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Abstract 

Rationale: Immune checkpoint inhibitors (ICIs) have revolutionized the management of locally advanced or 
metastatic urothelial carcinoma. Strikingly, compared to urothelial carcinoma of the bladder (UCB), upper tract 
urothelial carcinoma (UTUC) has a higher response rate to ICIs. The stratification of patients most likely to 
benefit from ICI therapy remains a major clinical challenge. 
Methods: In this study, we performed the first single-cell RNA sequencing (scRNA-seq) study of 13 surgical 
tissue specimens from 12 patients with UTUC. The key results were validated by the analysis of two 
independent cohorts with bulk RNA-seq data for UCB (n = 404) and UTUC (n = 158) and one cohort of 
patients with metastatic urothelial carcinoma (mUC) who were treated with atezolizumab (n = 348). 
Results: Using scRNA-seq, we observed a higher proportion of tumor-infiltrating immune cells in locally 
advanced UTUC. Similar prognostically relevant intrinsic basal and luminal-like epithelial subtypes were found 
in both UTUC and UCB, although UTUC is predominantly of the luminal subtype. We also discovered that 
immunosuppressive macrophages and exhausted T-cell subpopulations were enriched in the basal subtype and 
showed enhanced interactions. Furthermore, we developed a gene expression signature (Macro-C3 score) 
capturing the immunosuppressive macrophages that better predicts outcomes than the currently established 
subtypes. We also developed a computational method to model immune evasion, and the Macro-C3 score 
predicted therapeutic response of mUC treated with first-line anti-PD-L1 inhibitors in patients with lower basal 
scores. 
Conclusions: Overall, the distinct microenvironment and Macro-C3 score provide an explanation for ICI 
efficacy in urothelial carcinoma and reveal new candidate regulators of immune evasion, suggesting potential 
therapeutic targets for improving antitumor immunity in the basal subtype. 
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Introduction 
Urothelial carcinoma (UC) is the fourth most 

common tumor type, and upper tract urothelial 
carcinoma (UTUC) is a distinctly aggressive genito-
urinary entity of UC. UTUC arises from the urothelial 
lining of the upper urinary tract, which includes the 
renal pelvis and ureter [1]. Despite the common 
histologic appearance of urothelial carcinoma of the 
bladder (UCB), approximately 60% of UTUCs and 15–
20% of UCBs are diagnosed as muscle-invasive (MI), 
which correlates with a worse prognosis than 
non-muscle-invasive (NMI) cases with an excellent 
overall prognosis [2]. Genomic and epigenetic 
subtyping of UCB and UTUC, including that 
completed by our group, has revolutionized the 
current understanding of UC pathogenesis [3-7]. 
However, even the most recent consensus molecular 
classification study of UTUC [8] does not provide 
compelling evidence for molecular pathogenesis and 
thus lacks the ability to predict the therapeutic 
response. 

Tumor phenotype is represented by cell state 
measured as RNA expression. Therefore, cancer 
subtyping based on gene expression profiles can 
provide valuable insights into cancer biology and 
important clues for treatment planning. Notably, a 
previous study identified two intrinsic subtypes of 
muscle-invasive UCB, termed “luminal” and “basal- 
like”, which have the characteristics of different stages 
of urothelial differentiation. Moreover, a 47-gene 
predictor, bladder cancer analysis of subtypes by gene 
expression (BASE47), was developed to subtype UCB 
into prognostic subtypes [9]. However, it remains 
unclear whether these bulk RNA-seq data mask 
heterogeneity at the single-cell level derived from the 
presence of both malignant and nonmalignant cells. 
Moreover, it remains unclear whether similar 
prognostically relevant intrinsic subtypes exist in 
UTUC, and thus, our understanding of their 
relationship to therapeutic response is limited. 

Cell state is an integration of inputs from 
cell-intrinsic (e.g., mutational background, epigenetic 
state) and cell-extrinsic (e.g., cell-to-cell interactions, 
tumor microenvironment) sources. Dynamic interact-
ions between the tumor and tumor microenvironment 
(TME) are essential for cancer cell heterogeneity and 
therapeutic response [10]. In particular, distinct 
populations of T cells influence tumorigenesis by 
performing pro- and anti-tumorigenic functions. T 
cell exhaustion is the main reason why they fail to 
eliminate tumor cells and various forms of cancer 
immunotherapy are now effective in re-establishing 
and promoting T cell anti-tumor immunity [11, 12]. By 
suppressing T cell function, other immune cell types 
maintain immune equilibrium, such as M2 polarized 

macrophages and tolerogenic dendritic cells [13]. 
Tumor-associated macrophages (TAMs) account for a 
significant fraction in human solid malignancies and 
influence tumor progression by providing nutritional 
support to malignant cells, now constituting 
promising targets for novel anticancer agents [14]. 
Advancements in single-cell RNA sequencing 
(scRNA-seq) have led to the ability to simultaneously 
evaluate the cell states of both malignant and 
nonmalignant cells in TME and thus provide unique 
opportunities to explore how tumor cell subtypes are 
shaped by cell-intrinsic and cell-extrinsic factors. In 
this context, we hypothesized that comprehensive 
profiling of malignant and nonmalignant cells in 
UTUC at the single-cell level would enable the 
deconvolution of current molecular subtypes into 
their constituent parts, which would consequently 
enable the development of more effective prognostic 
and predictive tools. 

In this study, we performed single-cell RNA 
sequencing of 13 surgical tissue specimens obtained 
from 12 patients with UTUC. We observed that MI 
UTUC had a higher abundance of tumor-infiltrating 
immune cells than NMI UTUC. We also found that 
similar prognostically relevant intrinsic basal and 
luminal-like subtypes exist in UTUC. Notably, we 
identified distinct subtype-specific immunological 
phenotypes in both UTUC and UCB and determined 
their regulation by the tumor microenvironment and 
their response to immune checkpoint therapy. 

Results 
Single-cell transcriptomic landscape in UTUC 

To characterize intratumoral heterogeneity, we 
collected 13 surgical tissue samples, including 12 
primary tumors and a paired tumor thrombus, from 
12 UTUC patients for scRNA-seq (Supplementary 
Table S1). We also included two cohorts with bulk 
RNA-seq for UCB and UTUC, and one cohort of 
atezolizumab-treated patients with metastatic 
urothelial carcinoma (IMvigor210) [15, 16] for further 
validation (Figure 1A). Quality control of the 
scRNA-seq data resulted in the inclusion of 67,392 
cells (Supplementary Figure S1A), which were then 
integrated into an unbatched dataset -(Figure 1B & 
1C). Subsequent unsupervised clustering suggested 
the presence of 22 cell subclusters (Supplementary 
Figure S1B & S1C). Based on gene expression marker, 
the cells were assigned to nine major cell types, 
including T cells, myeloid cells, epithelial cells, 
fibroblasts, endothelial cells, mast cells, B cells, 
plasma cells, and natural killer (NK) cells (Figure 1D, 
1E & Supplementary Figure S1D). Although there 
were few cases, muscle-invasive (MI) tumors (n=3) 
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showed greater enrichment of immune cells and a 
lower proportion of epithelial cells than nonmuscle- 
invasive (NMI) tumors (n=9) (Figure 1F & 
Supplementary Figure S1E). Furthermore, we 
examined a larger cohort of UTUC patients [8] with 
available bulk transcriptome data and observed 
significantly increased proportions of immune cell 
subsets in the MI tumors compared to the NMI 
tumors (Figure 1G & Supplementary Figure S1F). 
These findings suggest that crosstalk between tumor 

cells and the immune environment may play a role in 
shaping muscle invasiveness. 

Intrinsic subtypes of MI UTUC reflect the 
luminal and basal subtypes of MI UCB 

To better understand the cellular programs 
active in cancer cells that may function together with 
immune cells, we next sought to identify the intrinsic 
developmental subtypes of the malignant cells. We 
first confirmed 31,152 malignant cells based on 

 

 
Figure 1. Single-cell RNA sequencing reveals intertumor heterogeneity of UTUC. (A) A schematic description of the overall experimental design and data exploration workflow. 
(B) Clinical features of the patients and the composition of cells in the tumor samples. The samples are ordered according to the T category. LVI, lymphovascular invasion. (C and D) UMAP 
of 67,392 cells post-QC and filtering grouped by the sample (C) and major cell type (D). (E) Violin plots showing the distribution of expression levels of canonical cell type markers. (F) 
Fractions of epithelial and immune cells in each of the NMI and MI samples. (G) Fractions of epithelial and immune cells in each of the NMI and MI samples in the Japanese cohort. In (F) and 
(G), error bars represent the mean ± standard error of the mean. P values were calculated with a t test. 
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large-scale chromosomal copy number variations 
(CNVs) in each cell (Supplementary Figure S2A-C) 
inferred by the inferCNV tool [17]. Considering the 
rarity of UTUC, we used the BASE47 panel, a 47-gene 
predictor defining malignant cells of MI UCB into 
prognostic subtypes [9], and identified two distinct 
expression profiles, termed luminal and basal, in the 
MI UTUC samples (Figure 2A & Supplementary 
Table S2). However, with the limited number of 
cases, all three NMI UTUCs were classified as the 
luminal subtype, which is associated with a better 
clinical outcome (Supplementary Figure S2D). 
Notably, among the 47 markers, the serine peptidase 
inhibitor Kazal type I (SPINK1) showed enhanced 
expression in luminal UTUC but not in basal tumors 
(Supplementary Figure S2E). Immunohistochemistry 
showed higher expression of SPINK1, a potential 
luminal subtype-specific biomarker for UTUC (Figure 
2B). Using the 47 genes, we defined two 
computational scores, the basal score and the luminal 
score, to quantify the two subtypes. In the Japanese 
UTUC cohort, the basal score was significantly 
associated with decreased disease-specific survival 
(DSS), whereas the luminal score was significantly 
associated with increased DSS in the univariate 
analysis (Figure 2C). Furthermore, the basal score and 
luminal score can generate “poor” or “good” 
prognosis calls for MI UCB in The Cancer Genome 
Atlas (TCGA) (Supplementary Figure S2F). 

To further understand the gene expression 
patterns that differentiate the intrinsic subtypes of MI 
UTUC, we identified 521 differentially expressed 
genes (DEGs) in the tumor cells of these two subtypes 
(Figure 2D, 2E & Supplementary Table S3). Gene 
Ontology (GO) analysis showed that the upregulated 
genes in the luminal subtype were enriched for 
pathways related to the epithelium development. The 
upregulated genes in the basal subtype were enriched 
in immune regulation pathways, such as the response 
to interferon beta and the response to cytokine (Figure 
2F). Interestingly, we observed enrichment of genes 
involved in regulating myeloid cell differentiation 
with upregulated expression of the myeloid 
chemotaxis signature, and immune evasion genes in 
the basal subtype compared to the luminal subtype 
(Figure 2F & 2G). We found that the basal subtype 
had a stronger immune evasion phenotype than the 
luminal subtype. 

An immunosuppressive macrophage 
population is enriched in the basal subtype and 
correlates with poor clinical outcome 

We next characterized myeloid cells in UTUC 
since the tumor cells of the basal and luminal 
subtypes showed a discrepancy in the regulation of 

myeloid differentiation and migration (Figure 3A, 3B, 
Supplementary Figure S3A-C, and Table S4). 
Macrophages were the most dominant myeloid cell 
type in UTUC and expressed TAM markers, whereas 
subcluster-specific expression of conventional 
proinflammatory (M1) and anti-inflammatory (M2) 
macrophage markers were not observed (Figure 3C). 
Interestingly, we identified a subcluster of 
macrophages (Macro-C3) that was significantly 
enriched in the basal subtype (Figure 3D). This 
subcluster highly expressed CD8+ T-cell 
recruitment-related genes, such as CXCL10 and 
CXCL11, as well as immune checkpoint and evasion 
genes (Figure 3B & Supplementary Figure S3A). 
Compared with other macrophages, Macro-C3 
showed the upregulation of genes that could 
positively affect the induction of immune tolerance, 
indicating a central role in the ecosystem of UTUC 
(Figure 3E). This subcluster resembled recently 
identified immunosuppressive macrophages that 
consisted predominantly of genes associated with 
immunosuppression [18]. 

After identifying a subset of subtype-relevant 
macrophages, we explored their clinical implications. 
For this, a Macro-C3 signature was developed and 
consisted predominantly of genes associated with 
immunosuppression, such as IDO1 and CD274 
(Figure 3F, Supplementary Table S2 & S4). 
Consistent with the observations in our scRNA-seq 
dataset, evaluation of the signature in the Japanese 
UTUC cohort revealed that the basal subtypes had 
significantly higher Macro-C3 signature scores than 
the NMI and luminal subtypes (Figure 3G). 
Additionally, higher Macro-C3 signature scores in the 
Japanese UTUC cohort were significantly correlated 
with reduced DSS and progression-free survival (PFS) 
(Figure 3H). Collectively, these findings suggest a 
shift toward enhanced immunosuppression of 
macrophages in basal UTUC. 

Expansion of exhausted T cells in the basal 
subtype 

Next, we performed unsupervised clustering of 
T and NK cells and obtained eight subclusters, 
including a population of naïve T cells, two clusters of 
CD4+ T cells, three clusters of CD8+ T cells, and two of 
NK cells (Figure 4A-C & Supplementary Figure 
S4A-C). Evaluation of the cell scores revealed a 
subcluster of exhausted CD8+ T cells, CD8-C1, that 
was characterized by the expression of both inhibitory 
effectors and cytotoxic markers, indicating an 
activation-coupled exhaustion program [19] (Figure 
4B & 4C). In addition, there were CD8-C2 cells 
showing high GZMK expression and a small subset of 
CD8+ T cells, CD8-C3, that was marked by the 
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expression of interferon-stimulated genes, including 
ISG15 and MX1, and of transcripts encoding 
interferon-induced proteins with tetratricopeptide 
repeats (IFITs) (Figure 4B & Supplementary Figure 
S4B). However, the CD4+ T cells were mainly 
regulatory (CD4-C1) or exhausted (CD4-C2) (Figure 
4B). To ascertain the developmental trajectory of the T 
cells, we performed a pseudotime analysis. The CD4+ 

T-cell branches originated from naïve T cells, which 
differentiated into regulatory T cells (CD4-C1) and 
exhausted CD4+ cells (CD4-C2) (Supplementary 
Figure S4C). The CD8+ T cells, however, showed a 
different developmental trajectory, starting from the 
naïve state, passing through the cytotoxic phase 
(CD8-C2), and ending in exhaustion (CD8-C1) 
(Supplementary Figure S4C & S4D). 

 

 
Figure 2. Classification of MI UTUC into luminal and basal subtypes based on BASE47 gene expression. (A) Clustering analysis of the MI UTUC samples based on the average 
expression levels of the BASE47 gene in epithelial cells. The dendrogram is separated into two groups to reflect the distinct expression patterns of the luminal and basal subtypes. (B) 
Representative IHC images of luminal and basal UTUC tissue sections stained for SPINK1. Scale bars correspond to 200 µm. (C) Forest plots showing the hazard ratios associated with the 
luminal score, basal score, and clinical information in univariate Cox proportional hazard models for DSS in the Japanese UTUC cohort. (D) UMAP of epithelial cells in luminal and basal UTUC. 
(E) Heatmap showing DEGs between the luminal and basal subtypes based on the average gene expression in epithelial cells. Representative genes are indicated (left). (F) Bar plot displaying 
the statistically significant overrepresentation of GO BP terms in DEGs defined by the UTUC subtypes. (G) Violin plots displaying the evasion, myeloid migration, and macrophage chemotaxis 
scores of tumor cells in the luminal and basal subtypes. The P value was calculated by the Wilcoxon test. 
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Next, we sought to characterize the T 
lymphocytes in distinct UTUC subtypes. We found 
that the relative proportion of naïve T cells was 
significantly lower in the basal subtype than in the 
other two subtypes (Figure 4D & Supplementary 
Figure S4E). Moreover, the exhausted CD8+ T-cell 
population (CD8-C1) showed significant enrichment 
in the basal subtype, which indicated increased 
immune exhaustion and CD8+ T-cell dysfunction in 

the basal tumor microenvironment (Figure 4E). A 
high proportion of exhausted CD8+ T cells was 
significantly associated with the poor survival of 
patients with UCB and UTUC according to single-cell 
deconvolution in the TCGA-BLCA and Japanese 
UTUC cohorts, respectively (Figure 4F). Therefore, we 
concluded that CD8+ T cells in basal UTUC show the 
highest rate of exhaustion, suggesting weakened 
immune surveillance. 

 

 
Figure 3. Accumulation of an immunosuppressive macrophage population in the basal subtype. (A) UMAP projections of 6,292 subclustered myeloid cells. (B) Heatmap of the 
scaled normalized expression of subcluster-defining genes as determined by the “MAST” method. (C) Violin plots showing the expression of M1, M2, and TAM markers in the macrophage 
populations. (D) Relative percentage of Macro-C3 cells (immunosuppressive macrophages) among the NMI, luminal, and basal subtypes. P3 was excluded due to the presence of <100 myeloid 
cells. The relative percentage of Macro-C3 cells is defined as the proportion of Macro-C3 in myeloid populations. Error bars represent the mean ± standard error of the mean. P values were 
calculated with a t test. (E) GSEA revealed the enrichment of the GO BP term positive response to tolerance induction in the Macro-C3 population compared with the other macrophage 
populations. NES, normalized enrichment score. (F) Dot plot of genes defining the Macro-C3 signature in macrophage subclusters. Colors indicate the scaled mean expression of a gene. The 
size of the circles indicates the percentage of cells expressing the gene. (G) The Macro-C3 signature score for the NMI, luminal, and basal subtypes in the Japanese UTUC cohort. P values 
were calculated with a t test. (H) Kaplan–Meier plot of the relationship of patient DSS and PFS with the Macro-C3 signature score for the Japanese UTUC dataset. Patients were stratified by 
score quartile, in which Q1 and Q4 had the lowest and highest scores, respectively. P values were calculated using the log-rank test. 
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Figure 4. Expansion of exhausted T cells in the basal subtype. (A) UMAP projections of 20,862 subclustered T cells. (B) Heatmap indicating the expression of selected functionally 
relevant genes in the T/NK subtypes. (C) Cumulative distribution function showing the distribution of naïve, cytotoxic, and exhausted state scores in each T/NK subtype. A rightward shift of 
the curve indicates increased state scores. (D) Differences in the composition of the T/NK population among subtypes. Fractions are visualized as cell density based on the UMAP embedding. 
(E) Relative percentage of CD8-C1 cells (exhausted CD8+ T cells) among the NMI, luminal, and basal subtypes. P10 was excluded due to the presence of <100 T/NK cells. The relative 
percentage of CD8-C1 cells is defined as the proportion of CD8-C1 cells in the T/NK populations. Error bars represent mean ± standard error of the mean. P values were calculated with a 
t test. (F) Kaplan–Meier curves of OS and progression free interval (PFI) with the decomposed CD8-C1 (exhausted CD8+ T cells) proportions in the TCGA-BLCA cohort, and DSS in the 
Japanese UTUC cohort. Samples were categorized as high (red, top 50%) or low (blue, bottom 50%) CD8-C1 abundance. P values were calculated using the log-rank test. 

 

The interaction between myeloid and 
lymphoid compartments shapes an 
immunosuppressive microenvironment in 
basal UTUC 

Given the common trends of immunosup-
pressive phenotypes in the malignant cells, 
macrophages, and T cells of the basal subtype 
compared to the luminal subtype, we hypothesized 

that different cell populations participate in complex 
crosstalk. Therefore, we firstly investigated possible 
intercellular interactions influencing TAMs. We found 
that macrophages had the most frequent communi-
cation with epithelial cells over other myeloid cells, 
especially in the basal subtype (Figure 5A). Between 
the two cell types, intense signaling mediated by MIF 
and CD74 was identified, which has been reported to 
activate the recruitment of macrophages [20] and 
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promote the secretion of growth factors by TAMs [21] 
(Figure 5B). Moreover, basal UTUC exhibited higher 
CD47-SIRPA and C3-C3AR1 interactions, which are 

known to inhibit phagocytosis [21] and associated 
with TAM infiltration [22], respectively (Figure 5B). 

 

 
Figure 5. Recruitment and exhaustion of CD8+ T cells by TAMs define the ecosystem of basal UTUC. (A) Heatmaps showing the number of statistically significant ligand–
receptor pairs between myeloid lineage cells and other cell types. The bar plots (top) summarize the overall number of interactions with myeloid cells for the indicated cell types in the UTUC 
subtypes. B/plasma cells were re-subclustered using a similar approach applied in T cell and myeloid cell subclustering. (B) Summary of selected ligand–receptor interactions between the 
tumor cells, CD8+ T cells, and macrophages. Circle size indicates the P value (permutation test). The color gradient represents the interaction strength. (C) Scatterplot showing the correlation 
between the expression of CXCL10 in macrophages and the proportion of CD8+ T cells in the scRNA-seq dataset. (D) Representative immunofluorescence images illustrating the interaction 
between CD8+ T cells and macrophages in one UTUC sample (P4). The small panels show the magnification of the selected region highlighted in red. Yellow arrows indicate the colocalization 
of CD8+ T cells and macrophages. Scale bars correspond to 50 µm and 5 µm in the large and small panels, respectively. (E and F) Summary of selected ligand–receptor interactions between 
macrophages and CD8-C1 cells (exhausted CD8+ T cells) in the NMI, luminal (E), and basal subtypes (F). (G) Scatterplot showing the correlation between the relative ratio of Macro-C3 
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(immunosuppressive macrophages) and CD8-C1 cells (exhausted CD8+ T cells) in the scRNA-seq dataset. (H) Scatterplot showing the correlation between the signature score of Macro-C3 
(immunosuppressive macrophages) and the overall exhaustion score in the Japanese UTUC cohort. Samples are colored according to subtype. (I) Schematic showing the crosstalk among 
CD8+ T cells, macrophages, and tumor-derived epithelial cells involved in the recruitment of immune cells and the formation of an immunosuppressive microenvironment in the basal subtype. 
In (C), (G), and (H), the Pearson coefficient (R) and associated P value are reported. 

 
The active crosstalk between basal malignant 

cells and macrophages explained increased immuno-
suppression in this subtype, yet the process ruling T 
cell recruitment remains elusive. Therefore, we 
screened receptor-ligand pairs and found a significant 
positive correlation between CD8+ T-cell abundance, 
exhaustion and macrophage-derived CXCL expres-
sion (Figure 5C & Supplementary Figure S5A-C). 
Moreover, in the basal subtype we identified stronger 
macrophage–CD8+ T-cell interactions mediated by 
CXCL and their receptors (Figure 5B), which were 
essential for the recruitment of T cells into tumors 
[23]. This association was further validated in the 
TCGA-BLCA and Japanese UTUC cohorts, where the 
basal subtype showed significantly enhanced CXCL10 
expression and a greater number of tumor-infiltrating 
CD8+ T cells and macrophages (Supplementary 
Figure S5D). Mechanistically, multiplex immuno-
fluorescence staining revealed the colocalization of 
CD68-expressing macrophages (CXCL10+) and 
CD8-expressing CD8+ T cells (CXCR3+) in the basal 
subtype (Figure 5D) with a closer average distance 
compared to luminal UTUC (Supplementary Figure 
S5E), which further indicated that macrophages may 
play an important role in the recruitment of CD8+ T 
cells to UTUC. 

Next, we explored the mechanism underlying 
the exhaustion of recruited CD8+ T cells. In the basal 
subtype, both tumor cells and macrophages showed 
enhanced LGALS9-HAVCR2, SPP1-CD44 interactions 
with CD8+ T cells (Figure 5B), which are known to 
suppress T-cell functions [24, 25]. Furthermore, 
macrophages of the basal subtype expressed 
PDCD1LG2, CD274, CD80, and CD86, which target 
the immune checkpoints CTLA-4 and PDCD1 to 
inhibit CD8+ T-cell activation (Figure 5B). 
Interestingly, the exhausted CD8+ T cell population, 
CD8-C1, showed intensive signaling in the basal 
subtype with macrophages (Figure 5E), particularly 
Macro-C3 (Figure 5F). Consistently, the proportions 
of Macro-C3 and CD8-C1 were positively correlated 
(Figure 5G), implying a pivotal role of immunosup-
pressive macrophages in driving the exhaustion of 
CD8+ T cells. This association was further validated 
by analyzing the Japanese UTUC cohort, in which 
exhaustion scores and Macro-C3 signature scores also 
showed a strong correlation (Figure 5H). Collectively, 
this evidence reveals intense interactions between the 
myeloid and lymphoid compartments in UTUC and 

suggests that epithelial cells, macrophages, and T 
lymphocytes cooperate to shape the immunosup-
pressive microenvironment in the basal subtype with 
high infiltration of exhausted T lymphocytes (Figure 
5I). 

Macro-C3 score predicts the immunotherapy 
response in mUC 

To further evaluate the determinants of response 
and resistance to immunotherapy, we examined 
whether subtype-specific immunological phenotypes 
can predict the treatment response. Pretreatment 
tumor samples from a large phase II trial (IMvigor210) 
investigating the clinical activity of PD-L1 blockade 
with atezolizumab in metastatic urothelial cancer 
(mUC) were used for this integrated evaluation. We 
categorized patient tumors into the NMI, luminal, and 
basal subtypes. In the IMvigor210 dataset, a larger 
proportion of basal tumors (38%) than luminal (20%) 
or NMI (11%) tumors exhibited an inflamed pheno-
type (Figure 6A). Immunohistochemical staining 
further confirmed the inflamed phenotype in the basal 
subtype and the excluded phenotype in the luminal 
subtype (Figure 6B & Supplementary Figure S6A). 
PD-L1 expression on immune cells (more than 5% of 
immune cells in mUC were detected by the PD-L1 
antibody SP142) and the Macro-C3 score were 
associated with the response in the NMI and luminal 
subtypes but not in the basal subtype (Figure 6C). A 
nonlinear relationship between the log(basal/ 
luminal) score and fraction of responders to ICI 
treatment was identified (Supplementary Figure 
S6B). Thus, we hypothesized that immuno-
suppressive interactions between macrophages and T 
cells may contribute to immune evasion in the basal 
subtype. 

Next, we examined the most significant 
interactions between macrophages and CD8+ T cells, 
which were positively and negatively associated with 
the abundance of exhausted CD8+ T cells. We found 
multiple known interactions, such as CD274-PDCD1, 
CD86-CTLA4, and LGALS9-HAVCR2, among the 
positively associated interactions that promoted T-cell 
exhaustion [26] (Figure 6D & Supplementary Figure 
S6C). Consistently, we identified multiple known 
interactions, such as IFNG-IFNGR1 and IL-7-IL7R 
[27], among the negatively associated interactions that 
reversed T-cell exhaustion (Figure 6D). 
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Figure 6. The Macro-C3 score predicts the immunotherapy response in mUC. (A) Bar plots showing the classification of subtypes associated with the immune phenotype in the 
IMvigor210 cohort. Sample sizes are given in the figure. (B) Representative CD8 staining shows the infiltration of CD8+ T cells (brown) in basal (P5) samples. Scale bars correspond to 1 mm, 
500 µm, and 100 µm in the large and small panels, respectively. (C) PD-L1 on immune cells is associated with response in the NMI subtype (two-sided Fisher’s exact test, NMI: p = 0.0009046), 
while the Macro-C3 score is associated with response in the NMI and luminal subtypes (Q1 versus Q4, NMI: p = 0.01466, luminal: p = 0.01806, basal: p = 0.3308) in the IMvigor210 cohort. 
Sample sizes are given in the figure. Patients were stratified by IC level or score quartile, wherein IC level stands for PD-L1 expression on tumor-infiltrating immune cells assessed by SP142 
immunohistochemistry assay and scored as level 0 (< 1%), level 1 (≥ 1% and < 5%), or level 2+ (≥ 5%). Q1 and Q4 had the lowest and highest Macro-C3 scores, respectively. (D) Scatterplot 
showing the correlation of the interactions between macrophages and CD8+ T cells with the percentage of CD8-C1 cells (exhausted CD8+ T cells) in T/NK populations. The statistically 
significant interactions are highlighted in red and blue indicating positive and negative correlations, respectively. Top 10 positive or negative interactions are labeled. (E) Heatmap indicating the 
scaled expression of selected genes from different categories in the IMvigor210 cohort. The samples were ordered by log(basal/luminal) score. (F) Linear regression of the z score of overall 
cytotoxicity or Macro-C3 score on log(basal/luminal) score. The regression equations and the intersection point produced by the two regression lines are indicated in the figure. (G) Boxplot 
showing Macro-C3 signature score was significantly associated with response to ICIs for patients with log(basal/luminal) scores below the threshold (0.294) in the IMvigor 210 cohort. (H) 
ROC curves assessing the performance of the TIDE, Macro-C3 signature and ICI response scores in predicting the ICI response in the IMvigor 210 cohort. In (G), the center line in the 
boxplots indicates the median, the lower and upper hinges correspond to the first and third quartiles, and the whiskers extend at most 1.5 times the interquartile range past the upper and 
lower quartiles. The P value indicates a two-sided two group t test without adjustment. 
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Moreover, we found that the expression of 
immunosuppressive Macro-C3 signature genes and 
T-cell cytotoxicity genes increased with an enhanced 
basal signature (Figure 6E & Supplementary Figure 
S6D). Therefore, we developed a computational 
method to model the extent of immune evasion using 
the Macro-C3 score and cytotoxic T cells using the 
T-cell cytotoxicity score (Figure 6F). We identified an 
intersection point between the z score of T-cell 
cytotoxicity and the Macro-C3 score (Figure 6F); 
based on the log(basal/luminal) value of this 
intersection, we divided the IMvigor210 cohort into 
two groups. Below this threshold, the Macro-C3 score 
and the fraction of responders to PD-L1 blockade 
treatment were significantly correlated; thus, we 
denoted the Macro-C3 signature as the ICI response 
score (Figure 6G). Above this threshold, the Macro-C3 
score represented immune evasion capacity, and thus, 
we assigned the minimal Macro-C3 score of the cohort 
as their ICI response score. To evaluate the predictive 
performance regarding the ICI response, we 
compared the ICI response score with the Macro-C3 
score and a published signature for predicting the 
clinical response to immune checkpoint blockade, 
termed the tumor immune dysfunction and exclusion 
(TIDE) score [28]. The receiver operating characteristic 
(ROC) curves showed that the ICI response score had 
a higher AUC (0.664) than the TIDE score (0.552) 
(Figure 6H). Overall, the Macro-C3 score predicted 
the ICI response, especially in the NMI and luminal 
subtypes, whereas the Macro-C3 score predicted ICI 
resistance in the basal subtype, likely based on the 
enhanced T-cell dysfunction induced by immunosup-
pressive macrophages. 

Discussion 
Herein, to the best of our knowledge, we have 

performed the first comprehensive profiling of UTUC 
at the single-cell level, which allowed us to 
simultaneously elucidate the cell state of malignant 
and nonmalignant cells and to derive more 
therapeutically relevant molecular signatures with 
higher resolution. Although UTUC is more frequently 
diagnosed in the locally advanced stage than UCB, we 
surprisingly found that the intrinsic subtype of tumor 
cells and subtype-specific immune contexture were 
similar in UTUC and UCB. Thus, it is reasonable to 
hypothesize that there are similar epithelial and/or 
nonepithelial subpopulations with the ability to 
predict the therapeutic response in both UTUC and 
UCB. Consistently, in a single-arm phase II study of 
atezolizumab in mUC (IMvigor210) [15], we identified 
a similar prediction signature for anti-PD-L1 therapy 
in the NMI, basal, and luminal subtypes. 

It has been shown that among UTUC and UCB 

patients who receive atezolizumab (anti-PD-L1 
therapy), the response rate is higher in UTUC than in 
UCB (39% vs. 17%) [29, 30]. However, they found no 
significant differences in baseline covariates, 
including anatomic sites of metastases, tumor 
mutation load, T-effector gene expression, TCGA 
subtype, and baseline tumor burden, between the 
UTUC and UCB [29]. The higher response rate in 
UTUC may be at least partially explained by its 
predominant luminal subtype with a lower inflamed 
immunosuppressive contexture than the basal 
subtype [31] (Figure 2G, 5E & Supplementary Figure 
S7). Additionally, anatomic differences, but not 
intrinsic subtype or immune contexture, may account 
for much of this disparity in muscle-invasive UTUC 
and UCB at diagnosis because the thinner smooth 
muscle covering of the upper tract may allow for 
more rapid progression to non-organ-confined 
disease. 

Although the application of bulk gene 
expression signatures has shown promise in 
identifying subgroups of patients responsive to 
immunotherapy [16], yet they provided a limited 
mechanistic understanding of the cell types 
responsible for mediating clinical benefit. In contrast, 
at the single-cell resolution, we found progressive 
T-cell dysfunction and/or exhaustion, likely through 
enhanced interactions between immunosuppressive 
macrophages and T-cell subpopulations. We 
identified a macrophage population, Macro-C3, that 
strongly expressed several immunosuppressive 
effectors, showed the strongest putative interaction 
with exhausted CD8+ T cells and defined poor patient 
prognosis in UTUC. 

More importantly, we identified diverse cell–cell 
interactions between T cells and macrophages that 
promoted or reversed T-cell exhaustion (Figure 6D). 
Thus, strategies to inhibit TAM functions, especially 
those of immunosuppressive Macro-C3, in 
combination with immunotherapy may have great 
potential for the treatment of UC patients. Indeed, 
both preclinical and clinical strategies targeting the 
tumor-promoting functions of TAMs in cancer are 
being developed [32]. It has been reported that 
M2-like macrophages impede ICIs that were based on 
the PD-1/PD-L1 axis [33]. Consistently, PD-L1 was 
highly expressed in Macro-C3 cells. Meanwhile, other 
genes, such as CXCL9, CXCL11, and IDO1, derived 
from the Macro-C3 signature may also serve as 
therapeutic targets to ameliorate T-cell exhaustion. 
Then, we developed a computational method based 
on the Macro-C3 score to model the two primary 
mechanisms of tumor immune evasion and T-cell 
cytotoxicity. Of note, compared to the widely used ICI 
response markers, PD-L1 levels and the TIDE 
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signature, the Macro-C3 score achieved better 
performance in the mUC cohort. One explanation for 
the better performance of the Macro-C3 score is that 
this score utilized cancer type-specific T-cell 
dysfunction regulators. A central limitation of this 
study was the relatively small cohort of patients 
employed to generate these signatures, and larger 
cohorts with scRNA-seq data of UC patients would be 
required. Although the prognostic and predictive 
values of the identified signatures were validated in 
multiple external cohorts, further studies to 
deconvolute other less-characterized immune cell 
types are necessary for identifying novel therapeutic 
targets that address immune dysfunction in UC. 

Conclusions 
Taken together, our results show the common 

underlying transcriptional subtypes and immune 
microenvironments in UTUC and UCB, identifying 
potential opportunities for common management 
strategies, especially in terms of ICI for UC. Overall, 
our findings contribute to the understanding of the 
pathophysiology of UC and provide novel prognostic 
assessment strategies and individualized treatment 
recommendations for different UC subtypes. 

Methods 
Patients and samples 

Tissue samples were obtained from the UTUC 
patients who received ureterectomy or radical 
nephroureterectomy at the Peking University First 
Hospital. Twelve primary UTUC tumor tissues (three 
low-stage and nine high-stage), along with one 
adjacent tumor thrombus, were included in this 
cohort (Supplementary Table S1). This study was 
approved by the Ethics Committee of Peking 
University First Hospital (Grant No. 2018[186]). 

Single-cell suspension preparation and 
droplet-based single-cell RNA sequencing 

Tissue samples were processed immediately 
after the surgical resection. Single-cell suspensions 
were obtained by mechanical and enzymatic 
dissociation. By following the manufacturer’s 
protocol, we used the Single Cell 3' Library and Gel 
Bead Kit V3.1 (10x Genomics, 1000075) and 
Chromium Single Cell B Chip Kit (10x Genomics, 
1000074) to prepare barcoded scRNA-seq. Paired-end 
150 bp reads were then generated by sequencing the 
libraries on the Illumina NovaSeq6000 platform 
(performed by CapitalBio Technology, Beijing). 

Quality control of the scRNA-seq data 
CellRanger (version 4.0.0) was used to generate 

raw gene expression matrixes from the sequencing 

data of each sample based on the human reference 
version GRCh37. The R package Seurat (version 4.0.0) 
was used for downstream quality control [34]. Only 
genes expressed at >3 cells and cells with >200 genes 
detected were kept in the expression matrix. We then 
removed low-quality cells that met at least one of the 
following criteria: (i) >5000 expressed genes, (ii) <200 
expressed genes, or (iii) >25% UMIs derived from the 
mitochondrial genome. 

Integration of multiple scRNA-seq datasets 
The R package Seurat (version 4.0.0) was used 

for the dataset integration. Briefly, the function 
NormalizeData was applied to each expression matrix 
for log-transformation and the function 
FindVariableFeatures was used to select the top 2000 
genes with high cell-to-cell variation. Then, “anchors” 
between individual datasets were identified using the 
function FindIntegrationAnchors. Based on these 
anchors, an unbatched dataset was created using the 
function IntegrateData. 

Unsupervised clustering and dimension 
reduction 

We used the function ScaleData to scale and 
center the expression of 2000 variable genes, on which 
principal component analysis (PCA) was subseq-
uently performed. Then, functions FindNeighbors 
and FindClusters were used for the first-round cluster 
on the first 20-50 PCs with a resolution of 0.1-0.6. 
Finally, the main cell clusters were identified with a 
resolution of 0.3, and nonlinear dimensional 
reduction was visualized using the two-dimensional 
uniform manifold approximation and projection 
(UMAP). 

Cell type annotation and cluster marker 
identification 

The major cell types were first annotated using 
the SingleR (version 1.4.1) R package based on the 
expression of canonical cell type markers [35]. 
Preferentially expressed genes in each cluster were 
identified using the FindAllMarkers function and 
differential expression testing was performed with the 
“MAST” method with sample identity as a latent 
variable [36]. Cells that expressed two canonical cell 
type markers were classified as doublet cells, which 
were excluded from further analyses. 

CNV estimation of the malignant cells 
CD45- epithelial cells were analyzed using the 

inferCNV R package (version 1.11.1) to estimate copy 
number aberrations in scRNA-seq data [37]. The 
EPCAM- immune and stromal cells were used as 
references. A cut-off of 0.1 was used for the min 
average read counts per gene among reference cells. 
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The option “random_trees” was used to define the 
tumor sub-clusters. 

Pathway analysis 
Gene set variation analysis (GSVA) was 

performed using the GSVA R package (version 1.38.2) 
to estimate the enrichment scores of biological 
pathways [38]. The hallmark and gene ontology (GO) 
gene sets were obtained using the R package msigdbr 
(version 7.4.1) and from the MsigDB website 
(http://software.broadinstitute.org/gsea/msigdb) 
[39]. The limma R package was then used to evaluate 
the differential activities of pathways between 
different clusters or groups (P value < 0.05) [40]. 

DEGs between the two subtypes of cells were 
identified using the FindMarkers function of the 
Seurat R package with the same parameters used for 
FindAllMarkers. When analyzing the malignant 
epithelial cells of different subtypes, we overcame the 
intertumor heterogeneity by keeping only 
high-confidence DEGs for a subtype such that the 
expression in each sample had a >0.8 log2 fold change 
over the average expression of the other subtype. 
Overrepresentation analysis of gene ontology (GO) 
biological process (BP) terms was performed using 
the fora function of the fgsea R package (version 
1.16.0) [41]. 

Diffusion map and pseudotime analysis 
PCA embeddings were extracted from the 

integration produced by Seurat R package. The 
destiny R package (version 3.1.1) was then used to 
produce the diffusion trajectory from the predefined 
PCA embeddings for pseudotime analysis. Naïve T 
cells were chosen as the root, and the function DPT 
was used to estimate the diffusion pseudotime (DPT) 
for single cells. 

Cell-cell communication analysis 
We used CellphoneDB (version 2.0.0) [42] to 

explore the potential communication between 
different cell types based on the expression of 
ligand-receptor pairs. The receptor or ligand should 
be expressed by more than 10% of cells in a cluster to 
be included in the downstream analysis. To assess the 
significance of a ligand-receptor pair between two 
clusters, an empirical P value was determined by 
randomly assigning the cluster labels of each cell for 
1,000 times. The R package CellChat (version 1.1.3) 
[43] was used to characterize the interaction number 
and strength with default parameters. 

Prediction of ICI response 
The putative ICI response of patients in the mUC 

cohort was predicted based on the TIDE as well as the 
in-house developed Macro-C3 gene signature. For the 

TIDE evaluation, gene expression in the TPM was 
supplied and force-normalized. The cancer type was 
set to “other”. 

To predict the response to ICI based on the 
Macro-C3 gene signature, enrichment scores were 
first estimated based on log-normalized TPM values 
using ssGSEA. For a cohort of size N comprising a 
group of R responders, the luminal, basal, 
cytotoxicity, and Macro-C3 gene signature scores 
were L = {l1, l2, …, lN}, B = {b1, b2, …, bN}, C = {c1, c2, …, 
cN}, and M = {m1, m2, …, mN}. The z-score of the 
cytotoxicity score is: 

𝑍𝑍(𝑐𝑐𝑖𝑖) =
𝑐𝑐𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶)

𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶)  

We then fitted a regression line LC taking the 
log(basal/luminal) score as the independent variable 
and Z(C) as the response. The same procedure was 
repeated for Z(M), which produced another 
regression line, LM intersecting LC at (a, b). This allows 
us to define an optimum log(basal/luminal) threshold 
a such that patients below this threshold have a 
relatively higher Z(C) compared to Z(M) and vice 
versa. Subsequently, we denoted the Macro-C3 
signature as the ICI response score for patients with a 
log(basal/luminal) score < a: 

ICI response score =

⎩
⎨

⎧ 𝑚𝑚𝑖𝑖 , 𝑙𝑙𝑙𝑙𝑙𝑙
𝑏𝑏𝑖𝑖
𝑙𝑙𝑖𝑖

< 𝑚𝑚 

min(𝑀𝑀) , 𝑙𝑙𝑙𝑙𝑙𝑙
𝑏𝑏𝑖𝑖
𝑙𝑙𝑖𝑖
≥ 𝑚𝑚

 

To prove that the log(basal/luminal) threshold a 
had a clinical implication, we generated 256 evenly 
distributed cutoff points of the log(basal/luminal) 
score X = {x1, x2, …, x256}. For a given cut-off point xj, 
we wrote the fraction of responders as follows: 

𝑃𝑃(𝑟𝑟) =
��𝑖𝑖 �𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖

< 𝑥𝑥𝑗𝑗  𝑚𝑚𝑚𝑚𝑠𝑠 𝑖𝑖 ∈ 𝑅𝑅��

��𝑖𝑖 �𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖
< 𝑥𝑥𝑗𝑗��

 

The log(basal/luminal) threshold a was then 
visualized to compare with xj. 

The R package pROC (version 1.17.0.1) was used 
to generate ROC curves visualizing the true-positive 
rates versus false-positive rates at various thresholds 
of the TIDE, Macro-C3 signature, and ICI response 
scores. The area under the ROC curve (AUC) was 
adopted as the quality metric of prediction. 

Statistical analysis 
Statistical analysis was performed using the R 

(version 4.0.3) and Python (version 3.8.8) and has been 
described in the Methods section and figure legends. 
Unless otherwise specified, the statistical analyses 
were performed in a two-sided manner. P < 0.05, P < 
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0.01, P < 0.001, and P < 0.0001 were considered 
statistically significant (*, **, ***, ****). 

Abbreviations 
UTUC: Upper tract urothelial carcinoma; UC: 

Urothelial carcinoma; UCB: UC of the bladder; mUC: 
metastatic UC; MI: muscle-invasive; NMI: 
non-muscle-invasive; TAMs: tumor-associated 
macrophages; PCA: principal component analysis. 
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