeutic effects. 

Pseudogenes, as non-coding RNAs, are 
prevalently transcribed in the genome [24] and are 
nonfunctional and deleterious. A large proportion of 
unprocessed and processed pseudogenes can be 
removed in time in the RNA surveillance system. For 
example, most unprocessed pseudogenes can be 
degraded by Nonsense Mediated Decay (NMD) [25], 
and major processed pseudogenes can be cleaned by 
m6A on the RNAs of processed pseudogenes in our 
previously published articles [20]. However, there are 
still some pseudogenes that have been nonremoved 
and still highly expressed, which can play 

increasingly important regulatory roles in diverse 
human diseases [26] as well as contain 
miRNA-binding elements and therefore increase their 
parental and other targeted genes by acting as ceRNA 
[27]. Our results revealed that 6218 out of 13931 
pseudogenes were expressed in TCGA HNSCC, 
which were our following research targets. So what 
role do these expressed pseudogenes play in cancer? 
A series of previous studies have depicted the crucial 
roles of pseudogenes in tumorigenesis and tumor 
development. For instance, PTENP1 could suppress 
the progression of clear-cell renal cell carcinoma by 
acting as a ceRNA [28]. PKMP3, AC027612.4, HILS1, 
RP5-1132H15.3, and HSPB1P1 were found as 
prognostic predictors for lower-grade gliomas [29]. 
ANXA2P2, EEF1A1P9, FER1L4, HILS1, and RAET1K 
were identified to be dramatically correlated with the 
survival of glioma [30]. RNA5SP141 could strongly 
enhance the RIG-I-mediated antiviral immune 
response to herpes simplex virus 1 [31]. However, 
there has been no focus on the role of pseudogenes in 
HNSCC, and our research will focus on this question. 

m6A RNA modification is installed by m6A 
methyltransferases METTL3 and uninstalled by m6A 
demethylases FTO and ALKBH5 [14, 15]. A variety of 
RNA binding proteins can modulate diverse 
post-transcriptional processes of host mRNAs and 
non-coding RNAs by reading different m6A on these 
RNAs [14, 15], such as facilitating the cytosol 
degradation [13] and accelerating nuclear export of 
mRNAs [32]. Increasing critical roles of m6A have 
been reported in many kinds of physiological and 
pathological processes of various cancers [33], 
including bladder cancer [35], gastric cancer [33], 
acute myeloid leukemia [33], and our published 
breast cancer [18]. However, recent research mainly 
focuses on the function of m6A in mRNA, there are 
very few studies on the roles of m6A on pseudogenes. 
We firstly screened 842 pseudogenes by Pearson 
correlation analysis, and ultimately screened 10 
pseudogenes by univariate and multivariate Cox 
proportional hazard regression. Exploring the role of 
these 10 pseudogenes, defined as m6A-associated 
prognostic pseudogenes, in HNSCC will be the main 
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line of our next research. So far, two recent articles 
pointed out that the m6A-modified pseudogene 
HSPA7 could be a new immunotherapy target for 
GBM patients [34], and aberrant m6A modification of 
the pseudogene WTAPP1 results in increased 
translation of its protein-coding counterpart to 
promote pancreatic cancer progression [35]. However, 
there has been no focus on the role of m6A on 
pseudogenes in HNSCC. Our findings revealed the 
prognostic function of screened 10 m6A-associated 
pseudogenes in HNSCC patients. To investigate 
whether 10 m6A-associated pseudogenes are an 
independent prognostic factor, we analyze the 
prognostic effects of 10 pseudogenes both in the 
TCGA and GEO datasets. Convergent evidence 
supports the 10 m6A-associated pseudogenes as an 
independent prognostic factor. To further 
demonstrate the prospect of m6A-associated 
pseudogene clinical application, we verified the 
correlation of pseudogene expression with clinical 
overall survival in a relatively small cohort including 
32 HNSCC tissues from our hospital. Unfortunately, 
pseudogenes are non-coding proteins, so 
pseudogenes cannot express proteins, so we cannot 
verify the expression of pseudogenes at the protein 
level, which limits its potential clinical application 
value. 

Our current study indicated that 10 m6A- 
associated pseudogenes were identified as promising 
prognostic indicators for HNSCC. Curiously, the 
oncogene pseudogenes happened to be processed 
pseudogenes, however, the tumor-suppressor 
pseudogenes were unprocessed pseudogenes, which 
was worthy of further study. Carcinogenic roles of 
PDIA3P1 in HNSCC were in close agreement with 
that a higher expression of PDIA3P1 was closely 
associated with a poorer recurrence-free survival of 
human hepatocellular carcinoma [36]. The anticancer 
effect of SDHAP1 was accordant with that SDHAP1 
upregulated EIF4G2 level by sponging miR-4465 and 
therefore promoted the PTX-induced apoptosis in 
ovarian cancer [37]. SDHAP3 plays an important role 
in carcinogenesis in our study, which also displays 
strong involvement in neurodevelopmental disorders, 
and cancer susceptibility [38]. The role of the 
remaining 7 m6A-associated pseudogenes (LDHAP4, 
LDHAP7, EEF1A1P6, EEF1A1P11, DDX12P, CLUHP3, 
and RRN3P3) has not been reported in the previous 
literature and has been coming up in our research, 
which was indispensable and identified as a good 
prediction of outcome in HNSCC. In summary, our 
study provides prospective prognostic predictors for 
HNSCC, which can better fulfill the principle of 
precise medicine. 

Our findings firstly revealed that the expression 

pattern of the 10 m6A-associated pseudogenes was 
dramatically associated with tumor-infiltrating B 
cells, CD8+ T cells, helper T cells, and regulatory T 
cells, as well as the expressions of T cell exhausted 
markers including PD-1, PD-L1, PD-L2, LAG3, TIGIT, 
and CTLA4. What’s more, antigen presentation genes, 
interferon activity genes, cytolytic genes, integrin 
genes, and kinase genes were also significantly 
associated with pseudogenes levels. To explain the 
mechanism of how m6A-associated pseudogenes 
regulated immune response, pseudogene-miRNA- 
targeted immune-involved gene regulatory networks 
were further constructed and validated 
experimentally to explain the underlying mechanisms 
and demonstrated that m6A-associated pseudogene 
can regulate antitumor immune-involved target genes 
via plenty of miRNAs. We found that the oncogene 
PDIA3P1, and tumor-suppressor RRN3P3, promote 
the RNA and protein expression of their targeted 
immune-involved genes AKT1 and EZH2 via 
miR-34a-5p and miR-26b-5p, respectively. Existing 
research indicates that AKT inhibition reduces PD-L1 
expression in tumor cells, enhances activation and 
tumor infiltration of CD8+ T cells, and reduces tumor 
growth, accompanied by prolonged mouse survival 
[39]. The previous study has shown that suppressing 
EZH2 activity resulted in increased numbers of 
myeloid-derived suppressor cells (MDSC) and fewer 
CD4+ and IFNγ+CD8+ T cells, which are involved in 
antitumor immunity [40]. However, another study 
suggests that cell cycle-related kinase (CCRK) 
activated the EZH2/NF-κB/IL-6 cascade, which lead 
to the accumulation of polymorphonuclear MDSCs, 
downregulated PD-L1 expression, and decreased 
intratumoral CD8+ T cells [41]. Inconsistent 
conclusions from two research teams further reveal 
the complexity of EAH2's role in tumors. What’s 
more, we quantified the m6A levels and identified 
m6A peaks and m6A sites on m6A-associated 
pseudogenes, and verified the m6A level of the 
pseudogenes at specific modification sites in HNSCC 
cells by m6A-qPCR. 

Our current study also firstly suggested the 
clinical application of m6A-associated pseudogenes in 
HNSCC, which can effectively predict treatment 
outcomes of immune therapy and drug therapy. By 
integrating with public datasets about immune 
therapy and drug sensitivity of CCLs, HNSCC 
patients in the high-risk subtype could benefit more 
from immune checkpoint inhibitors and promising 
potential therapeutic agents including doxorubicin 
and topotecan. Our study indicates that the high-risk 
subtype with higher PD-L1 expression, fewer 
infiltrating CD8+ T cells, and Low-MSI might have a 
better response from ICI treatment, which was 



Theranostics 2022, Vol. 12, Issue 17 
 

 
https://www.thno.org 

7283 

possibly attributed to the effects of PD-L1 on 
apoptosis of CD8+ T cells [42]. Our results of drug 
targets and compounds complemented each other, 
indicating a comprehensive view of a potential 
personalized treatment strategy, were further 
confirmed in vitro experiments. Overall, our study 
indicated that m6A-associated prognostic pseudo-
genes have not only provided new insights into 
personalized prognostication approaches but also 
thrown light on integrating tailored risk stratification 
with precision therapy. 

Conclusions 
Our discovery revealed that the 10 

m6A-associated prognostic pseudogenes significantly 
contribute to predicting immunotherapy benefits and 
therapeutic agents, which might bring some potential 
implications for both immunotherapy strategy and 
medical treatment in HNSCC. It provided new 
insights into personalized prognostication approaches 
and precision therapy. 

Materials and methods 
Data sources 

The list of pseudogenes were compiled from 
GENCODE (https://www.encodeproject.org/) [43], 
Vega (http://vega.archive.ensembl.org/index.html), 
and Pseudogene.org databases (http://pseudogene. 
org/) [44]. The gene expression profiles and 
corresponding detailed clinical information of 
HNSCC were downloaded from the TCGA data 
portal (http://firebrowse.org/) and GEO dataset 
(https://www.ncbi.nlm.nih.gov/geo/) by access 
number (GSE65858). Altogether, 544 samples 
(including 500 tumor tissues and 44 normal tissues) 
from TCGA and 270 tumor samples from GEO with 
pseudogene expression profiling and corresponding 
clinical data were included. The immune cell fraction 
data were obtained through CIBERSORT (https:// 
cibersort.stanford.edu/) [45, 46]. The antigen- 
presenting genes and immunomodulatory genes were 
obtained from TCIA (https://tcia.at/home) [47]. The 
miRNAs binding to pseudogenes were extracted from 
the dreamBase database (http://rna.sysu.edu.cn/ 
dreamBase/index.php) [48]. The miRNA-targeted 
genes were identified using the miRTarBase 
(https://mirtarbase.cuhk.edu.cn/~miRTarBase/miR
TarBase_2022/php/index.php) [49]. The 
m6A-LAIC-seq data of non-tumor cell lines (GM12878 
and H1 hESC) were obtained from our previous 
publication [17, 20]. The m6A-seq data of non-tumor 
cell lines (GM12878 [21] and H1 hESC [50]) were also 
acquired from previous publications. Expression 
profiles, clinical files, and anti-PD-L1 therapy 

information about urothelial cancers were accessed 
from previous publications [22, 23]. Expression 
profiles of human cancer cell lines (CCLs) were 
downloaded from the Broad Institute Cancer Cell 
Line Encyclopedia (CCLE) project 
(https://portals.broadinstitute.org/ccle/) [51]. Drug 
sensitivity data of CCLs were achieved from the 
Cancer Therapeutics Response Portal (CTRP v.2.1, 
https://portals.broadinstitute.org/ctrp.v2.1/) [52-54] 
and PRISM Repurposing dataset (PRISM 19Q4, 
https://depmap.org/portal/prism/) [55-58]. 

Processing of sequencing data 
The RNA-seq, m6A-LAIC-seq, and m6A-seq raw 

reads were subject to quality control with Fastqc, 
removed the adapter with Cutadapt, and dismissed 
low-quality bases with Trimmomatic according to the 
standard protocol of sequencing data with default 
parameters. Then preprocessed reads are 
conventionally aligned to the hg19 human genome 
using Hisat2 with default parameters [59]. The proper 
paired and uniquely mapped reads with perfect 
match except for mismatches at SNPs were used for 
the downstream analyses. RNA expression was 
evaluated by Transcripts Per Kilobase of exon model 
per Million mapped reads (TPM). TPMs of genes were 
calculated using StringTie2 [60]. Differential gene 
expression analyses were performed using the 
DESeq2 R package. Genes with an adjusted P-value < 
0.05 (detected by DESeq2 soft) were differentially 
expressed. Since most of the pseudogenes were not 
expressed, we first obtained available pseudogenes in 
all datasets and excluded those with a TPM value less 
than 1. 

Collation of m6A RNA methylation regulators 
and pseudogenes 

We first compiled a whole list of m6A RNA 
methylation regulators from previously published 
literature, and then restricted the list to the genes with 
available RNA expression data in the TCGA HNSCC 
dataset, which ultimately resulted in a total of 24 m6A 
regulators in the current study. These regulators were 
stratified into 3 categories based on their functions 
(List S1). Above all, we systematically compared the 
expression levels of m6A regulators between tumor 
tissues and normal tissues, as well as among different 
pathological characteristics. Then, the protein-protein 
interaction (PPI) network based on the STRING 
database of studied m6A regulators was constructed 
to explore whether there is an interaction between 
m6A regulators. Hereafter, to investigate whether 
there is co-expression and correlation between m6A 
regulators, a Pearson correlation analysis among m6A 
regulators was executed. Afterward, we compiled a 
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list of pseudogenes from GENCODE, Vega, and 
Pseudogene.org databases, which were used for the 
downstream analyses (List S2). 

Screening for m6A-associated prognostic 
pseudogenes by three methods 

The m6A-associated prognostic pseudogenes 
were screened using the following three methods, (1) 
carry out the Pearson correlation analysis of 
expression between pseudogene in this study with 
m6A regulators, and filter m6A-associated 
pseudogenes under the conditions | correlation 
coefficient (referred to as R) | ≥0.3 and P < 0.05; (2) 
perform the univariate Cox proportional hazard 
regression to screen prognostic pseudogenes; (3) 
conduct the multivariate Cox proportional hazard 
regression based on the second step. Finally, 
overlapping candidate m6A-associated prognostic 
pseudogenes were identified. 

Construction of the risk score model 
Based on the LASSO Cox regression algorithm 

[61], an L1-penalized regression on the strength of the 
highest lambda value selected utilizing 1,000 
cross-validations (‘1-se’ lambda) was implemented to 
further identify the regression coefficients of the 
candidate m6A-associated prognostic pseudogenes. 
Then we established a survival risk score model 
through the LASSO coefficients (β) as follows: 

Risk score = ∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝛽𝛽𝛽𝛽𝑛𝑛
𝑖𝑖=1 . 

The HNSCC patients were dichotomized into 
high-risk or low-risk groups based on the median risk 
score. The receiver operating characteristic (ROC) 
curve and area under the curve (AUC) was performed 
to assess the prediction accuracy of the risk score 
model. Each m6A-associated prognostic pseudogene 
was divided into low or high expression levels, with 
the cut-off values defined as the median expression 
value. And Kaplan-Meier plots and Log-rank tests 
were carried out to estimate and compare the survival 
rate between subtypes. Then univariate and 
multivariate Cox regression analyses were utilized to 
determine the prognostic value of the risk score and 
various clinical characteristics. Nomograms for 
evaluating the risk of HNSCC were developed for 
HNSCC patients based on risk factors. All the 
analyses mentioned above were conducted using 
TCGA data as the training set and GEO data as the 
validation set. 

RNA extraction and real-time quantitative 
PCR (RT-qPCR) in HNSCC tissues 

We applied and collected tumor tissues from 32 
HNSCC patients with clinical features, including 16 
oral cancer and 16 thyroid cancer tissues, which were 

from the Tumor Resource Bank of Sun Yat-sen 
University Cancer Center. Total RNA derived from 
HNSSC tissues was extracted using the NucleoZol 
RNA reagent (MACHEREY-NAGEL). And 1 μg of 
DNA-free RNA was then reverse-transcribed using 
HiScript III-RT SuperMix for qPCR (+gDNA wiper) 
(Vazyme, R232). Then qPCR was performed using the 
ChamQ Universal SYBR qPCR Master Mix (Vazyme, 
Q711) and carried out in an LC480 Real-Time PCR 
System (Roche). Ultimately, the fold-change value 
was calculated using the 2-∆∆CT method. Besides, the 
clinical features of HNSCC patients and the primers 
of ten pseudogenes had been appended in List S3 and 
List S4, respectively. 

Consensus clustering analysis and functional 
enrichment analysis 

To investigate the biological functions of 
m6A-associated prognostic pseudogenes in HNSCC 
patients, we clustered the patients into different 
subgroups by the R package “ConsensusClusterPlus” 
(50 iterations, resample rate of 80%, and Pearson 
correlation) based on the expression levels of the 
m6A-associated prognostic pseudogenes in TCGA 
dataset [62]. To better understand and interpret the 
association between m6A-associated prognostic 
pseudogenes and malignancy of HNSCC, GO 
pathway analysis and GSEA [63] were performed to 
functionally annotate genes that are differentially 
expressed in different subgroups by using the R 
package “clusterProfiler” [64]. 

Immune cell infiltration analysis and antitumor 
immune response analysis 

CIBERSORT [45], a bioinformatic deconvolution 
algorithm to estimate immune cell composition based 
on related-gene expression profiles, was utilized to 
calculate tumor-infiltrating cell compositions in 
HNSCC. The immune cell fractions, expressions of T 
cell exhausted genes, antigen presentation genes, 
interferon activity genes, cytolytic genes, integrin 
genes, and kinase genes were compared in different 
subtypes and subgroups by Wilcoxon signed-rank 
test. 

m6A-associated pseudogene-miRNA-targeted 
immune-involved gene regulatory networks 

Potential miRNAs binding to pseudogenes were 
obtained from the dreamBase database [48]. Potential 
miRNA-targeted genes with at least two solid 
experimental methods (reporter assay and western 
blot) were extracted using the miRTarBase [49]. 
Pearson analysis was carried out to calculate the 
expression correlation between m6A-associated 
pseudogenes and miRNA-targeted genes. Then these 
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targeted genes conforming to | R | ≥ 0.3 and P < 0.05 
were identified and applied to build pseudogene- 
miRNA-targeted immune-involved gene regulatory 
networks. 

Cell culture 
ARO, Tca8113, and HeLa cells were cultured in 

Roswell Park Memorial Institute (RPMI) Medium 
1640 (Corning), supplemented with 10% fetal bovine 
serum (FBS) (Gibco) at 37 °C with 5% CO2. GSCs-U251 
and MDA-MB-231 cells were cultured in Dulbecco's 
Modification of Eagle’s Medium (DMEM) (Corning), 
supplemented with 10% fetal bovine serum (FBS) 
(Gibco) at 37 °C with 5% CO2. All cells were tested to 
ensure that they are free from Mycoplasma infection. 

siRNA and miRNA inhibitor transfection 
Cells were seeded in TC-untreated plates and 

transfected with siNC and specific siRNA or inhibitor 
NC and specific miRNA inhibitor using RNAiMAX 
(Invitrogen) according to the manufacturer’s 
instructions. RNA samples and protein samples were 
harvested at 72 h after transfection for qRT-PCR or 
western blotting. The siRNA pools targeting PDIA3P1 
and RRN3P3, as well as control siRNA (NC), were 
synthesized by RIBOBIO (Guangzhou, China). The 
siRNA duplexes used in the current study are listed in 
List S5. 

RNA extraction and RT-qPCR in HNSCC cells 
Total RNA from HNSCC cells was extracted 

using the NucleoZol RNA reagent (MACHEREY- 
NAGEL). And the specific steps of RT-qPCR are the 
same as in Part “RNA extraction and real-time 
quantitative PCR (RT-qPCR) in HNSCC tissues”. In 
addition, the primers of pseudogenes and their 
targeted immune-involved genes had been appended 
in List S4. 

Western blotting 
Proteins were extracted from cells after 

incubating with RIPA buffer (Cell Signaling 
Technology, Cat. 9806) on ice for 10 min, and then the 
insoluble fraction was removed by centrifugation. 20 
μg of extracted protein was separated on 15% 
SDS-PAGE and transferred to the PVDF membrane. 
The membranes were blocked in 5% BSA in Tris- 
Buffered Saline with 0.01% Tween 20 (TBS-T) at room 
temperature for 1 h and incubated overnight with 
primary antibodies diluted in 1% BSA/TBS-T at 4 °C, 
followed by incubating with goat anti-rabbit HRP 
conjugated secondary antibody diluted in TBS-T for 1 
h at room temperature and visualized using Clarity™ 
Western ECL Substrate (Bio-Rad). The following 
antibodies were used for immunoblotting: AKT1 
(1:1000, Affinity Biosciences, AF0836-50), and EZH2 

(1:1000, Affinity Biosciences, AF5150-50). 

RNA stability assay 
The ultimate concentration of 5 μg/mL 

Actinomycin D (Sigma, A9415) was added to control 
and PDIA3P1/RRN3P3 knockdown cells to assess 
RNA stability. The cells were collected after 
incubation for indicated time points, and RNA 
samples were extracted for reverse transcription and 
qPCR. And 18S was utilized as the reference gene and 
the fold-change value was calculated using the 2-ΔΔCT 
method. 

m6A analyses about m6A-associated 
pseudogene 

We recalculated the m6A levels of all compiled 
annotated pseudogenes based on the reprocessed 
m6A-LAIC-seq profiles of non-tumor cells (GM12878 
and H1 cells) according to the method described in 
our previously published paper [17, 20] and identified 
the m6A peaks based on the reprocessed m6A-seq 
profiles of non-tumor cells (GM12878 [21] and H1 
[50]). In addition, the single-nucleotide m6A sites were 
determined by combining the m6A sites predicted by 
sequence-based m6A site predictors SRAMP [65] and 
Whistle [66] within m6A peak regions. 

Absolute quantification of m6A modification 
on pseudogene mRNA 

We adopted the Epi-SELECTTM m6A fraction 
quantification kit (Epibiotek) to detect absolute m6A 
levels on pseudogenes in ARO and Tca8113 cells. The 
experimental schematic and protocol of SELECT 
(single base elongation- and ligation-based qPCR 
amplification method) were performed as previously 
described [67]. In brief, 9.8 μl total RNA was mixed 
with 1.6 μl Up Primer (1 μM), 1.6 μl Down Primer 
(μM), and 2 μl dNTP in a 2 μl 10× Reaction Buffer. The 
RNA and primers were annealed by incubating the 
mixture at a temperature gradient: 90 °C for 1 min, 
80 °C for 1 min, 70 °C for 1 min, 60 °C for 1 min, 50 °C 
for 1 min, and then 40 °C for 6 min. Subsequently, 3 μl 
of a mixture containing 0.3 μl SELECTTM DNA 
polymerase, 0.47 μl SELECTTM ligase, and 2.23 μl ATP 
was added to the former mixture to a final volume of 
20 μl. The final reaction mixture was incubated at 
40 °C for 20 min and denatured at 80 °C for 20 min. 
The qPCR reaction was performed using ChamQ 
Universal SYBR qPCR Master Mix (Vazyme, Q711) 
with the Roche Lightcycler 480 Instrument II system. 
According to the above methods, the experiments of 
the control and METTL3 knockout group were carried 
out. SELECT primer sequences and shMETTL3 
sequences are listed in List S6. 
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Comprehensive analysis of ICI therapy benefit 
To explore the prognostic value of m6A- 

associated pseudogene in HNSCC patients after 
immunotherapy, we compared the immune 
dysfunction and exclusion (TIDE) score, MSI, T cell 
dysfunction, TAM_M2, T cell exclusion score, MASC, 
and CAF, which were calculated online (http://tide. 
dfci.harvard.edu/) among different subtypes [68]. 
Besides, the tumor inflammation signature (TIS) score 
[69] was calculated as an average value of log2-scale 
normalized expression of the 18 signature genes (List 
S7) and compared in different subtypes. Moreover, 
four methods (ABSOLUTE, IHC, CPE, and 
ESTIMATE) [70-72] were performed to estimate the 
purity of the tumor, which can better understand ICI 
therapy’s benefit. To validate the prognostic value of 
m6A-associated pseudogene in patients after 
immunotherapy, we performed survival analyses in 
two urothelial cancer (UC) cohorts treated with PD-L1 
blockade [22, 23]. Moreover, we performed 
time-dependent ROC curve analyses to obtain AUC 
which is used to evaluate the prognostic value of 
m6A-associated pseudogene with the R package of 
timeROC. 

Predictive analysis of potential therapeutic 
agents for patients with high-risk scores 
HNSCC 

Drug sensitivity profiles of cancer cell lines 
(CCLs) were downloaded from the Cancer 
Therapeutics Response Portal (CTRP v.2.0, 
https://portals.broadinstitute.org/ctrp/) and Profi-
ling Relative Inhibition Simultaneously in Mixtures 
dataset (PRISM 19Q4, https://depmap.org/portal/ 
prism/). At first, compounds with more than 20% of 
missing data were excluded. After imputation, the 
K-nearest neighbor (k-NN) imputation was used to 
impute the missing AUC values. Based on CTRP and 
PRISM-derived drug response profiles respectively, 
the two different approaches were determined to 
identify candidate agents with higher drug sensitivity 
in high-risk score patients (Figure S12B). Then the 
differences in the mRNA and protein expression 
levels of candidates’ drug targets between tumor and 
normal tissue were calculated, and a higher 
differential (fold change) value indicated a greater 
potential and better efficacy of the candidate agent. 
The CMap analysis was utilized to select agents in 
which gene expression patterns were contrary to the 
HNSCC-specific expression patterns [73]. The drug 
data query was performed in DrugBank 
(https://go.drugbank.com/) and the literature search 
was conducted in PubMed (https://www.ncbi.nlm. 
nih.gov/pubmed/), which was used to seek the 
experimental validation and clinical evidence of 

candidate agents in treating HNSCC. The code for the 
predictive analysis of this section was available at 
https://github.com/tlqsysu/Predictive-analysis-of- 
potential-therapeutic-agents-for-patients-with-high-ri
sk-scores-HNSCC. 

MTT assay 
Cell viability was estimated by using the 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT; Sigma, St Louis, USA) colorimetric 
assay. In short, cells were seeded in 96-well plates and 
incubated for 24 h, and cells were treated with the 
drug at different concentrations. After the treatments, 
cells were washed with phosphate-buffered saline 
(PBS) and then incubated in MTT solution (Sigma) for 
4 h. After dimethyl sulfoxide (DMSO) was added to 
each well, the absorbance value was measured at 490 
nm to decide the cell viability with a microplate 
reader (BioTek, Winooski, USA). The cell viability was 
plotted in a graph and the IC50 was calculated 
accordingly to determine the optimum dosage of the 
drugs for further studies. 

Statistical Analysis 
One-way ANOVA and t-test were conducted to 

compare the expression levels of m6A-associated 
prognostic pseudogenes in different subtypes and 
subgroups differentiated by different clinical 
characteristics. A Chi-square test was utilized to 
estimate the differences in clinicopathological 
characteristics in different subtypes and subgroups 
identified by consensus clustering of pseudogenes. 
All statistical analyses were carried out using R4.0 
software (http://www.r-project.org/) and Biocon-
ductor (http://bioconductor.org/). A two-sided P 
value < 0.05 was considered statistically significant in 
all analyses. 

Abbreviations 
TCGA: The Cancer Genome Atlas; GEO: Gene 

Expression Omnibus; LASSO: the least absolute 
shrinkage and selection operator; ROC: the receiver 
operating characteristic curve; AUC: area under the 
curve; PDIA3P1: protein disulfide isomerase family A 
member 3 pseudogene 1; LDHAP4: lactate 
dehydrogenase A pseudogene 4; LDHAP7: lactate 
dehydrogenase A pseudogene 7; EEF1A1P6: eukaryotic 
translation elongation factor 1 alpha 1 pseudogene 6; 
EEF1A1P11: eukaryotic translation elongation factor 1 
alpha 1 pseudogene 11; SDHAP1: succinate 
dehydrogenase complex flavoprotein subunit A 
pseudogene 1; SDHAP3: succinate dehydrogenase 
complex flavoprotein subunit A pseudogene 3; DDX12P: 
DEAD/H-Box Helicase 12 pseudogene; CLUHP3: 
clustered mitochondria homolog pseudogene 3; RRN3P3: 
homolog, RNA polymerase I transcription factor 
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pseudogene 3; P1: patient subgroup 1; P2: patient 
subgroup 2; ceRNA: competitive endogenous RNA; 
PD-1: programmed cell death 1; PD-L1: programmed cell 
death 1 ligand 1; PD-L2: programmed cell death 1 ligand 
2; LAG3: lymphocyte-activation gene 3; TIGIT: T cell 
immunoreceptor with Ig and ITIM domains; CTLA4: 
cytotoxic T-lymphocyte-associated protein 4; HLA: 
major histocompatibility complex, class I; TAP1: 
transporter 1, ATP binding cassette subfamily B member; 
B2M: beta-2-microglobulin; CCL5: C-C motif chemokine 
ligand 5; CXCL9: C-X-C motif chemokine ligand 9; CD24: 
CD24 molecule; CD27: CD27 molecule; STAT1: signal 
transducer and activator of transcription 1; IRF3: 
interferon regulatory factor 3; GZMA: Granzyme A; 
PRF1: Perforin 1; CYTH: cytohesin; ITGA: integrin 
subunit alpha; ITGB: integrin subunit beta; AKT1: AKT 
serine/threonine kinase 1; FOXM1: forkhead box M1; 
E2F2: E2F transcription factor 2; MECP2: methyl-CpG 
binding protein 2; MAGEA: MAGE family member A; 
HOXA: homeobox A; EZH2: Enhancer Of Zeste 2 
Polycomb Repressive Complex 2 Subunit; GO: Gene 
Ontology; GSEA: Gene Set Enrichment Analysis; TIDE: 
tumor immune dysfunction and exclusion; MSI: 
microsatellite instability; TAM: tumor-associated 
macrophages; MDSC: myeloid-derived suppressor cell; 
CAF: cancer-associated fibroblasts; TIS: tumor 
inflammation signature; IHC: immunohistochemistry; 
CPE: consensus measurement of purity estimations; 
ESTIMATE: Estimation of Stromal and Immune cells in 
Malignant Tumours using Expression data; CCLs: cancer 
cell lines; CTRP: Cancer Therapeutics Response Portal; 
PRISM: Profiling Relative Inhibition Simultaneously in 
Mixtures. 
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