

Figure S1. Inhibition of Myc leads to GFAT1 up-regulation and increased total protein glycosylation in PC3 cells in a dose dependent manner. (A) Real-time PCR analysis of pivotal genes involved in glucose metabolism in PC3 cells following treatment of Myc inhibitors. (B-D) Western blot assay revealed the effect of Myc inhibitor 10058 in up-regulating GFAT1 and total protein glycosylation in a dose dependent manner. (E) Immunoprecipitation of GFAT1 indicate that the phospho-GFAT1 was not altered by Myc inhibitors. (F) Western blot assay shows that 10058 and 10074 could not change OGT-1 level in prostate cell lines. The results are expressed as the mean \pm SEM of triplicate measurements in each group. *p<0.05, **p<0.01, ***p<0.001.

Figure S2. Inhibition of Myc leads to GFAT1 up-regulation and increased total protein glycosylation in Myc-CaP cell line: (A-B) Total RNAs in PC3 cells were isolated for qPCR analysis. (A) Myc-Cap cells were treated with 10074, 10074/DON, siMyc, or siMyc /DON combination. (B)The Myc-Cap cells were treated with 10074, 10074/DON combination, 10074-DON prodrug, PS/10074 or PS/10074-DON. (C-D) Total proteins in cell lysates were analyzed by Western blot. (E-H)Analysis of band intensity. The results are expressed as the mean ± SEM of triplicate measurements in each group. *p<0.05, **p<0.01, ***p<0.001.

Figure S3. Cell viability of Myc-Cap cells receiving various treatments. **(A-B)** MTT assay of 10074 or 10074-DON in Myc-Cap cells treated with prodrug or carrier-loaded drug. The results are expressed as the mean ± SEM of triplicate measurements in each group. *p<0.05, **p<0.01, ***p<0.001.

Figure S4. ER stress inducer DTT significantly induce Xbp1s, BIP and GFAT1 protein expression in a timely-dependent manner.

Figure S5. Knockdown of GFAT1 by siRNA attenuated 10074-induced protein glycosylation but did not affect the expression of Myc target genes as well as the expression of XBP1s and Bip: (A-B) Knockdown GFAT1 by siRNA abolished the effect of 10074 in up-regulating the expression of GFAT1 mRNA but did not affect the mRNA expression of other Myc target genes (A) as well as xbp1s and BIP (B). (C) Pre-transfection of GFAT-1 siRNA (siGFAT1) attenuated the effect of 10074 in up-regulating the protein level of GFAT1 and total protein glycosylation but did not affect the 10074-induced upregulation of XBP1s and BIP. (D-G) Quantification of western results.(The results are expressed as the mean \pm SEM of triplicate measurements in each group. *p<0.05, **p<0.01.

Figure S6. NMR spectrum of 10074-DON conjugate(A) and NMR spectrum of 10074-derivatized laminarin(B).

Figure S7. *In vivo* anti-tumor effect of 10074-DON-loaded PS NPs in Myc-Cap tumor model: (A) Tumor growth curves in Myc-Cap tumor model. (B) Body weight changes during the treatment. (C) Gross images of the endpoint tumors. (D) Endpoint tumor weights in RM-1 tumor model. (E) Ki67 immunostaining of tumor sections. (F) Western blot analysis of the tumor tissues collected in (C) and the quantification by ImageJ (G-I). The results are expressed as the mean \pm SEM of measurements from 6 animals per group, and each dot represents a measurement from one animal. *p<0.05, **p<0.01, ***p<0.001.

Figure S8. Immunostaining of infiltrating immune cells in tumor tissues with various treatments: RM-1 tumor-bearing mice received various treatments as described in **Fig. 8**. Infiltration of CD4⁺ and CD8⁺ T cells in tumor tissues was examined by staining of tumor sections with the respective specific antibody.

Table S1. Primers used in real-time PCR.

Primer	Species	Sequence	
GAPDH-F	human	GGTGAAGGTCGGAGTCAACG	
GAPDH-R	human	TGGGTGGAATCATATTGGAACA	
MYC-F	human	AATGAAAAGGCCCCCAAGGTAG	
MYC-R	human	GTCGTTTCCGCAACAAGTCCT	
CDC20-F	human	CGCTATATCCCCCATCGCAG	
CDC20-R	human	CTGATAACCCTCTGGCGCAT	
CDC25A-F	human	AGACCTGTATCTCGTGGCTG	
CDC25A-R	human	CATTTGAGGAAAGCATCCGAGC	
CDC45-F	human	GTGATTTGGCGGGAGTCTTG	
CDC45-R	human	CGAAGAAGAAGGACCCTCTGG	
GFAT1-F	human	AGCAGTGCAAACCCTCCAGATGG	
GFAT1-R	human	TGAACCCCACAATCTGTCTCCCG	
GLUT1_F	human	TTGCAGGCTTCTCCAACTGGAC	
GLUT1_R	human	CAGAACCAGGAGCACAGTGAAG	
GLS_F	human	CAGAAGGCACAGACATGGTTGG	
GLS_R	human	GGCAGAAACCACCATTAGCCAG	
LDHA_F	human	GGATCTCCAACATGGCAGCCTT	
LDHA_R	human	AGACGGCTTTCTCCCTCTTGCT	
HK2_F	human	GAGTTTGACCTGGATGTGGTTGC	
HK2_R	human	CCTCCATGTAGCAGGCATTGCT	
XBP1u_F	human	CAGACTACGTGCACCTCTGC	
XBP1u_R	human	CTGGGTCCAAGTTGTCCAGAAT	
GFAT1-F	mouse	GGA ATC ATC ACC AAC TAC AAA GAC	
GFAT1-R	mouse	AAT ACT CCA CTG CTT TTT CTT CCA C	
XBP1u_F	mouse	CAGACTACGTGCACCTCTGC	
XBP1u_R	mouse	CAGGGTCCAACTTGTCCAGAAT	
XBP1s_F	mouse	GCTGAGTCCGCAGCAGGT	
XBP1s_R	mouse	CAGGGTCCAACTTGTCCAGAAT	
CHOP_F	mouse	AAGATGAGCGGGTGGCAGCG	
CHOP_R	mouse	GCACGTGGACCAGGTTCTGCT	
GRP78_F	mouse	TGCAGCAGGACATCAAGTTC	
GRP78 R	mouse	TACGCCTCAGCAGTCTCCTT	

Table S2. Primary antibodies used in western blot.

	Snecies	Dilution	Cat #	Brand
GFAT1	Rabbit	1:1000	38185	Cell Signaling Technology (Danvers, MA,US)
O-GlcNac	Mouse	1:500	ab201995	Abcam (Cambridge, UK)
c-MYC	Rabbit	1:1000	18583S	Cell Signaling Technology (Danvers, MA,US)
β Actin	Rabbit	1:4000	4970S	Cell Signaling Technology (Danvers, MA,US)
Xbp1s	Rabbit	1:1000	24868-1-AP	Thermo Fisher Scientific (Waltham, MA, US)
IRE1a	Rabbit	1:1000	32945	Cell Signaling Technology (Danvers, MA,US)
pIRE1a	Rabbit	1:1000	PA1-16927	Thermo Fisher Scientific (Waltham, MA, US)
BIP	Rabbit	1:1000	31775	Cell Signaling Technology (Danvers, MA,US)
OGT	Rabbit	1:1000	240835	Cell Signaling Technology (Danvers, MA,US)