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Abstract 

Rationale: The recurrence of cutaneous squamous cell carcinoma (cSCC) after surgery is associated with the 
reprogramming of the tumor microenvironment (TME), and remains a key factor affecting its outcomes. 
Methods: We employed single-cell RNA sequencing (scRNA-seq) to examine the dynamic changes in 
epithelial cells, T cells, myeloid cells, and fibroblasts between primary and recurrent cSCC. Cell clustering, cell 
trajectory, cell-cell communication, and gene set enrichment analysis were used to investigate the TME 
heterogeneity between primary and recurrent cSCC. Gene expression differences were monitored by IHC 
staining. 
Results: We examined the immunosuppressed microenvironment in recurrent cSCC, which exhibited a T 
cell-excluded and SPP1+ tumor-associated macrophages (TAMs)-enriched status. In recurrent cSCC, CD8+ T 
cells showed high exhaustion and low inflammatory features, while SPP1+ TAMs displayed global pro-tumor 
characteristics, including decreased phagocytosis and inflammation and increased angiogenesis. Furthermore, 
the subgroups of SPP1+ TAMs harbored distinct functions. SPP1+ CD209high TAMs showed features of 
phagocytosis, while SPP1+ CD209low TAMs tended to have a high angiogenic ability. A subpopulation of 
tumor-specific keratinocytes (TSKs) showed significant epithelial-mesenchymal transition (EMT) features in 
recurrent cSCC, probably due to their active communication with IL7R+ cancer-associated fibroblasts (CAFs). 
Moreover, we found that the pleiotropic growth factor/cytokine Midkine (MDK) could provoke different 
cell-cell interactions in cSCC with distinctive staging. In primary cSCC, MDK was highly expressed in fibroblasts 
and could promote their proliferation and block the migration of tumor cells, while in recurrent cSCC, the high 
expression of MDK in TSKs promoted their proliferation and metastasis.  
Conclusion: Our study provides insights into the critical mechanisms of cSCC progression, which might 
facilitate the development of a powerful approach for the prevention and treatment of cSCC recurrence. 
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Introduction 
Cutaneous squamous cell carcinoma (cSCC) 

remains the second most common nonmelanoma skin 
cancer after basal cell carcinoma (BCC) [1]. It 
originates from epidermal keratinocytes and can 

develop as an in situ, invasive, and finally metastatic 
form [2, 3]. Although most cases of cSCC can be 
completely eradicated by surgery or ablation, a 
fraction of these tumors recur and metastasize, 
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leading to death [4], and are considered high-risk 
tumors [5]. Therefore, there is an urgent need to 
distinguish high-risk cSCCs and prevent their 
progression in the early stage, which could 
significantly improve the morbidity and mortality of 
cSCC. The immunosuppressed phenotype has been 
observed as an important factor for cSCC recurrence 
[6]. Thus, it is worthwhile to characterize the 
heterogeneous and functional states of cells in the 
tumor microenvironment (TME) of cSCC. 

The TME is composed of highly plastic cancer 
cells, resident and infiltrating host cells, and 
noncellular tissue components, which constantly 
interact and collectively determine tumor progres-
sion, metastasis, and therapeutic responses [7, 8]. 
Recently, single-cell RNA sequencing (scRNA-seq) 
technology has enabled an unprecedented understan-
ding of intra-tumoral transcriptomic heterogeneity in 
many cancers [9], revealing critical cell populations 
that influence drug resistance and tumor prognosis 
[10, 11]. A recent study utilized scRNA-seq to dissect 
the tumor and immune dynamics of cSCC and 
depicted a global ligand-receptor association of 
primary human cSCC and matched normal skin [12]. 
However, the heterogeneity between primary and 
recurrent cSCCs and the pathogenesis of cSCC 
recurrence are not fully understood. 

We performed scRNA-seq in 5 patients 
diagnosed with primary or recurrent cSCC to 
comprehensively analyze the characteristics and 
alterations of the cSCC TME. In total, 14,626 single-cell 
transcriptomes were characterized from tumor tissues 
and adjacent normal skin (ANS) sites. We identified a 
subset of tumor-specific keratinocytes (TSKs) with 
remarkable epithelial-mesenchymal transition (EMT) 
features in recurrent cSCC. Extending the findings in 
previous work [13], we observed two subpopulations 
of SPP1+ tumor-associated macrophages (TAMs) 
characterized by high phagocytosis (SPP1+ CD209high 
TAMs) and angiogenesis (SPP1+ CD209low TAMs) 
abilities. The primary and recurrent cSCCs displayed 
strikingly distinct compositions of immune cells and 
fibroblasts, with recurrent cSCC showing a T-cell- 
excluded and SPP1+ TAM-enriched microenviron-
ment. In recurrent cSCC, T cells exhibited high 
exhaustion and a low inflammatory state, while 
TAMs displayed low phagocytosis, inflammatory 
features, and high angiogenic ability. We also 
identified a group of cancer-associated fibroblasts 
(CAFs) enriched in recurrent cSCC that closely 
interacted with TSKs. Finally, we found that the 
pleiotropic growth factor/cytokine Midkine (MDK) 
was upregulated in fibroblasts of primary tumors and 
potentially promoted their proliferation, further 
blocking the migration of tumor cells from the TME. 

Based on the IHC staining, MDK expression was 
upregulated in recurrent cSCC and was positively 
correlated with two EMT-associated genes, VIM and 
TGFB1, possibly playing a critical role in facilitating 
the proliferation and metastasis of tumor cells. Our 
study emphasizes the potential role of MDK in 
regulating the cell-cell crosstalk between primary and 
recurrent cSCC that may serve as a key factor in 
mediating cSCC recurrence. 

Methods 
Patients and sample collection 

Five patients that pathologically diagnosed with 
cSCC at Xiangya Hospital of Central South University 
were investigated in this study, including four 
primary cSCC patients and one recurrent cSCC 
patient. Fresh tumor and adjacent skin samples from 
primary and recurrent cSCC were surgically resected 
from the above-described patients (Table S1). All 
subjects provided written informed consent, and this 
study was approved by the institutional ethics 
committee of Xiangya Hospital of Central South 
University (2022020109). 

Preparation of single-cell suspensions 
The fresh tissues were stored in the MACS 

Tissue storage solution (Miltenyi Biotec, 130-100-008) 
on ice after the surgery within 30 mins, and washed 
with Hanks Balanced Salt Solution (HBSS) for three 
times before dissociation. The Human Tumor 
Dissociation Kit (Miltenyi Biotec, 130-095-929), gentle 
MACS Dissociator (Miltenyi Biotec, 130-093-235) and 
gentle MACS C Tubes (Miltenyi Biotec, 130-093-237) 
were used for obtaining single-cell suspensions, Dead 
Cell Removal Kit (Miltenyi Biotec, 130-090-101) was 
used to improve cell viability to meet the 
requirements of single cell sequencing.  

Single-Cell RNA sequencing and Library 
preparation 

BD Rhapsody system and Singleron platform 
were used in our study. 

Sequencing with Singleron platform 
Single-cell suspensions (1×105 cells/ml) with 

PBS (HyClone) were loaded into microfluidic devices 
using the Singleron Matrix® Single Cell Processing 
System (Singleron). Subsequently, the scRNA-seq 
libraries were constructed according to the protocol of 
the GEXSCOPE® Single Cell RNA Library Kits 
(Singleron) [14]. Individual libraries were diluted to 4 
nM and pooled for sequencing. At last, pools were 
sequenced on Illumina HiSeq X with 150 bp paired 
end reads.  
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Sequencing with BD Rhapsody system 
Cells from each patient were labeled with 

sample tags from the Human Immune Single-Cell 
Multiplexing Kit (BD Biosciences) according to the 
manufacturer’s instruction. The cell capture beads 
were retrieved for reverse transcription as per the 
manufacturer’s protocol (BD Biosciences, Single-Cell 
Capture and cDNA Synthesis). Single-cell capture and 
cDNA library preparation were performed using the 
BD Rhapsody Express Single-Cell Analysis System 
(BD Biosciences), following the manufacturer’s 
instructions. The libraries were loaded on an S1 flow 
cell (2 ×100 cycle) and paired-end sequenced at 
>200,000 reads per cell depth on a Novaseq 6000 
Sequencer (Illumina) at the Kinghorn Centre for 
Cellular Genomics, Garvan Institute, Sydney, 
Australia. PhiX (20%) was added to the sequencing 
run to compensate for the low complexity library [15]. 

Raw data processing of single-cell RNA 
sequencing data 

For data generated with Singleron platform, 
reads were mapped to the human genome (GRCh38) 
using scopetools (https://github.com/SingleronBio/ 
SCOPE-tools). First, cell barcode and unique 
molecular identifier (UMI) were extracted after 
filtering read one according to the sequence 
information, the corrected barcode and original UMI 
sequence were added to the ID of read two. After that, 
read two were trimmed by cutadapt and then aligned 
to the reference genome using STAR [16, 17]. 
Furthermore, featureCounts was applied to target 
reads to the genomic position of genes (ensemble 
version 99) [18]. Finally, reads with the same cell 
barcode, UMI and gene were grouped together to 
count the number of UMIs per gene per cell. 

For data generated with BD platform, the FASTQ 
files were processed following the BD Rhapsody 
Analysis pipeline (BD Biosciences), which was 
implemented in the CWL-runner. Briefly, read pairs 
with low quality were removed, the quality-filtered 
R1 reads were analysed to identify cell label and UMI 
sequences. Next, the pipeline used STAR to map the 
filtered R2 reads to the transcriptome. Reads with the 
same cell label, the same UMI sequence and the same 
gene were collapsed into a single raw molecule. The 
obtained counts were adjusted by BD 
Biosciences-developed error correction 
algorithm—recursive substitution error correction 
(RSEC) to correct sequencing and PCR errors. 
Barcoded oligo-conjugated antibodies (single-cell 
multiplexing kit; BD Biosciences) were used to infer 
the origin of sample by the BD Rhapsody Analysis 
pipeline. 

Quality control, batch correction, and major 
cell type annotation of single-cell RNA 
sequencing data 

The UMI count data of Singleron and BD 
platform were imported into Seurat (V4.1.0). The 
following initial cell filtering steps were performed: 1) 
cells with more than 15% mitochondrial counts were 
removed; 2) cells expressing less than 200 genes were 
removed; 3) cells expressing more than 25,000 UMIs 
were removed. Putative doublets were removed for 
each sample using the Scrublet tool with the default 
parameters [19]. Single-cell gene expression data was 
normalized using the “LogNormalize” method with a 
scale factor 10,000. Next, the top 2,000 most variable 
genes were identified and a linear scaling method was 
applied to standardize the range of expression values 
for each gene. Principal component analysis (PCA) 
was performed to reduce dimensionality by 
“RunPCA” function. The top 50 principal components 
(PCs) were used for Uniform Manifold Approxi-
mation and Projection for dimension reduction 
(UMAP). To integrate cells from different samples and 
platforms for unsupervised clustering, we used 
harmony and set sample and platform as two 
technical covariates for batch correction [20]. Cell 
clusters were identified using the “FindClusters” 
function, with the resolution of 0.04. The most 
significant differentially expressed genes (DEGs) in 
each cluster were identified using the 
“FindAllMarker” function, using the Wilcoxon’s test. 
We further identified major cell types according to the 
gene expression of well-known markers: Epithelial 
cells: KRT14, KRT5; T cells: CD2, CD3D; Fibroblasts: 
COL1A1, DCN; Myeloid cells: LYZ, HLA-DRA; 
Endothelial cells: RAMP2, VWF; Mast cells: CPA3, 
KIT; B cells: MZB1, CD79A. 

 Sub-clustering of major cell types 
For the epithelial cells, T cells, fibroblasts and 

myeloid cells, we extracted cells from the integrated 
dataset for sub-clustering. Gene re-scaling, 
dimensionality reduction, batch correction and cell 
clustering were performed as described above. 

For epithelial cells, we examined the following 
well-known markers and divided them into 4 cell 
types: Cycling cells: MKI67, TOP2A; TSKs: PTHLH, 
MMP10; Basal cells: COL17A1; Differentiating cells: 
KRT1, KRT16. The Cycling cells were further 
clustered into cycling basal cells and cycling TSKs 
based on the above markers. Specifically, we removed 
cell clusters that highly expressed the cell markers of 
Pilosebaceous/Eccrine (SAA1, LHX2), fibroblasts 
(COL1A1), T cells (CD2, CD3D), Mast cells (TPSAB1, 
TPSB2) and Myeloid cells (LYZ), which were 
regarded as doublets (Supplementary Figure 2). Few 
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cells (2 cells) from the ANS were clustered into TSK, 
which may be caused by sample contamination, we 
thus removed these cells in the downstream analysis. 

For T cells, cell subpopulations were determined 
according to the following gene markers: Effector CD4 
T cells: CD4; Naive CD4+ T cells: CD4, CCR7, SELL; 
Effector CD8 T cells: CD8A, GZMA; CD8+ cytotoxic 
cells: CD8, IFNG, GZMA; Tregs: CD4, IL2RA, FOXP3, 
CTLA4. 

The myeloid cells were sub-clustered based on 
the gene expression of the following markers: 
Monocytes: VEGFA, VCAN, FCN1; SPP1+ CD209high 
TAMs: SPP1, CD209high, CD163, MRC1, CCL18; SPP1+ 
CD209low TAMs: SPP1, CD209low, CD163, MRC1, 
CCL18; CXCL10+ TAMs: CD163, MRC1, CXCL10; 
Cycling TAMs: CD209, CD163, MRC1, TOP2A, 
MKI67; CD14+ dendritic cells (DCs): CD1A, CD14, 
CD1C; CLEC9A+ DCs: CLEC9A, CD1C; CD1a+ CD1c+ 
DCs: CLEC10A, CD1A, CD1C; CXCL9-11+ MDSCs: 
CXCL9, CXCL10, CXCL11, IL1B, S100A8, S100A9; 
CXCL1-3+ MDSCs: CXCL1, CXCL2, CXCL3, IL1B, 
S100A8, S100A9. 

For fibroblasts, cell subpopulations were 
determined according to the gene expression of the 
following markers: mCAFs: RGS5, DCN, COL6A2, 
COL1A1, COL1A2; iCAFs: RGS5, DCN, COL6A2, 
COL1A1, COL1A2; IL7R+ CAFs: IL7R, IL1B, IL6, 
CXCL1, CXCL3, CXCL5, CXCL6, CXCL8, CXCL13, 
CXCL14, DCN, COL6A2, COL1A1, COL1A2. 

Correlation analysis between different cell 
types 

To explore the correlation between different cell 
types, we first calculated the mean gene expression 
level of cells that belong to the same cell type, and 
merged them to computed spearman correlation 
coefficient. Pheatmap package (V1.0.12) was used to 
visualized the correlation coefficient between 
different cell types. 

Identification of differentially expressed genes 
The “FindMarkers” function in Seurat package 

was used to detect differentially expressed genes, we 
defined genes with adjusted P value < 0.05, average 
log2FC > 1 as up-regulated genes and genes with 
adjusted P value < 0.05, average log2FC < -1 as 
down-regulated genes. 

Cell-cell communication analysis 
The CellChat (V1.1.3, https://github.com/sqjin/ 

CellChat) algorithm was used to infer cell-cell 
interactions within TME and identify differential 
interactions between primary and recurrent samples 
[21]. In brief, we followed the official workflow and 
imported gene expression data of cSCC into CellChat 
using “createCellChat” function. We mainly applied 

“identifyOverExpressedGenes”, “identifyOver 
ExpressedInteractions”, “projectData” functions to 
detect significant cell-cell interactions among the 
investigated cells. The “compareInteractions”, “Rank 
Net” functions were used to perform interaction 
comparison between primary and recurrent samples. 
The “netAnalysis_signalingRole_scatter” function 
was used to calculate the incoming and outgoing 
interaction strengthen of cells among datasets. All cell 
interaction visualizations were plotted using the 
CellChat package. 

Gene set variation analysis 

Hallmarks of cancer activity analysis 
We collected GO terms mapping to the 

hallmarks of cancer [22], which were used to evaluate 
the tumor property of TSKs. We applied GSVA 
method to calculate the hallmark score of individual 
cells, as implemented in the GSVA R package 
(V1.40.1) [23].  

Pathway and gene signature score analysis 
We obtained genes from four pathways derived 

from Kyoto Encyclopedia of Genes and Genomes 
(KEGG) to evaluated the inflammatory score: TNF 
signaling pathway (hsa04668), NF-kappa B signaling 
pathway (hsa04064), IL-17 signaling pathway 
(hsa04657) and NOD-like receptor signaling pathway 
(hsa04621). Besides, genes in cMAP signaling 
pathway (hsa04024) were used to calculate cMAP 
activity score. We also evaluated the phagocytosis 
score of myeloid cells by collecting its associated 
genes from KEGG (hsa04666). The EMT signature 
related genes were downloaded from MSigDB [24], 
which were used to evaluated the EMT score of TSKs. 
The score of above-mentioned pathways or signature 
was also calculated using GSVA R package (V1.40.1). 
To compare the differences of scores between 
different sample or cell types, we used the Wilcoxon 
signed-rank test that implemented in the ggpubr 
package (V0.4.0) to perform significance tests. 

Gene set enrichment analysis 
We performed KEGG enrichment analysis using 

the differentially expressed genes by clusterProfiler 
(V4.1.4) package [25, 26]. Pathways with Q value < 
0.05 were regarded as significant enriched results. 
Besides, we also did gene set enrichment analysis 
(GSEA) of KEGG pathways using clusterProfiler 
package, a cutoff Q value < 0.05 was applied to select 
the most significantly enriched pathways. 

Definition of exhaustion score for CD8+ T cells 
To evaluate the exhaustion status of CD8+ T cells 

in our study, we used a group of exhaustion-related 
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genes to define the exhaustion score [10]. Specifically, 
the exhaustion score was defined as the average 
expression of CXCL13, HAVCR2, PDCD1, TIGIT, 
LAG3, CTLA4, LAYN, RBPJ, VCAM1, TOX and 
MYO7A. Wilcoxon signed-rank test was used to 
perform significance tests, which was implemented in 
the ggpubr package (V0.4.0). 

Construction of single-cell trajectories 

RNA velocity estimation 
The bam files generated by Singleron and BD 

Rhapsody Analysis pipeline were imported into the 
Velocyto pipeline [27] to generate loom files, which 
recorded the count matrices for spliced and unspliced 
reads. The resulting loom files were fed into the 
scVelo package (V0.2.4) [28] to computed steady-state 
gene-specific velocities, the final cell transition status 
was visualized in our original UMAP embedding. 

CytoTRACE analysis 
We performed CytoTRACE [29] analysis with 

default parameters following the official guidance, 
which could predict cell differentiation states from 
scRNA-seq data. The CytoTRACE score was used to 
verify the trajectory analysis from scVelo package. 

IHC staining in human cSCC samples 
For immunohistochemical staining, samples 

were sectioned for 4 um. Tissue sections heated (65°C) 
in an oven for 2 hours, followed by 40 minutes in 
deparaffinization and rehydrated with graded alcohol 
concentrations using standard procedures. Immersed 
in the already boiling 10nM citric acid (pH 6.0), the 
deparaffinized sections heated on low heat for 20 
minutes in a microwave oven. For blocking 
endogenous peroxidase activity, the deparaffinized 
sections was incubated with endogenous peroxidase 
blocking solution for 10 minutes, and then incubated 
with normal goat serum for blocking for 1 hour to 
block nonspecific immunoglobulin binding. Then, the 
slides were incubated at 4°C overnight with a primary 
rabbit monoclonal antibody against MDK (1:100, 
ab52637, Abcam), VIM (1:200, TU253239, abmart), 
TGFB1 (1:200, PU159710, abmart). The next day, the 
slides were incubated with IHC enhancer for 20 
minutes, followed by incubation with the 
corresponding secondary antibody conjugated with 
horseradish peroxidase at 37℃ for 1 hour. Next, DAB 
(3,3-diaminodbenzidine) substrate was added, and 
then counterstained with hematoxylin for 5 min. 
Finally, the sections were dehydrated, cleared and 
mounted in aqueous mounting medium for 
microscopic evaluation. 

Semi-quantitative analysis of IHC staining  
To achieve high quality results, two independent 

pathologists experienced in evaluating IHC 
participated in reviewing samples, who were blinded 
to the clinical outcome of these patients. We assessed 
the percentage of positively stained immuno-reactive 
cells and the staining intensity to semi-quantitatively 
determine the expression of MDK, VIM and TGFB1. 
The percentage of immuno-reactive cells was rated as 
follows: 0 points, <10%; 1 point, 10–50%; 2 points, 
>50%. The staining intensity was rated as follows: 0 
(no staining or weak staining = light yellow), 1 
(moderate staining = yellow brown) and 2 (strong 
staining = brown). The overall score for 
MDK/VIM/TGFB1 expression was the sum of points 
determined for the percentage of positively stained 
immuno-reactive cells and the expression, and an 
overall score ranging from 0 to 4 was assigned. For the 
statistical analysis, the patients were divided into a 
low expression group (an overall score between 0 and 
2) and a high expression group (an overall score 
between 3 and 4) [30-32]. The final score is the 
combination of independent scores assigned by the 
two pathologists, which was reported in this study. 
Any differences in the scores were resolved by 
discussion between the two pathologists. 

Results 
Single-cell expression atlas of cSCC 
ecosystems 

The landscape and pathogenesis of TME were 
analyzed by performing scRNA-seq analysis of 6 
tumor tissues and 3 adjacent normal skin tissues from 
patients diagnosed with primary or recurrent cSCC 
(Figure 1A). After quality control and several filtering 
steps, 14,626 high-quality cells were retained for 
scRNA-seq analysis (Figure S1A-B). All data were 
merged, and gene expression normalization, scaling, 
dimension reduction, batch correction, and cell 
clustering were performed to identify coarse cell 
types. Seven major cell types were detected based on 
the gene expression of canonical cell markers, 
including epithelial cells, fibroblasts, myeloid cells, T 
cells, endothelial cells, mast cells, and B cells (Figure 
1B-C). The proportions of these major cell types 
varied greatly among different samples (Figure S1C), 
suggesting the heterogeneous character of the TME in 
cSCC. Primary tumors contained the highest cell 
abundance for most cell types, and recurrent cSCCs 
included a relatively high proportion of fibroblasts 
and B cells. In contrast, tumor tissue of Bowen disease 
(BW) comprised the lowest cell proportion (Figure 
1D). Overall, epithelial cells, fibroblasts, and myeloid 



Theranostics 2022, Vol. 12, Issue 17 
 

 
https://www.thno.org 

7537 

cells were the main components of the TME (Figure 
1E). 

EMT characteristics of tumor-specific 
keratinocytes in recurrent cSCC 

Overall, 3,942 epithelial cells were further 
reclassified into 4 clusters. We removed cell clusters 

that also expressed the gene markers of other cells, 
leaving 2,371 cells (Figure S2). Cells in each of the 4 
clusters expressed known representative genes 
(Figure 2A, Figure S3A): (1) basal (COL17A1+), (2) 
cycling (MKI67+, TOP2A+), (3) differentiating (KRT1+), 
and (4) TSK (MMP10+, PTHLH+) cells [12]. 

 

 
Figure 1. A global overview of TME in cSCC. A. Schematic graph describing the main workflow and study design. B. Uniform Manifold Approximation and Projection (UMAP) of major 
cell populations in our study, different colored dots represent different cell types. C. The expression level of cell type specific gene markers among UMAP. D. Sample type fractions relative 
to the total cell count per cell type. E. Bar plot shows the cell number of the major cells. ANS, adjacent normal skin. BW, Bowen disease. P-cSCC: primary cutaneous squamous cell carcinoma. 
R-cSCC: recurrent cutaneous squamous cell carcinoma. 
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Figure 2. Re-clustering and functional analysis of epithelial cells. A. UMAP plot of sub-groups of epithelial cells. B. UMAP plot of cycling cells. C. The proportion of different cell types 
among samples and tissues. D. Heatmap depicting pairwise correlations between different cell types. E. Cell transition potential of basal, differentiating cells and TSKs determined by RNA 
velocity analysis. F. Enriched pathways of TSKs by GSEA analysis. G. Volcano plot showing the differential expressed genes between primary and recurrent cSCC. H. Gene expression level 
of VIM and TGFB1 across primary and recurrent cSCC. I. MET signature score of TSKs across primary and recurrent cSCC. J. The IHC staining of VIM in representative samples. K. The IHC 
score of VIM in primary, the first and second recurrence of cSCC, different tissue sites were marked by different color. L. The IHC staining of TGFB1 in representative samples. M. The IHC 
score of TGFB1 in primary, the first and second recurrence of cSCC, different tissue sites were marked by different color. Wilcoxon signed-rank test, ****p < 0.0001. 
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Furthermore, the cycling cells were grouped into 
cycling TSKs and basal cells based on the expression 
of known markers (Figure 2B, Figure S3B). Overall, 
ANS and BW had a high proportion of differentiating 
cells, while primary and recurrent cSCCs had a 
relatively high proportion of TSKs (Figure 2C). 
Correlation analysis showed that epithelial cells from 
the same sample types were prone to cluster together 
(Figure 2D), demonstrating that epithelial cells are 
highly heterogeneous relative to sample site origin. 
RNA velocity analysis revealed that basal and 
differentiating cells tended to differentiate into TSKs 
(Figure 2E). Functional enrichment analysis showed 
that TSK cells were associated with PI3K-Akt, 
ECM-receptor interaction, focal adhesion, and HIF-1 
signaling pathways (Figure 2F), demonstrated to be 
associated with tumor progression or resistance to 
cancer therapies [33-37].  

We further evaluated the activity score of 
functional terms associated with “hallmarks of 
cancer”. TSK cells showed the highest score in most 
hallmarks, demonstrating their cancer characteristics, 
such as “Self Sufficiency in Growth Signals”, 
“Insensitivity to Antigrowth Signals”, and “Evading 
Apoptosis” (Figure S3C). We also identified 
differentially expressed genes in TSK cells between 
primary and recurrent cSCCs, and discovered that 
two EMT-related genes, VIM and TGFB1, were 
upregulated in recurrent cSCC (Figure 2G-H). 
Moreover, we calculated the EMT signature score of 
TSKs and found significantly higher EMT scores in 
recurrent cSCC (Figure 2I). We subsequently 
performed IHC staining to validate the expression of 
VIM and TGFB1 in cSCC in a clinical cohort that 
comprised 16 patients with cancer progression events, 
from primary tumors to cSCCs with single or multiple 
recurrences (Table S2). The results showed that both 
VIM and TGFB1 were significantly highly expressed 
in recurrent cSCCs (Figure 2J-M), implying that the 
recurrence of cSCC is associated with EMT. 

T cell-excluded microenvironment in 
recurrent cSCC  

Subclustering of T cells identified five 
subpopulations: (1) effector CD4+ T cells (CD4+, 
CCR7-), (2) Tregs (CD4+, IL2RA+, FOXP3+, CTLA4+), 
(3) naive CD4+ T cells (CD4+, CCR7+, SELL+), (4) 
effector CD8+ T cells (CD8+, GZMA+), and (5) CD8+ 
cytotoxic cells (CD8+, IFNG+, GZMA+) (Figure 3A-B). 
RNA velocity analysis displayed a bidirectional flow 
between Tregs and effector CD4+ T cells and effector 
CD8+ T cells and CD8+ cytotoxic cells, while the 
differentiation from naive CD4+ T cells to Tregs 
appeared to be irreversible (Figure S4A). These 
findings indicated that Tregs, effector CD4+ T cells, 

effector CD8+ T cells, and CD8+ cytotoxic cells in the 
cSCC were prone to becoming intermediate and 
plastic and had the potential to differentiate into other 
cells. 

Both CD4+ and CD8+ T cells were enriched in 
primary cSCC, while recurrent cSCC sites showed the 
lowest T cell infiltration (Figure S4B-C), indicating 
that recurrent cSCC tended to be a T cell desert tumor. 
The above-described T cells from different popula-
tions were further clustered based on their gene 
expression level. The results showed that T cells from 
ANS and primary cSCC tended to cluster together, 
and T cells from recurrent cSCC had a distinct pattern 
relative to other sites of origin (Figure 3C). Next, we 
evaluated the exhaustion score of effector CD8+ T cells 
and CD8+ cytotoxic T cells and compared it among 
ANS, primary and recurrent cSCCs. Compared with 
ANS, effector CD8+ T cells and CD8+ cytotoxic T cells 
showed increased exhaustion scores in primary cSCC. 
In contrast, CD8+ cytotoxic T cells had increased 
exhaustion scores in recurrent cSCC compared with 
ANS and primary cSCC (Figure 3D). Specifically, in 
primary cSCC, CTLA4 and T cell immunoreceptor 
with immunoglobulin and ITIM domain (TIGIT) 
displayed high expression levels in effector CD8+ T 
cells, and TIGIT showed high expression levels in 
CD8+ cytotoxic T cells. In recurrent cSCC, effector 
CD8+ T cells exhibited high expression levels of 
HAVCR2 (TIM3) and CXCL13, while CD8+ cytotoxic 
T cells displayed high expression levels of CTLA4 and 
CXCL13 and relatively higher expression levels of 
LAG3 (Figure 3E). This observation indicated that the 
exhaustion of CD8+ T cells in primary and recurrent 
cSCC was related to different inhibitors. 

Furthermore, we evaluated an inflammatory 
score to gain deeper insight into the inflammatory 
changes among the ANS and primary and recurrent 
cSCCs, focusing on 4 pathways. For effector CD8+ T 
cells, primary cSCC exhibited activity scores similar to 
those of ANS, while recurrent cSCC showed 
significantly decreased inflammatory scores in the 
tumor necrosis factor (TNF) and IL-17 signaling 
pathways (Figure 3F, Figure S4D). For CD8+ cytotoxic 
T cells, except for the IL-17 signaling pathway, 
primary cSCC displayed an inflammatory score 
similar to that of ANS, while the activity scores for the 
TNF and NOD-like receptor signaling pathways 
showed significantly decreased levels in recurrent 
cSCC (Figure 3F, Figure S4E). In addition, GSEA 
showed upregulation of “oxidative phosphorylation” 
process in CD8+ cytotoxic T cells in recurrent cSCC 
compared to primary cSCC (Figure 3G, NES = 1.78, p 
< 0.01), demonstrating that cells were in a 
metabolically active state. Our analysis revealed that 
recurrent cSCC exhibited low infiltration and a 
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decreased inflammatory score of T cells, which may 
be a key reason for cSCC recurrence. 

Protumor phenotypes of SPP1+ CD209high/low 
TAMs in recurrent cSCC 

Myeloid cells were among the most abundant 
cells in the TME of cSCC (Figure 1E) and have been 
demonstrated to participate in tumor progression and 
metastasis [38]. Subsequently, 2,693 myeloid cells 
were clustered and annotated into 10 subpopulations 
(Figure 4A). In total, 4 populations were designated 
TAMs, which had various features: (1) SPP1+ 
CD209high TAMs (SPP1+, CD209high, CD163+, MRC1+, 
CCL18+), (2) SPP1+ CD209low TAMs (SPP1+, CD209low, 
CD163+, MRC1+, CCL18+), (3) CXCL10+ TAMs 
(CD163+, MRC1+, CXCL10+), and (4) cycling TAMs 
(CD209+, CD163+, MRC1+, TOP2A+, MKI67+). In 
addition, one cluster was identified as monocytes 
(VEGFA+, VCAN+, FCN1+), and 3 subpopulations 

were characterized as DCs: (1) CD14+ DCs (CD1A-, 
CD14+, CD1C+), (2) CLEC9A+ DCs (CLEC9A+, 
CD1C+), and (3) CD1a+ CD1c+ DCs (CLEC10A+, 
CD1A+, CD1C+, CD14-). We divided MDSCs into 2 
subgroups: (1) CXCL9-11+ MDSCs (CXCL9+, 
CXCL10+, CXCL11+, IL1B+, S100A8+, S100A9+) and (2) 
CXCL1-3+ MDSCs (CXCL1+, CXCL2+, CXCL3+, IL1B+, 
S100A8+, S100A9+). The expression of each 
cell-specific gene marker was presented in Figure 4B 
and S5. Notably, for the two groups of MDSCs 
identified in our study, CXCL9-11+ MDSCs were 
enriched in recurrent cSCC, while CXCL1-3+ MDSCs 
were more abundant in primary cSCC (Figure S6A-B). 
Compared with CXCL1-3+ MDSCs, CXCL9-11+ 
MDSCs were enriched in the pathways of “oxidative 
phosphorylation” and “antigen processing and 
presentation” when analyzed by GSEA (Figure S6C). 

 

 
Figure 3. T cell annotation and functional characterization. A. UMAP visualization of T cells, different colors represent distinct sub-populations. B. Violin plot showing the 
representative markers of T cell lineage. C. Heatmap showing the pairwise correlations between T cells. D. The distribution of exhaustion score of effector CD8+ T cells and CD8+ cytotoxic 
T cells among ANS, primary and recurrent cSCC. E. The expression level of immune inhibitors among different sample and cell types. F. The GSVA score of inflammatory pathways in effector 
CD8+ T cells and CD8+ cytotoxic T cells among different sample types. G. Significantly identified pathway that enrich in recurrent versus primary cSCC. Wilcoxon signed-rank test, *p < 0.05, 
**p < 0.01, ***p < 0.001. 
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Figure 4. Components and phenotypes of myeloid cells in cSCC. A. UMAP plot of myeloid cells. B. Violin plot of the maker genes in myeloid sub-populations. C. UMAP plot showing 
the RNA velocity of myeloid cells. D. Distribution of phagocytosis score in each cell type, ranking by the median value. E. Distribution of angiogenesis in each cell type, ranking by the median 
value. F. The GSVA score of phagocytosis score in SPP1+ CD209high TAMs and CD1a+ CD1c+ DCs among different sample types. G. The GSVA score of angiogenesis in SPP1+ CD209low TAMs 
among different sample types. Wilcoxon signed-rank test, *p < 0.05, ***p < 0.001, ****p < 0.0001. 

 
RNA velocity analysis showed the transition 

directions from TAMs and DCs to monocytes, and 
MDSCs were located at the end of the differentiation 
trajectory (Figure 4C). Furthermore, using 
CytoTRACE, we confirmed that the potential origins 
of monocytes were M2 macrophages and DCs (Figure 
S6D) [29]. Recent studies reported that Bordetella 
pertussis adenylate cyclase toxin could inhibit the 
differentiation of infiltrating monocytes into 
macrophages and DCs by activating cMAP signaling 
and could provoke the dedifferentiation of 

macrophages to monocyte-like cells [39]. Therefore, 
we examined the cMAP activity score of myeloid cells 
over time. Interestingly, there was a significantly 
negative correlation between latent time and cMAP 
score (R = 0.32, p < 0.00001). The cMAP score 
displayed a decreased pattern when macrophages 
and DCs transformed into monocytes, and no 
significant reduction pattern in the cMAP score was 
observed for cells originating from monocytes (Figure 
S6E-F). These observations suggested that the 
transmission of monocytes from macrophages and 
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DCs might be related to the cMAP signaling pathway, 
and the transmission direction might be related to the 
malignancy level of cSCC. 

Recently, a subtype of TAMs with SPP1+ 
characteristics and angiogenesis-related properties 
was reported to be associated with tumor metastasis 
[13, 40, 41]. In our study, SPP1+ CD209high and SPP1+ 
CD209low TAMs were identified as two subpopu-
lations of SPP1+ TAMs with a high proportion in 
recurrent cSCC (Figure S6A-B). We examined the 
angiogenic and phagocytotic properties of TAMs and 
found different characteristics in these subpopula-
tions. SPP1+ CD209high TAMs exhibited a higher 
phagocytosis score than SPP1+ CD209low TAMs, while 
SPP1+ CD209low TAMs had the highest angiogenesis 
score (Figure 4D-E). In addition, CD1a+ CD1c+ DCs 
displayed the highest phagocytosis score (Figure 4D). 
Not surprisingly, the phagocytosis score of SPP1+ 
CD209high TAMs, CD1a+ CD1c+ DCs, and cycling 
TAMs decreased in recurrent cSCC compared with 
primary cSCC (Figure 4F, Figure S6G). Also, SPP1+ 
CD209high TAMs displayed significantly increased 
angiogenesis scores in primary and recurrent cSCCs 
(Figure 4G, Figure S6H).  

Next, we evaluated the inflammatory pathway 
scores of these myeloid cells. Overall, TAMs and 
monocytes tended to have higher inflammatory 
scores (Figure S7A-D). For the TNF, NF-kappa B, and 
NOD-like receptor signaling pathways, SPP1+ 
CD209high TAMs had elevated scores in primary cSCC 
and decreased scores in recurrent cSCC (Figure S7E, 
G-H). For the NF-kappa B and IL-17 signaling 
pathways, monocytes showed lower scores in 
primary and recurrent cSCC than in ANS (Figure 
S7E-F). Collectively, our results revealed that SPP1+ 
TAMs had lower phagocytosis and inflammation but 
higher angiogenesis scores in recurrent cSCC, 
potentially reflecting the cSCC recurrence mechanism. 

Crosstalk between recurrent cSCC-enriched 
IL7R+ CAFs and tumor-specific keratinocytes 

In our study, 2,828 fibroblasts were classified 
into 3 subpopulations based on the expression of 
marker genes, including (1) mCAFs (RGS5+, DCN+, 
COL6A2+, COL1A1+, COL1A2+), (2) iCAFs (RGS5-, 
DCN+, COL6A2+, COL1A1+, COL1A2+), and (3) IL7R+ 
CAFs (IL7R+, IL1B+, IL6+, CXCL1+, CXCL3+, CXCL5+, 
CXCL6+, CXCL8+, CXCL13+, CXCL14+, DCN+, 
COL6A2+, COL1A1+, COL1A2+) (Figure 5A-B). 
Notably, IL7R+ CAFs were more abundant in 
recurrent cSCC, while primary cSCC had a relatively 
high proportion of mCAFs (Figure 5C). RNA velocity 
analysis revealed the transition direction from iCAFs 
to mCAFs and iCAFs to IL7R+ CAFs (Figure 5D), 
indicating that iCAFs could differentiate into mCAFs 

and IL7R+ CAFs, which might be related to primary 
and recurrent cSCC, respectively. 

Next, we calculated the inflammatory score of 
IL7R+ CAFs and compared it between ANS, primary, 
and recurrent cSCCs. We found that in all four 
investigated pathways, primary cSCC showed a slight 
increase in the inflammatory score, which was 
significantly decreased in recurrent cSCC (Figure 5E), 
indicating a low inflammatory feature for IL7R+ CAFs 
during cSCC recurrence. We performed cell-cell 
communication analysis using CellChat to gain a 
deeper insight into the biological function of IL7R+ 
CAFs [21]. Interestingly, IL7R+ CAFs expressed high 
levels of ligands related to EMT, such as collagens 
[encoded by COL1A1, COL1A2, COL4A1, COL6A1, 
COL6A2, COL6A3], fibronectin 1 [encoded by FN1], 
tenascin C [encoded by TNC], and Thy-1 [encoded by 
THY1] (https://www.gsea-msigdb.org/gsea/ 
msigdb/cards/HALLMARK_EPITHELIAL_MESEN
CHYMAL_TRANSITION.html). The receptors for 
these ligands were expressed by a wide range of cells, 
which subsequently induced typical cell-cell 
interactions (Figure 5F-G, Figure S8A-F). Notably, 
IL7R+ CAFs showed the strongest interaction with 
TSKs in the collagen, FN1, and TEAD signaling 
pathways.  

For the receptors that are expressed in TSKs, 
integrins [encoded by ITGA1, ITGA2, ITGA3, ITGA4, 
ITGA5, ITGA8, ITGAV, ITGAX, ITGAM, ITGB1, and 
ITGB2] can recognize multiple ligands, including 
collagens, fibronectin 1, tenascin C, and Thy-1, 
causing downstream crosstalk between TSKs and 
IL7R+ CAFs. Integrin signaling is known to have a 
profound effect on tumor cells, including 
proliferation, migration, and survival [42]. Also, 
ITGA3 has been shown to promote endothelial cell 
motility and angiogenesis during the early stages of 
neovascularization [43]. Similarly, ITGA8 has been 
demonstrated to regulate the recruitment of 
mesenchymal cells into epithelial structures and 
promote cell survival [44, 45]. Therefore, IL7R+ CAFs 
might promote the EMT of TSKs by cell-cell 
communication via multiple signaling pathways in 
recurrent cSCC. 

Role of the MDK-dependent pathway in 
recurrent cSCC by cell-cell interaction analysis  

Previous evidence suggested differences in the 
composition and functional status of the TME 
between primary and recurrent cSCC. We hypothe-
sized that primary and recurrent cSCC display 
distinct subcellular interaction relationships within 
the TME, which may profoundly influence the tumor 
phenotype. We tested this hypothesis by performing 
cell-cell communication analysis separately in 
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primary and recurrent cSCCs. The results showed that 
primary cSCC had many more cell interaction events 
than recurrent cSCC (6696 vs. 1196), which could have 
been due to the small cell number in recurrent cSCC 
(8217 vs. 3341). Notably, iCAFs and IL7R+ CAFs had 
more interactions with other cells in primary cSCC. In 
contrast, TSKs, iCAFs, mCAFs, and IL7R+ CAFs were 

dominant cells that communicated with other cells in 
recurrent cSCC (Figure 6A). In addition, we calculated 
the incoming and outgoing interaction strengths of 
cells and found that TSKs played an essential role 
within the TME in recurrent cSCC compared with 
primary cSCC (Figure S9A). 

 

 
Figure 5. Assessing the functional states of fibroblasts in cSCC. A. UMAP plot showing the sub-populations of fibroblasts. B. Violin plot showing the high expression of gene markers 
in fibroblasts. C. The proportion of fibroblasts relative to sample ID and sample type. D. RNA velocity plot showing cell transition directions among fibroblasts. E. The GSVA score of 
inflammatory pathways in fibroblasts among different sample types. F. Cell-cell interactions in COLLAGEN signaling pathway. G. Cell-cell interactions in FN1 signaling pathway. Wilcoxon 
signed-rank test, ****p < 0.0001. 
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Figure 6. Cell-cell interactions of the primary and recurrent cSCC. A. Dependency wheel illustrating the interaction relationship between cells within the TME of primary and 
recurrent cSCC, the link size represents the interaction number. B. Cell-cell interactions of MDK signaling pathway in primary and recurrent cSCC, the link size represents the interaction 
strengthen. C. The IHC staining of VIM and MDK in representative samples. D. VIM and TGFB1 in hypodermis (number of positive cell/area), different tissue sites were marked by different 
color. E. The IHC staining of MDK in representative samples. F. The IHC score of MDK in primary, the first and second recurrence of cSCC, different tissue sites were marked by different 
color. G. Scatter plot of the score of MDK and VIM, MDK and TGFB1 in tumor samples of cSCC. Different dots represent the type of sample. Wilcoxon signed-rank test, *p < 0.05, **p < 0.01, 
****p < 0.0001. 

 
We subsequently focused on TSKs and identified 

increased interaction signaling in recurrent cSCC 
using primary cSCC as a control. Among the 
significantly upregulated pathways, the MDK 
pathway was exclusively present in recurrent cSCC 
(Figure S9B). MDK is a heparin-binding growth factor 
and has been reported to serve as an important 
regulator that supports cell transformation, growth, 
survival, migration, and angiogenesis in several 
human cancers [46, 47]. Interestingly, primary and 
recurrent cSCCs possessed distinct MDK-associated 
interaction relationships. In primary cSCC, iCAFs and 
IL7R+ CAFs produced high levels of MDK to mediate 
their intercellular communications, while in recurrent 
cSCC, TSKs secreted high levels of MDK, whose 
receptors were expressed on TSKs and other cells, 

thus regulating the strong cell-cell interactions within 
TSKs (Figure 6B, Figure S9C, Figure S10).  

We examined the effect of MDK on fibroblasts by 
investigating the expression of MDK and VIM (a 
general marker of fibroblasts) in normal skin and 
actinic keratosis (AK) samples. We also validated the 
expression of MDK by IHC staining using 5 normal 
skin samples, 10 samples with AK, and 16 patients 
with primary tumors and single or multiple 
recurrences of cSCC, comprising matched ANS and 
tumor samples (Table S2, S3). Compared with normal 
skin, VIM was upregulated in the hypodermis of AK, 
indicating the presence of increased fibroblasts in the 
hypodermis (Figure 6C-D). MDK was also highly 
expressed in the hypodermis of AK and displayed a 
positive correlation with VIM (R = 0.58, p = 0.088, 
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Figure S11A). Therefore, we hypothesized that cSCC 
had increased fibroblasts in early carcinogenesis 
mediated by MDK. Surprisingly, MDK also 
participated in the recurrence of cSCC, and tumor 
tissues with the first and second recurrences had 
higher MDK expression levels than primary cSCC 
(Figure 6E-F). Besides, MDK was significantly 
correlated with the expression of VIM and TGFB1 
(Figure S11B), indicating that it may regulate the EMT 
of cSCC. MDK was reported to be abnormally 
expressed in human malignancies and participate in 
diverse cancer development and progression 
processes [46], suggesting that MDK expressed on 
different cells may be a double-edged sword in the 
TME. When fibroblasts highly express MDK, it may 
promote fibroblast replication and block the 
proliferation and metastasis of tumor cells through 
cellular interactions, thus avoiding tumor recurrence. 
Conversely, TSKs may acquire proliferative or EMT 
capacity in recurrent tumor tissues by expressing 
MDK, which then mediates tumor recurrence. 

Taken together, we found that primary cSCC 
was similar to a “hot” tumor, which infiltrated with a 
higher abundance of T cells, whereas recurrent cSCC 
tended to be a “cold” tumor and harbored EMT 
characteristics. CD8+ T cells secreted high levels of 
CTLA4 and TIGIT in primary cSCC, while they highly 
expressed TIM3, CTLA4, and CXCL13 in recurrent 
cSCC. Relatively high proportions of SPP1+ CD209high 
and SPP1+ CD209low TAMs, characterized by marked 
features of phagocytosis and angiogenesis, 
respectively, were observed in recurrent cSCC with 
low potential for phagocytosis and inflammation and 
obvious angiogenic characteristics in recurrent cSCC. 
We observed that MDK could drive strong 
intercellular interactions within iCAFs and IL7R+ 
CAFs in primary cSCC, while TSKs tended to have 
strong interactions with themselves by secreting 
MDK. Also, in recurrent cSCC, IL7R+ CAFs showed 
interactions with TSKs by expressing EMT-related 
markers, possibly promoting the EMT of tumor cells 
(Figure 7A). 

Discussion 
Although cSCC is usually not life-threatening, 

and can mostly be successfully eradicated by surgical 
resection, a subset of cSCC can recur and metastasize, 
leading to death [48]. For cancer cell progression and 
metastasis, a highly complex and heterogeneous 
microenvironment is essential [49]. Here, we 
performed scRNA-seq on 14,626 single cells of ANS 
and tumor tissues from 5 patients diagnosed with 
primary or recurrent cSCC. Through integrated 
analyses of scRNA-seq data, we provided a 
comprehensive functional and cell-cell interaction 

landscape of epithelial cells, fibroblasts, myeloid cells, 
and T cells, which are the major components of the 
cSCC TME. Our study characterized the heterogenous 
and functional differences in the TME between 
primary and recurrent cSCC. The critical 
reprogramming of the TME described in our study 
revealed the mechanism of cSCC recurrence and may 
provide instructive guidance for clinical prevention 
and treatment. 

We found that recurrent cSCC was characterized 
by low T-cell infiltration and elevated T-cell 
exhaustion. Tumor-infiltrating CD8+ T cells have been 
shown to progress to an exhaustion state in many 
tumors [50], such as hepatocellular carcinoma [51], 
melanoma [52], and breast cancer [53]. High 
expression of immune checkpoint receptors is 
associated with the exhaustion state of CD8+ T cells, 
such as PD-1, CTLA-4, TIM-3, and LAG-3 [54], and 
their dysfunctional state has been demonstrated to 
affect the postoperative survival and recurrence risk 
of patients [51]. Tumors characterized by a lack of 
effector T cells have been termed “cold tumors” and 
shown to resist immunotherapy [55], indicating that 
this treatment modality is inappropriate for recurrent 
cSCC. Inflammatory pathways play important roles in 
regulating the innate and adaptive immune response. 
TNF and NF-κB signaling can promote the activation 
of effector T cells [56, 57]. IL-17 is a proinflammatory 
cytokine secreted by T cells that plays a critical role in 
host defense against bacterial infection [58]. The 
NOD-like receptor signaling pathway participates in 
the innate immune response regulation of the host 
[59]. In particular, T cells in recurrent cSCC exhibited 
decreased activity of the TNF, IL-17, NF-kappa B, and 
NOD-like receptor signaling pathways, which may 
explain their low defense and weak killing ability. 

A recent study described that SPP1+ 
macrophages might prevent the infiltration of 
lymphocytes, further reducing the efficacy of PD-L1 
treatment [40]. Moreover, SPP1+ macrophages were 
reported to carry out angiogenesis positively 
correlated with EMT markers and related to tumor 
metastasis [13, 40, 41, 60]. In our study, SPP1+ TAMs 
expressed a global protumor characteristic in 
recurrent cSCC, including lower phagocytosis and 
inflammation scores and higher angiogenesis scores, 
which may be the critical mechanism of cSCC 
recurrence. However, the two subpopulations of 
SPP1+ macrophages (SPP1+ CD209high and SPP1+ 
CD209low) possessed different characteristics, showing 
remarkable features of phagocytosis and angio-
genesis, respectively. This observation indicated the 
heterogeneous property of SPP1+ TAMs, implying 
that the proportion of SPP1+ CD209high and SPP1+ 
CD209low TAMs may affect the outcomes of cSCC. 
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Patients with high proportions of SPP1+ CD209high 
TAMs with strong phagocytosis ability might have a 
good prognosis. We found that recurrent cSCC had 
significantly higher expression levels of two 

EMT-associated genes, VIM and TGFB1, and high 
EMT characteristics, which may be related to 
increased numbers of SPP1+ TAMs.  

 

 
Figure 7. Diagram illustrating the reprogramming of TME in cSCC progression. A. Top, schematic diagram of the TME and cell-cell interactions in primary cSCC. Bottom, 
schematic diagram of the TME and cell-cell interactions in recurrent cSCC. B. The specific transformation pattern of MDK within TME, ranging from a precursor AK, to primary cSCC, and 
finally recurrent cSCC. 
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The high expression of VIM and TGFB1 in 
recurrent cSCC was further validated using IHC in an 
independent clinical cohort. The TME is a 
heterogeneous collection of multiple cells and noncel-
lular tissue components. Among them, CAFs act as a 
double-edged sword with tumor-restraining/ 
promoting roles, which could induce EMT in diverse 
cancers [61-63]. Here, we found that IL7R+ CAFs were 
enriched in recurrent cSCC and, by expressing 
integrins, could interact with TSKs through the 
collagen, FN1, tenascin, and THY1 signaling 
pathways. Collagen and tenascin C (TNC) can 
promote EMT in tumors [64, 65]; therefore, the 
interaction between TSKs and IL7R+ CAFs may 
mediate the EMT of tumor cells in recurrent cSCC. 

MDK is a heparin-binding growth factor that 
promotes the proliferation and EMT of tumor cells 
[46] and has been shown to correlate with tumor 
progression and poor prognosis in glioblastoma [66]. 
It could also lead to immunotherapy resistance and 
promote immunosuppression in human cancers [67]. 
AK is the most common form of precancerous lesion 
in cSCC, which is related to cumulative ultraviolet 
(UV) exposure from sunlight [68]. We measured VIM 
abundance, a general marker of fibroblasts, in normal 
skin and AK and found that it was significantly 
enriched in the hypodermis of AK. In addition, MDK 
was upregulated and tended to have an expression 
pattern consistent with VIM in AK. When fibroblasts 
were isolated from primary cSCC and healthy dermis, 
those derived from cSCC had increased proliferation 
compared to normal fibroblasts [69]. In our study, the 
high expression of MDK in fibroblasts led to strong 
intercellular communication in primary cSCC. This 
evidence indicated that MDK might drive the massive 
proliferation of fibroblasts in AK under cumulative 
exposure to sunlight, which could be a protective 
mechanism against UV. Thus, when AK progresses to 
primary cSCC, MDK may further promote fibroblast 
proliferation, allowing it to regulate ECM remodeling 
and protect tumor cells from escaping the 
microenvironment. This hypothesis explains the 
clinical observation that primary cSCC is unlikely to 
metastasize. In recurrent cSCC, MDK was expressed 
at low levels in fibroblasts and shifted to a high 
expression pattern in cSCC, further promoting 
cell-cell communication within themselves. Besides, 
MDK was positively correlated with VIM and TGFB1 
in a cSCC cohort, demonstrating that it is associated 
with EMT. Thus, MDK potentially drives the 
proliferation and EMT of tumor cells in recurrent 
cSCC. Our study proposes a specific transformation 
pattern of MDK, ranging from a precursor AK to 
primary cSCC and finally recurrent cSCC, providing a 
novel potential treatment target in cSCC (Figure 7B). 
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