Supplementary Information

Ultrasound-controlled MXene-based Schottky heterojunction improves anti-infection and osteogenesis properties.

Hongchuan Wang^{a,1}, Na Mu^{b,1}, Yaqi He^{a,1}, Xiaoguang Zhang^a, Jie Lei^a, Cao Yang^{a,*},

Liang Ma^{*a*, *}, Yong Gao^{*a*, *}

^a Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

^b College of Agronomy, Xinjiang Agriculture University, Urumqi, Xinjiang, China.

¹ The three authors share the co-first authorship due to their equal contribution.

* To whom correspondence should be addressed.

docgao@163.com (Y. Gao); D202181825@hust.edu.cn (L. Ma);

caoyangunion@hust.edu.cn (C. Yang)

Figure captions

Figure S1. (A) TEM image and Energy-dispersive X-ray spectroscopy elemental mapping of HN-Ti₃C₂ after 7 days of immersion in PBS solution. Scar bar: 500 nm.
(B) Dynamic light scattering (DLS) size distribution of HNTM. (C) XRD pattern of Ti₃C₂.

Figure S2. (A) The ${}^{1}O_{2}$ generation of Ti₃C₂ under US detecting by the decrease of DMA fluorescence intensity. (B) The •OH generation of Ti₃C₂ under US detecting by the fluorescence spectra of TA. Adsorption of NBT treated by (C) HNTM or (D) Ti₃C₂ for 6 min under US.

Figure S3. (A) ALP staining and ARS staining images of hBMSCs cultured in different conditions (Control, US, HN-Ti₃C₂ and HN-Ti₃C₂+US) after 14 days. Scar bar: 50 μ m. (B) Western blot of ALP, OPN, and RUNX2 proteins of hBMSCs treated in different conditions (Control, US, HN-Ti₃C₂ and HN-Ti₃C₂+US) after 14 days.

Figure S4. (A, C) ALP and OPN immunofluorescence staining images of hBMSCs cultured in different conditions (Control, US, HN-Ti₃C₂ and HN-Ti₃C₂+US) after 14 days (green fluorescence: cytoskeleton; blue fluorescence: nucleus; red fluorescence: ALP or OPN). Scar bar: 50 μ m. Quantitative analysis of (B) ALP and (D) OPN fluorescence intensity after 14 days. n = 3 independent experiments per group, **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001, ns = not significant.

Figure S5. qRT-PCR results of RUNX2, OPN, ALP, BMP2, COL1 and OCN treated in different conditions (Control, US, HN-Ti₃C₂ and HN-Ti₃C₂+US) after 7 days. n = 3independent experiments per group, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns = not significant.

Figure S6. (A) Volcano plot of HN-Ti₃C₂ vs control. (B) Heatmap of cell cycle related genes. (C) The top 20 most significantly enriched GO pathways of HN-Ti₃C₂ vs control. (D) The top 20 most significantly enriched KEGG pathways of HN-Ti₃C₂ vs control. n = 3 independent experiments per group.

Figure S7. (A) HE staining of infected bone. Inflammatory cells are highlighted with green arrows. Scar bar: 100 μ m. (B) Immunohistochemical staining of ALP and OCN. Scar bar: 50 μ m.