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Abstract 

Alternative splicing (AS) is a common and conserved process in eukaryotic gene regulation. It occurs in 
approximately 95% of multi-exon genes, greatly enriching the complexity and diversity of mRNAs and 
proteins. Recent studies have found that in addition to coding RNAs, non-coding RNAs (ncRNAs) are 
also inextricably linked with AS. Multiple different types of ncRNAs are generated by AS of precursor 
long non-coding (pre-lncRNAs) or precursor messenger RNAs (pre-mRNAs). Furthermore, ncRNAs, as 
a novel class of regulators, can participate in AS regulation by interacting with the cis-acting elements or 
trans-acting factors. Several studies have implicated abnormal expression of ncRNAs and ncRNA-related 
AS events in the initiation, progression, and therapy resistance in various types of cancers. Therefore, 
owing to their roles in mediating drug resistance, ncRNAs, AS-related factors and AS-related novel 
antigens may serve as promising therapeutic targets in cancer treatment. In this review, we summarize 
the interaction between ncRNAs and AS processes, emphasizing their great influences on cancer, 
especially on chemoresistance, and highlighting their potential values in clinical treatment. 
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Background 
Gene expression is tightly regulated at multiple 

levels during physiological processes, whose 
dysregulation is associated with several diseases, 
including cancer [1]. RNA splicing, a fundamental 
step of gene expression, involves the removal of 
introns from precursor messenger RNAs 
(pre-mRNAs) and the merging of the exons to form 
mature mRNAs [2-4]. Alternative selection of spliced 
exons, also known as alternative splicing (AS), can 
result in different protein products from a single 

primary transcript, and thus AS acts as a predominant 
post-transcriptional regulatory mechanism of gene 
expression [5, 6]. 

In addition to coding RNAs, non-coding RNAs 
(ncRNAs) are also inextricably linked with AS. 
Non-coding RNAs (ncRNAs) are functional RNAs 
that do not encode proteins. The advancement in 
high-throughput sequencing in the last decades has 
allowed us to identify a large number of ncRNAs, 
including long non-coding RNAs (lncRNAs), 
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microRNAs (miRNAs), circular RNAs (circRNAs), 
small nucleolar RNAs (snoRNAs) and small nuclear 
RNA (snRNAs), which are generated by AS of 
pre-lncRNAs or pre-mRNAs [7-11]. Recent studies 
have shown that ncRNAs, originally considered as 
transcriptional “junks”, play vital roles in gene 
expression regulation, including AS [12-17]. Extensive 
interactions between ncRNAs and AS have been 
reported, which contribute to the complexity of gene 
regulation in cancer. Therefore, deciphering their 
interplay would help to determine cancer patho-
genesis of cancer and provide new insights into cancer 
therapy. In this review, we summarize the molecular 
mechanisms and potential roles of the interaction 
between ncRNAs and AS in the development, 
progression and multi-drug resistance (MDR) of 
various cancers and discuss the latest development in 
therapeutic strategies targeting AS or AS-related 
ncRNAs. 

The regulation mechanism of RNA 
splicing 

Pre-mRNA splicing in the eukaryotic cell was 
first discovered in 1977 using an electron microscope 
[18-20]. To date, our understanding of RNA splicing 
has been greatly improved. As seen in Figure 1, RNA 
splicing is a highly regulated process, which requires 
coordination between spliceosomes, cis-acting 
elements, and trans-acting proteins to remove introns 
from pre-mRNAs and merge the protein-coding 
exons to generate mature mRNAs [21]. 

The introns contain three important sites, the 5' 
splice site (5'SS), branch point site (BPS), and 3' splice 
site (3'SS), which are short conserved sequences 
(Figure 1A). In general, the RNA splicing process is a 
two-step transesterification reaction that begins with a 
nucleophilic attack at the 5' SS (also known as the 
splice donor) by a 2'-hydroxyl group of the BP 
adenosine. This reaction creates a cleaved 5' exon and 
a lariat structure containing the intron and the 3' exon. 
Subsequently, the 3'-hydroxyl group on the detached 
5' exon attacks the 3' SS (also referred as the splice 
acceptor), which removes the intron and ligates the 
exons to produce a mature mRNA [22, 23].  

In the splicing process, the generation of 
spliceosome plays an important function (Figure 1B). 
The spliceosome is a large multimeric ribonucleo-
protein (RNP) complex which consists of five small 
nuclear ribonucleoproteins (snRNPs), including U1, 
U2, U4/U6, and U5. The U1 and U2 snRNPs 
recognize the 5'SS and the BP sequence, respectively, 
and functionally generate the pre-spliceosome. The 
pre-spliceosome then associates with the preas-
sembled U4/U6/U5 tri-snRNP to form the fully 

assembled spliceosome to execute the splicing 
function [24-27].  

In addition, some other important cis-acting 
elements on pre-mRNA such as intronic splice 
enhancers and silencers, exonic splice enhancers and 
silencers (ISEs, ISSs, ESEs, and ESSs, respectively) are 
important for the splicing regulation by recruitment 
of splicing factors such as serine/arginine-rich (SR) 
proteins and heterogenous nuclear ribonucleo-
proteins (hnRNPs) (Figure 1A). The SR proteins 
contain one or more RNA recognition motifs that bind 
to ESEs and ISEs on the pre-mRNA to recruit other 
SFs. The hnRNPs are generally more diverse in their 
RNA-binding domain and preferentially interact with 
the splicing silencers [28-30]. 

More than 95% of human genes undergo AS, 
which contributes to the diversity of RNA transcripts 
and protein products [31-33]. Figure 1C illustrates 
different types of AS, including exon skipping (ES), 
intron retention (IR), alternative 5' or 3' splice site 
selection (A5SS or A3SS) and mutually exclusive 
exons (MXE) [15, 34]. AS is regulated by cis-acting 
elements in pre-mRNAs and trans-acting factors, 
whose mutation or deregulation could lead to 
aberrant AS events and is usually associated with 
tumorigenesis. 

NcRNAs produced by RNA splicing 
Similar to mRNAs, the majority of ncRNAs are 

produced by the splicing of primary transcripts (also 
known as host genes). In this section, we discuss the 
splicing mechanisms underlying the biogenesis of 
various ncRNAs, including lncRNAs, circRNA, 
snoRNAs and sno-derived RNAs (sdRNAs), and 
clarify their biological significance in tumorigenesis 
and progression (Figure 2, Table 1 and 2). 

AS of lncRNAs from pre-lncRNAs 
LncRNAs are >200 nucleotide-long RNA 

transcripts that do not encode proteins. They are 
generated from the splicing of pre-lncRNAs (Figure 
2A). AS of lncRNAs produces different isoforms of 
lncRNAs that might exert different functions in cancer 
[35-39]. For example, a multi-exon lncRNA PXN-AS1, 
which is regulated by SFs MBML3 and DDX17, could 
be spliced into multiple isoforms in hepatocellular 
carcinoma (HCC) [35]. MBNL3 promotes the 
inclusion of the exon 4 of PXN-AS1 to produce 
PXN-AS1-L, which inhibits myeloid cell leukemia 
(Mcl)-mediated cell apoptosis in a PXN-dependent 
manner [35]. Whereas DDX17 induces the retention of 
the intron 3 of PXN-AS1 to produce a novel aberrant 
isoform, PXN-AS1-IR3, which promotes HCC 
metastasis by inducing MYC transcription activation 
[36]. 
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Figure 1. The regulation mechanism and mode of RNA splicing. (A) The cis-acting elements on the primary transcription product include a 5' splice site (5'SS), 3' splice site 
(3'SS), branch point site (BPS), polypyrimidine tract (PPT), and splicing regulatory elements (SREs) in the proximity of splice site. The SREs are subdivided into intronic and exonic 
splice enhancers and silencers (ISEs, ISSs, ESEs, and ESSs, respectively). SR proteins as splicing activators enhance the utilization of splice sites by preferentially combining with ESEs 
and ISEs; and conversely, hnRNPs as splicing repressors inhibit the binding to the splice sites by interacting with ESSs and ISSs. (B) U1 snRNP recognizes 5'SS and binds it via base 
pairing, while SF1, U2AF2 and U2AF1 combines separately the BPS, PPT and 3'SS, forming early complex E. Then U2 snRNP replaces SF1 and binds to the BPS to form complex 
A. The U4/U6–U5 tri- snRNP complex is subsequently recruited to form a pre-catalytic spliceosome. The complex B is rearranged to form catalytically activated complex B*, 
which catalyzes the first transesterification reaction to produce Complex C, followed by the second transesterification reaction. Lastly, exons are interlinked to form mature 
mRNA, and the introns are degraded rapidly as the lariat and snRNPs are recovered. (C) RNA splicing consists of constitutive splicing (CS) and alternative splicing (AS), and 
various AS modes are generated based on the multiple splice sites and ways of exon linking, including exon skipping (ES), alternative 5' or 3' splice site selection (A5SS or A3SS), 
mutually exclusive exons (MXE) and intron retention (IR). 
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Figure 2. Non-coding RNAs produced by RNA splicing. (A) Precursor long non-coding RNAs (pre-lncRNAs) undergo splicing factor-mediated alternative splicing, which 
triggers the L/S switch. The long splicing isoforms, such as PXN-AS1-L, PXN-AS1-IR3, PCAT19-Long and NEAT1_2, have been reported to promote tumorigenesis. (B) LncRNAs 
PNUTS and PD-L1-lnc generated by bifunctional pre-mRNA splicing can promote carcinogenesis. (C) CircRNAs produced by backing splicing of host genes are involved in the 
regulation of several biological processes. For instance, CDR1as, circSMARCA5 and circPPP1R12A affect cancer progression through sponging miR-7, forming an R-loop with 
parental DNA, and producing peptides, respectively. (D) SnoRNAs (SNORA23 and SNORA42) are produced by splicing of the intronic region of the host genes, while sno-derived 
RNAs (sdRNAs) sdRNA68 and sdRNA104 are produced by FUS-mediated self-splicing of some snoRNAs. Both snoRNAs and sdRNAs are reported to alter the process of 
tumorigenesis in some cancers. 

 
Moreover, AS of lncRNA PCAT19 also generates 

two isoforms, namely PCAT19-short and PCAT19-long, 
which exhibit reciprocal expression in pancreatic 
cancer (PCa) [37]. The PCAT19-long isoform interacts 
with HNRNPAB to activate a subset of cell-cycle 
genes associated with PCa progression, such as 
CHEK1 and AURKB, while the PCAT19-short isoform 
possesses potential tumor suppressive function [37]. 
In addition, NEAT1, a well-known oncogenic lncRNA, 
produces two isoforms, NEAT1_1 and NEAT1_2 [40, 

41]. Among these, NEAT1_2 is significantly 
upregulated in papillary thyroid carcinoma (PTC) and 
non-small cell lung cancer (NSCLC) compared with 
that in noncancerous tissues [38, 39, 42]. In PTC, 
NEAT1_2 significantly promotes cell growth and 
metastasis by acting as a sponge of miR-106b-5p to 
derepress ATAD2 expression [39]; while in NSCLC, 
RBM10 regulates AS of NEAT1 to downregulate 
NEAT1_2 expression, ultimately affecting the 
invasion and metastasis of NSCLC by suppressing the 
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activation of the PTEN/PI3K/AKT/mTOR signaling 
pathway [38].  

LncRNAs produced by AS of pre-mRNAs 
Recent studies revealed that some pre-mRNAs 

are bifunctional and could serve as precursors of both 
mRNAs and lncRNAs [43, 44] (Figure 2B). For 
instance, PNUTS is a bifunctional pre-mRNA 
encoding both PNUTS mRNA and lncRNA-PNUTS 
[43]. In breast cancer, the PNUTS mRNA switches to 
lncRNA-PNUTS, which serves as a competitive 
sponge for miR-205, thereby promoting tumor 

epithelial-mesenchymal transition (EMT) [43]. In lung 
adenocarcinoma (LUAD), bifunctional PD-L1 
pre-mRNA produces PD-L1-lnc, a lncRNA isoform, in 
addition to PD-L1 mRNA [44]. PD-L1-lnc is induced 
by IFNγ and binds to MYC to enhance its 
transcriptional activity, consequently activating its 
downstream genes and promoting LUAD cell 
proliferation and invasion [44]. Altogether, these 
findings uncovered the novel lncRNA-mediated 
functions of pre-mRNAs in cancer. 

 

Table 1. LncRNAs involved in the dysregulated alternative splicing events for carcinogenesis and progression 

LncRNA Mechanism Target genes Patterns Biology function Related diseases or processes Refs 
PXN-AS1 interacts with SF MBNL3 pre-PXN-AS1 → 

PXN-AS1-L 
ES: exon 4 
(-) 

promotes proliferation and 
tumorigenesis 

Hepatocellular carcinoma [35] 

interacts with DDX17 pre-PXN-AS1 → 
PXN-AS1-IR3 

IR: intron 3 activates MYC pathway Hepatocellular carcinoma [36] 

PCAT19 produces long isoform that interacts 
with HNRNPAB 

pre-PCAT19 → 
PCAT19-Long 

/ activate a subset of cell-cycle 
genes 

Prostate cancer [37] 

NEAT1 produces two isoforms and the long 
has tumor-promoting effect 

pre-NEAT1 → NEAT1_2 / promotes cell growth and 
metastasis 

Non-small cell lung cancer, 
Papillary thyroid cancer 

[38, 
39] 

lncRNA-PNUTS  produced by hnRNPE1-mediated 
AS of PUNTS 

PNUTS pre-mRNA → 
lncRNA-PNUTS 

A3SS (exon 
12) 

promotes tumor progression Breast cancer, 
Epithelial-Mesenchymal 
Transition 

[43] 

PD-L1-lnc produced by AS of PD-L1 PD-L1 pre-mRNA → 
PD-L1-lnc 

/ enhances c-Myc 
transcriptional activity 

Lung adenocarcinoma [44] 

Linc01232 suppresses the degradation of 
HNRNPA2B1 

A-Raf pre-mRNA → 
A-Raf FL 

ES (-) activates MAPK/ERK 
signaling pathway 

Pancreatic cancer [54] 

DGCR5 binds with SRSF1 to increase its 
stability 

Mcl pre-mRNA → 
Mcl-1L 

ES: exon 2 
(-) 

inhibits cell apoptosis Esophageal squamous cell 
carcinoma 

[55] 

SNHG6 recruits and binds to hnRNPA1 PKM pre-mRNA → 
PKM2 

MXE (exon 
9,10) 

enhances aerobic glycolysis Colorectal cancer [56] 

PLANE recruits and binds to hnRNPM NCOR2 pre-mRNA → 
NCOR2-202 (-) 

A5SS 
(intron 45) 

promotes proliferation and 
tumorigenicity 

Pan-cancer [119] 

BC200  recruits and binds to hnRNPA2B1 BCL-X pre-mRNA → 
BCL-XL 

A5SS (exon 
2) (-) 

promotes cell proliferation Breast cancer, Apoptosis [120] 

LincRNA-uc002yug.2  binds to SRSF1 and MBNL RUNX1 pre-mRNA → 
RUNX1a 

/ promotes cell proliferation 
and tumor growth 

Esophageal cancer [121] 

PNCTR recruits RBPs PTBP1and 
down-regulates them 

CHEK2 pre-mRNA → 
CHEK (-) 

ES: exon 8 
(-) 

promotes cell survival Pan-cancer [57] 

TPM1-AS combines competitively with RBM4  TPM1 pre-mRNA → 
TPM1 V2 and V7 (-) 

MXE 
(exons 
2a,2b) 

inhibits cancer cell migration 
and formation of filopodia 

Esophageal cancer [122] 

KASRT  interacts with SRSF1and 
down-regulates it 

KLF6 pre-mRNA → 
KLF6-SV1 

IR (-) modulates P21/CCND1 
pathway  

Osteosarcoma [123] 

LINC01133 combines competitively with SRSF6 / / inhibits epithelial–
mesenchymal transition and 
metastasis 

Colorectal cancer [124] 

lncRNA AB074169 
(lncAB) 

combines competitively with RBP 
KHSRP and decreases its expression  

p21 pre-mRNA→ p21 
(CDKN1a) (-) 

/ inhibits cell proliferation and 
tumor growth 

Papillary thyroid cancer [125] 

CCAT1 targets miR-490 and up-regulates 
hnRNPA1 expression 

/ / promotes cell migration Gastric cancer [61] 

LOC90024 encodes SRSP which interacts with 
SRSF3 

Sp4 pre-mRNA → L-Sp4 ES: exon 3 
(-) 

promotes cancer 
tumorigenesis and 
progression 

Colorectal cancer [67] 

HOXB-AS3 encodes HOXB-AS3 peptide which 
competitively binds to hnRNPA1 

PKM pre-mRNA → 
PKM2 (-) 

MXE (exon 
9,10) 

regulates cancer metabolism 
reprogramming 

Colorectal cancer [68] 

asFGFR2 creates a chromatin environment 
and inhibits SF MRG15-PTB binding 

FGFR2 pre-mRNA → 
FGFR2-IIIb 

ES: exon 
IIIb (-) 

suppresses cell proliferation 
and migratory potential 

Hepatocellular carcinoma [69, 
71] 

ENST00000501665.2 binds to RBPs of SWI/SNF 
chromatin remodeling complex 

OIP5 pre-mRNA →OIP5 / enhances expression of the 
oncogene 

HEK293 cell [70] 

Fas-AS1 forms RNA-RNA duplexes with Fas 
pre-mRNA and recruits SPF45 

Fas pre-mRNA → sFas ES: exon 6 inhibits cell apoptosis Apoptosis [74] 

ZEB2 forms RNA-RNA duplexes with 
ZEB2 pre-mRNA  

ZEB2 pre-mRNA → 
ZEB2 

IR downregulates E-cadherin 
expression 

Epithelial-Mesenchymal 
Transition 

[75] 

UXT-AS1 forms RNA-RNA duplexes with 
UXT pre-mRNA 

UXT pre-mRNA → 
UXT2 

A5SS promotes cell proliferation 
and inhibits cell apoptosis 

Colorectal cancer [76] 

* (-) refers to down-regulated AS products of target genes or suppressed AS events. 
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Table 2. CircRNAs, miRNAs and snoRNAs involved in the dysregulated alternative splicing events in cancer 

Type NcRNA Mechanism Target genes Patterns Biology function Related diseases 
or processes 

Refs 

CircRNA CircSMARCA5 combines competitively 
with SRSF1 

VEGFA pre-mRNA → Iso8a 
(-) 

ES: exon 8 inhibits angiogenesis Glioblastoma 
multiforme 

[58] 

CircURI1 combines competitively 
with hnRNPM 

VEGFA pre-mRNA → 
VEGFAe7IN (-) 

ES: exon 7 suppresses cell migration Gastric cancer [126] 

CircMYH9 combines competitively 
with hnRNPA2B1 

p53 pre-mRNA → p53 (-) / promotes tumor growth by 
modulating Serine and glycine 
metabolism and redox homeostasis 

Colorectal cancer [127] 

CIRC-UBR5 recruits splicing regulatory 
factor QKI, NOVA1 and U1 
SnRNA 

/ / regulates tumor differentiation Non-small cell 
lung cancer 

[128] 

CircRNA100146 targets miR-361-3p, 
miR-615-5p and 
up-regulates SF3B3 
expression 

/ / promotes cell proliferation and 
invasion 

Non-small cell 
lung cancer 

[62] 

MiRNA miR-92a reduces RBM4 expression PTB pre-mRNA → nPTB ES: exon 10 
(-) 

increases the invasion, migration, and 
mitochondrial activity 

Colorectal cancer [60] 

miR-193a-3p reduces SRSF2 expression BCL-X, caspase 9 pre-mRNA 
→ BCL-XL, caspase 9a 

A5SS (exon 
2); ES (-) 

promotes cisplatin resistance Gastric cancer [81] 

miR-30a-5p, 
miR-181a-5p, 
miR-216b-5p 

decreases SRSF7 expression SPP1 pre-mRNA → SPP1-c MXE (exon 
3,5) 

decreases cell proliferation rate Renal cancer [129] 

miR-30c decreases SRSF1 expression / / suppresses cell survival and 
proliferation 

Prostate cancer [130] 

miR-1296 reduces SFPQ expression / / promotes cell proliferation, invasion, 
migration 

Colorectal cancer [131] 

miR-133b reduces SF3B4 expression / / promotes cell proliferation and 
metastasis 

Hepatocellular 
carcinoma 

[132] 

SnoRNA SNORD104, 
SNORD68 

interacts with RBP FUS pre-snoRNAs → sdRNAs 
(sdRNA104, sdRNA68) 

/ affects cell growth and proliferation Colorectal cancer [52] 

SNORD27 combines competitively 
with U1 snRNA and SFs 

E2F7 pre-mRNA → E2F7 ES (exon 
12) 

regulates E2F7-dependent cell cycle 
regulation 

Cell cycle [59] 

SNORA70E /  PARPBP-88 pre-mRNA → 
PARPBP-15 

ES (exon 4) promotes tumorigenesis and 
progression 

Ovarian cancer [133] 

* (-) refers to down-regulated AS products of target genes or suppressed AS events. 
 
 

CircRNAs produced by back-splicing 
CircRNAs are closed-loop RNA molecules 

produced by back splicing of the parental genes, in 
which the downstream splice site is reversed and 
joined to the upstream splice site [10]. Previously, 
circRNAs were regarded as accidental "splicing noise" 
or by-products with few biological functions. 
However, increasing evidence suggests that circRNAs 
exert vital roles, such as miRNAs sponging, 
transcription regulation, and peptides encoding 
[45-47] (Figure 2C). For instance, circRNA CDR1as 
sponges miR-7 to enhance the stability of miR-7 targets 
including E2F3, CKAP4, and TGFBR2, thus promoting 
tumor growth and progression [45, 48]. Additionally, 
CircSMARCA5, derived from the back-splicing of 
exon 15 and exon 16 of SMARCA5, binds to the 
genomic location of SMARCA5 to form an R-loop, 
which pauses transcription at exon 15 of SMARCA5 
and produces truncated nonfunctional proteins, thus 
increasing sensitivity to cisplatin chemotherapy of 
breast cancer [46]. Moreover, CircPPP1R12A is 
generated by reverse splicing exon 24 and 25 of 
PPP1R12A pre-mRNA, and encodes a 73-amino acid 
peptide, called circPPP1R12A-73aa [47]. CircPPP 
1R12A-73aa promotes proliferation and metastasis of 
colon cancer through activating the Hippo-YAP 

signaling pathway [47]. Therefore, circRNAs 
produced by splicing exhibit significant effects 
associated with carcinogenesis. 

Intronic snoRNAs and sdRNAs produced by 
RNA splicing 

The majority of snoRNAs are processed from the 
introns of snoRNA host genes (SNHGs) [49] (Figure 
2D). For example, SNORA23 is generated by the 
splicing of the intronic region of the IPO-7 gene, and 
its elevated levels significantly promote cancer cell 
survival and invasion in pancreatic ductal adeno-
carcinoma [50]. Furthermore, SNORA42 is spliced 
from the intron 10 of the KIAA0907 gene, and its 
elevated levels play oncogenic roles via driving the 
malignant phenotype in NSCLC cells [51]. Therefore, 
snoRNAs spliced from SNHGs perform essential 
functions during tumor development. 

A preprint by Plewka P et al. argued a novel 
molecular mechanism of snoRNA self-splicing (Figure 
2D), in which snoRNAs SNORD104 and SNORD68 
interacted with RNA-binding protein (RBP) FUS and 
were further spliced into smaller sdRNAs (sdRNA104 
and sdRNA68, respectively) [52]. FUS-dependent 
sdRNA68 and sdRNA104 regulated the expression of 
two colorectal cancer (CRC)-promoting genes, 
including KCNQ10T1-001 antisense transcript and 
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BRE mRNA [52, 53]. Therefore, sdRNAs, as spliced 
products of snoRNAs, play critical pathological 
functions during tumor proliferation and progression.  

Collectively, a numerous of ncRNAs generated 
by RNA splicing serve as potential prognostic and 
therapeutic biomarkers, indicating potential candi-
date targets for tumor prevention and treatment. 

Regulation of alternative splicing by 
ncRNAs  

Recent studies have identified that ncRNAs exert 
their functions as regulators of AS events. As 
illustrated in Figure 3, ncRNAs regulate AS of 
pre-mRNAs by influencing the trans-acting factors or 

cis-acting elements, thus resulting in abnormal 
splicing of certain oncogenes or tumor suppressors 
(Table 1 and 2). 

NcRNAs regulate AS through influencing 
trans-acting factors 

NcRNAs alter the expression and function of 
splicing factors (SFs) via interacting with SFs as 
“Interactors” or “Hijackers”, participating in 
competing endogenous RNA (ceRNA) regulatory 
network, encoding functional peptides and chromatin 
remodeling, thereby triggering tumor-associated 
alternative pre-mRNA splicing events. 

 

 
Figure 3. Regulation of alternative splicing by ncRNAs. Noncoding RNAs including lncRNAs, circRNAs, miRNAs, and snoRNAs regulate the occurrence of 
carcinogenesis-related AS events through two main splicing regulatory mechanisms. One way is to interact with the trans-acting factors, comprising acting as "Interactors" or 
"Hijackers" of SFs, participating in ceRNA regulatory network, encoding functional peptides and modulating chromatin signatures, all of which influence the expression and 
function of SFs. The second way is ncRNAs form dsRNA duplexes with the cis-acting elements, thus affecting tumorigenesis. The symbols (+) and (-) denote that ncRNAs act as 
oncogenes and tumor suppressor genes, respectively. 
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NcRNAs acting as “Interactors” of SFs 
NcRNAs recruit and stabilize SFs, and positively 

regulate the process of pre-mRNA splicing as 
“Interactors” of SFs, consequently influencing the 
pathogenesis process of tumorigenesis and progres-
sion [54-56] (Figure 3). Exemplified by linc01232, 
which significantly upregulates HNRNPA2B1 protein 
expression by suppressing its ubiquitin-mediated 
degradation in PCa cells [54]. Subsequently, the 
stabilized HNRNPA2B1 participates in the AS of 
A-Raf pre-mRNA and facilitates the formation of 
full-length A-Raf (A-Raf FL) isoform, thus promoting 
PCa cells metastasis [54]. Besides, lncRNA DGCR5 
indirectly regulates AS of Mcl-1 pre-mRNA by 
interacting with serine- and arginine-rich splicing 
factor 1 (SRSF1) to increase its stability, and contri-
butes to the generation of the full length of Mcl-1 
(Mcl-1L, anti-apoptotic isoform), thus facilitating the 
carcinogenesis of esophageal squamous cell 
carcinoma (ESCC) [55]. Additionally, lncRNA SNHG6 
interacts with hnRNPA1, which triggers hnRNPA1- 
mediated splicing of PKM pre-mRNA and promotes 
the expression of PKM2 over PKM1, consequently 
enhancing aerobic glycolysis in CRC cells [56].  

NcRNAs acting as “Hijackers” of SFs 
Accumulating studies have supported that 

ncRNAs, including lncRNA, circRNAs and snoRNAs, 
function as "Hijackers", which competitively bind to 
SFs and thereby inhibit the interaction between SFs 
and target pre-mRNAs in the context of tumorigenesis 
and development [57-59] (Figure 3). For example, 
lncRNA PNCTR recruits many RBPs PTBP1 to the 
peri-nucleolar compartment and blocks its binding 
with CHEK2 pre-mRNA [57]. The interaction between 
PTBP1 and CHEK2 pre-mRNA results in the 
upregulation of a CHEK2 isoform containing exon 8 
and enhances the cell survival of cancer cells [57]. 
Furthermore, it has been convincingly found that 
circSMARCA5 hijacks SRSF1 and impedes the binding 
of SRSF1 protein to vascular endothelial growth factor 
A (VEGFA) pre-mRNA, thus reducing the ratio of 
pro-angiogenic (Iso8a) to anti-angiogenic (Iso8b) 
isoforms and inhibiting angiogenesis in glioblastoma 
multiforme (GBM) cells [58]. In addition, SNORD27 is 
a C/D box snoRNA that competitively binds to U1 
snRNAs and several SFs to form RNP complexes in 
HeLa cells [59]. The RBPs facilitate the skipping of 
exon 12 in E2F7 pre-mRNA and inhibit the inclusion 
of silent exon in MAP4K3, ZBTB37, FER, and ABCA8 
pre-mRNAs, thereby influencing E2F7-dependent cell 
cycle regulation [59].  

NcRNAs alter SF expression by the ceRNA 
mechanism 

The expression of SFs is regulated by various 
types of ncRNAs, which can functionally influence the 
outcomes of AS in cancer [60-62] (Figure 3). MiRNAs 
suppress SF expression by directly attaching to the 
3'-untranslated region (3'-UTR) of the SF transcripts 
[60, 63]. For instance, miR-92a reduces the expression 
of RNA-biding motif 4 (RBM4) by targeting the RBM4 
mRNA, which leads to elevated levels of exon 
10-included nPTB transcript via an AS-coupled 
nonsense-mediated decay (NMD) mechanism [60]. 
Subsequently, nPTB affects the splicing of FGFR2 and 
PKM2 and promotes the isoform FGFR2 and PKM2 of 
these two genes, respectively, thereby altering 
metabolic signature of CRC cells [60]. More 
importantly, the ceRNA machinery can alter SF 
expression involving ncRNAs such as lncRNA, 
circRNAs, and pseudogenes, and these transcripts 
regulate each other through competing for shared 
miRNA regulators at the post-transcriptional level. 
Since microRNA response elements (MREs) exist on 
mRNAs, lncRNAs, circRNAs etc., and these RNAs 
can competitively sponge miRNAs by recognizing the 
same MREs [64-66]. Thus, lncRNAs and circRNAs can 
functionally act as ceRNAs to sponge miRNAs and 
therefor modulate the expression of miRNA-targeted 
SF mRNAs [61, 62]. Taking lncRNA CCAT1 as an 
example, it sponges miR-490 and indirectly upregu-
lates the expression of hnRNPA1 and subsequently 
facilitates hnRNPA1-mediated AS events, leading to 
the migration and metastasis of gastric cancer [61]. 
Similarly, circRNA100146 directly sponges miR- 
361-3p and miR-615-5p and leads to promoting SF3B3 
expression, consequently accelerating NSCLC cell 
proliferation and invasion through SF3B3-mediated 
AS regulation [62]. 

NcRNAs affect the function of SFs by encoding 
functional peptides 

NcRNAs can encode "hidden" peptides that 
regulate RNA splicing [67, 68]. As shown in Figure 3, 
LOC90024 encodes a splicing regulatory small protein 
(SRSP) that enhances the binding of SRSF3 to the exon 
3 of Sp4 pre-mRNA, which induces the generation of 
long Sp4 isoform (encoding L-Sp4 protein), whereas 
suppresses short Sp4 isoform (encoding S-Sp4 
peptide), ultimately promoting CRC tumorigenesis 
and progression [67]. LncRNA HOXB-AS3 encodes a 
conserved 53-aa peptide named HOXB-AS3, which 
competitively recognizes the arginine residues in the 
RGG motif of hnRNPA1 and antagonizes hnRNPA1- 
dependent PKM splicing, leading to the inhibition of 
PKM2 isoform and glucose metabolism in CRC cells 
[68]. Taken together, these studies suggest that the 
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ncRNAs-encoded functional peptides play important 
roles in AS regulation and may serve as novel targets 
for peptide-based anti-tumor drugs in the future.  

NcRNAs alter the function of SFs by modulation of 
chromatin signatures 

LncRNAs participate in the establishment of 
cell-specific splicing events by regulation of chroma-
tin conformation signatures [69, 70]. An antisense 
lncRNA, asFGFR2, recruits histone demethylase 
KDM2a and polycomb repressive complex 2 (PRC2) 
to the FGFR2 locus creating an adverse chromatin 
environment that antagonizes the recruitment of 
splicing regulatory factor complex MRG15-PTB [69] 
(Figure 3). This regulatory mechanism eventually 
promotes the generation of exon IIIb-containing 
isoform FGFR2 IIIb, which inhibits tumorigenicity of 
HCC cells [69, 71]. Besides, ENST00000501665.2, a 
splicing form of lncRNA OIP5-AS1, facilitates the 
interaction of chromatin-remodeling complexes SWI/ 
SNF with the promoter of OIP5 by directly binding to 
multiple nuclear RBPs including SMARCA4, a 
component of the SWI/SNF multi-subunit molecular 
complex, which leads to activated transcription and 
splicing of OIP5 oncogene [70]. 

 Altogether, these findings demonstrate that 
ncRNAs influence the expression and function of SFs 
to regulate multiple cancer-related AS events through 
different mechanisms, adding complexity into the 
ncRNAs-AS network. 

NcRNAs regulate AS via cis-acting elements 
Cis-natural antisense transcripts (cis-NATs) are a 

new class of RNAs transcribed from the opposite 
strand of a coding gene and regulate gene expression 
by forming the double-stranded RNA (dsRNA) with 
the complementary region [72, 73]. Cis-NATs can 
regulate AS of their antisense pre-mRNA, involved in 
diverse cellular functions during carcinogenesis 
[74-76] (Figure 3). Villamizar O et al. discovered that 
FAS-AS1 (SAF), a cis-NAT transcribed from the 
antisense strand of FAS, interacts with FAS 
pre-mRNA to form RNA duplexes. These duplexes 
recruit SPF45 to mediate exon skipping of FAS and 
upregulate soluble Fas (sFas) protein to protect cells 
against FasL-induced apoptosis [74]. Similarly, 
lncRNA ZEB2 (Sip1) interacts with the 5'-untranslated 
region (5'-UTR) of ZEB2 to form a dsRNA [75]. This 
interaction blocks the splicing of a large intron located 
in the 5'UTR of ZEB2 which contains an internal 
ribosome entry site (IRES) critical for Zeb2 expression, 
thus promoting EMT of cancer cells through 
upregulating Zeb2 protein levels [75]. Moreover, 
lncRNA UXT-AS1, transcribed from the antisense 
strand of UXT, binds to the cis-acting element within 

UXT pre-mRNA [76]. The binding reduces the 
pro-apoptotic UXT1 transcripts, meanwhile increases 
the pro-proliferative UXT2 transcripts, thereby 
accelerating CRC progression [76]. Altogether, these 
publications reveal a novel mechanism of 
ncRNAs-mediated regulation of AS in cancer cells by 
RNA duplex formation with the parental pre-mRNA.  

NcRNA-regulated AS events mediate 
drug resistance in oncology 

Chemotherapy and targeted therapy are 
frequently used in cancer treatment. However, 
multi-drug resistance (MDR) continues to hinder the 
clinical effects of chemotherapy. AS provides an 
opportunity for the pro-oncogenes to gain a new 
function that facilitates cancer cells evade from 
chemotherapy [77]. For instance, Androgen receptor 
splice variant 7 (ARV7) is associated with abiraterone 
resistance in castration-resistant prostate cancer [78]. 
Besides, Δ16HER2 splice variant is associated with 
lapatinib resistance in breast cancer [79]. Therefore, 
owing to the important roles and promising clinical 
value of AS in drug resistance, as well as above 
mentioned extensive interplay between ncRNAs and 
AS, we summarized the interactive network of 
ncRNA-AS in drug resistance. This may provide new 
insights into understanding the MDR mechanism and 
identifying novel targets for preventing or reversing 
drug resistance in cancers (Figure 4 and Table 3). 
NcRNAs trigger AS of cell death-related genes 
to mediate chemoresistance 

Apoptosis-evading cancer cells have a critical 
role in chemoresistance. NcRNAs regulate the AS 
events of apoptosis-related genes such as the BCL-2 
family, pro-apoptotic caspases, and FAS, thus altering 
the process of apoptosis and affecting the efficacy of 
chemotherapeutic drugs [80-82] (Figure 4). LncRNA 
UCA1 is abnormally upregulated in cisplatin-resistant 
oral squamous cell carcinoma (OSCC) cells and 
sponges miR-184 to enhance SF1 expression. This 
augments SF1-mediated splicing of BCL-2 family 
genes containing Mcl-1 and increases BCL2 protein 
expression, thereby preventing apoptosis [80, 83, 84]. 
Furthermore, miR-193a-3p interacts with SRSF2 to 
increase the anti-apoptotic variant of BCL-X (BCL-XL) 
and decrease the pro-apoptotic variant of caspase 9 
(caspase 9a), leading to cisplatin resistance in CD44+ 
gastric cancer cells [81]. Interestingly, EZH2, the 
catalytic subunit of the PRC2 involved in H3K27 
methylation, hyper-methylates the lncRNA FAS-AS1 
promoter and represses the FAS-AS1 expression in 
chemo-resistant B-cell lymphoma [82]. The reduced 
FAS-AS1 expression causes increasing of soluble Fas 
receptor (sFAS) in a RBM5-dependent manner, which 
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further suppresses apoptosis and leads to 
acquirement of chemoresistance [82, 85]. 

Autophagy is another fundamental mechanism 
that affects the sensitivity of cancer cells to anticancer 
agents, inhibition of which can also trigger apoptosis 
in cancer cells [86]. Increasing studies have indicated 
that the interplay of ncRNAs-AS mediates drug 
resistance in cells by regulating autophagy [87, 88]. 
For example, lncRNA CRNDE interacts with SRSF6 
protein and reduces its stability, thus reducing AS of 
PICALM and inhibiting S-to-L isoform switch [87]. 

Finally, CRNDE suppresses 5-FU/oxaliplatin resis-
tance via attenuating autophagy flux in gastric cancer 
cells [87]. Another study suggested that estrogen 
inhibits lncRNA EGOT in a dose-dependent manner 
in breast cancer [88]. Low expression of EGOT 
interferes with pre-ITPR1/EGOT dsRNA formation 
and hnRNPH1 recruitment, consequently reducing 
autophagosome accumulation by downregulating 
ITPR1 protein, and ultimately enhancing paclitaxel 
resistance [88]. 

  
 

 
Figure 4. NcRNA-regulated AS events mediate drug resistance in oncology. Some lncRNAs, miRNAs and circRNAs impact drug resistance of cancer cells by triggering AS of cell 
death-related genes and metabolism-related genes. AS of cell death-related genes decreases the ratio of pro-/anti-apoptotic splicing isoforms to promote apoptotic tolerance in 
tumor cells, while AS of metabolism-related genes causes the upregulation of PKM2 expression to promote glycolysis in cancer cells. 

Table 3. NcRNA-regulated AS events involved in drug resistance in cancer 

NcRNA Mechanism Target genes Biology function Drugs Related diseases Refs 
UCA1 targets miR-184 and up-regulates SF1 

expression 
Mcl pre-mRNA → Mcl-1L increases BCL2 protein expression  Cisplatin Oral squamous cell 

carcinoma 
[80, 
83] 

miR-193a-3p reduces SRSF2 expression BCL-X, caspase 9 pre-mRNA → 
BCL-XL, caspase 9a 

suppresses cell apoptosis Cisplatin Gastric cancer [81] 

Fas-AS1 low levels of it promote 
RBM5-mediated AS 

Fas pre-mRNA → sFas causes impaired Fas signaling in 
chemoresistance 

Cytotoxic drugs B-cell lymphoma [82, 
85] 

CRNDE interacts with SRSF6 and reduces its 
stability 

PICALM pre-mRNA → 
PICALML (-) 

reduces autophagy flux 5-FU/oxaliplatin Gastric cancer [87] 

EGOT forms pre-ITPR1/EGOT dsRNA and 
recruits hnRNPH1 

ITPR1 pre-mRNA → ITPR1 promotes autophagy to increase 
drug sensitivity 

Paclitaxel Breast cancer [88] 

miR-374B decreases hnRNPA1 expression PKM pre-mRNA → PKM2 (-) antagonizes PKM2-mediated 
glycolysis pathway 

Sorafenib Hepatocellular 
carcinoma 

[94] 

CIRS-122 targets miR-12 PKM pre-mRNA → PKM2 promotes glycolysis Oxaliplatin Colorectal cancer [95] 

*(-) refers to down-regulated AS products of target genes. 
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NcRNAs trigger AS of metabolism-related 
genes to facilitate chemo- and targeted 
resistance 

Cancer cells depend on aerobic glycolysis for 
ATP production and promoting rapid growth, which 
are also critical for the development of chemo- and 
targeted resistance [89]. PKM is a critical enzyme in 
glycolysis metabolism, its splicing is crucial for 
metabolic regulation [90]. AS of PKM pre-mRNA 
generates two isoforms, PKM1 and PKM2, containing 
exon 9 and exon 10, respectively. Interestingly, PKM2 
encodes a protein that can catalyze glycolysis, and is 
correlated with poor prognosis in cancer patients, 
whereas PKM1 encodes a protein that can promote 
oxidative phosphorylation [91-93]. Hence, aberrant 
AS of PKM pre-mRNA triggered by ncRNAs can alter 
the sensitivity of cancer cells to chemotherapeutic 
agents [94, 95] (Figure 4). A study found that 
hnRNPA1 can bind to the flanking sequence of exon 9, 
resulting in exon 10 inclusion and thus sustaining a 
high PKM2/PKM1 ratio [96]. However, miR-374b 
represses hnRNPA1 expression through targeting its 
3'UTR, subsequently inhibiting PKM2 and glycolysis 
to re-sensitize sorafenib-resistant HCC cells [94]. It 
seems beyond dispute that AS of PKM regulated by 
miR-374b overexpression plays a significant role in 
overcoming sorafenib resistance in HCC. Another 
study indicated that CIRS122 (hsa_circ_0005963) 
produced by back splicing upregulates the expression 
of PKM2 by sponging miR-122, which stimulates 
glycolysis and leads to oxaliplatin resistance in CRC 
cells [95]. This intercellular signal delivery could thus 
be used as a potential strategy for treating 
oxaliplatin-resistant CRC [95]. Overall, these findings 
support that ncRNAs promote drug resistance in 
tumor cells by enhancing PKM2-mediated glycolysis, 
highlighting their potential as targets to reverse drug 
resistance in cancer cells. 

Targeting AS of ncRNAs or AS-related 
ncRNAs for cancer therapy 

Aberrant AS events are emerging as additional 
hallmarks of various cancers [33, 97-101]. Currently, 
strategies targeting AS, such as small molecule 
targeting SFs or spliceosome, splice-switching 
antisense oligonucleotides (SSOs) and RNA or protein 
isoforms have exhibited potential values in clinical 
treatment (Figure 5). H3B-8800 is an orally available 
small molecule targeting SF3B1, which has entered 
phase I of clinical trials for the treatment of 
hematological malignancies [102, 103]. Besides, SSOs 
are typically synthetic short-stranded RNAs that are 
designed to base-pair with cis-acting elements of 
target pre-mRNA, thus facilitating the conversion of 

splicing isoforms via blocking the binding of SFs to 
the pre-mRNA [104]. Li et al. found that BCL-X SSO 
targeting the exon 2 of BCL-X pre-mRNA significantly 
elevates the BCL-XS/BCL-XL ratio and promotes 
glioma cell apoptosis [105]. In addition, antisense 
oligonucleotides (ASOs) targeting RNA isoforms are 
also emerging as pharmacological agents [106]. Li et 
al. identified an oncogenic lncRNA AC104041.1, and 
designed LNA-modified ASO targeting two splice 
variants of AC104041.1 which exhibited potent 
anti-tumor activity for head and neck squamous 
carcinoma (HNSCC) [107]. Moreover, alternative 
tumor-specific antigens (TSAs) have recently been 
evaluated and considered to be bona fide targets of 
anti-cancer immunity [108, 109]. Volpe G et al. 
reported that in Philadelphia chromosome-positive 
hematological malignancies, novel BCR-ABL 
transcripts are generated by AS, whose translational 
products contain C-terminal amino acid sequence 
derived from the out of reading frame (OOF) of the 
ABL gene [110]. The presence of OOF-peptide can 
stimulate specific cytotoxic T lymphocyte reaction, 
suggesting that the BCR-ABL-OOF isoforms may be 
novel neoantigens for chronic myeloid leukemia 
therapy [110]. Some recent studies showed that small 
molecule inhibitors can also be used as a potential 
source of tumor antigens and can be used in 
immunotherapy [111, 112]. Elizabeth A et al. found 
that triple-negative breast cancer (TNBC) cells 
produce many intron-retained double-strand RNAs 
when treated with H3B-8800 [111]. These new 
antigens in turn activate the antiviral immune 
response and further induce exogenous apoptosis 
[111]. Moreover, Lu X et al. revealed that sulfonamide 
derivative, Indisulam (E7070), degrades RBM39 in a 
dose-dependent manner and induces new antigens in 
cancer cells, thereby stimulating anti-tumor immune 
response and enhancing the efficacy of immune 
checkpoint inhibitors [112]. Additionally, agents that 
mediate splicing isoform-specific degradation have 
also been developed [113]. For instance, the AR-V7 
degrades both AR-V7 isoform and full-length AR for 
prostate cancer, while DT2216 degrades the 
anti-apoptotic splicing isoform BCL-XL for liquid and 
solid cancers [114]. Therefore, these small molecules 
have shown promising effects of reducing the tumor 
burden in a variety of cancers [114].  

In addition to these AS-targeting strategies, 
ncRNAs as novel splicing regulators also hold new 
promise in cancer therapeutic (Figure 5). In B-cell 
lymphoma, 3-Deazaneplanocin A (DZNep) and 
ibrutinib could inhibit EZH-mediated methylation of 
lncRNA FAS-AS1 promoter and upregulate FAS-AS1, 
thus enhancing FAS-mediated apoptosis of cancer 
cells [82, 115, 116]. These findings indicate that 
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FAS-AS1 might be a promising target for lymphoma 
treatment and provide a rationale for the synergistic 
combination of EZH inhibitors and chemotherapy for 
lymphoma treatment. 

Conclusions and perspectives 
Previously studies focused on AS related-coding 

genes, yet ncRNA-associated AS events have gained 
increasing interest, especially in the field of tumor 
epigenetics. This review highlights the interaction 
between ncRNAs and AS in cancer and summarizes 
distinct types of ncRNAs-mediated mechanisms 
involved in the aberrant regulation of AS events in 
various cancers. Owing to the extensive interactions 
between ncRNAs and AS and their mutual influence 
on cancer progression, AS-related ncRNAs have 
emerged as predictive biomarkers of chemotherapy 
and as potential targets for combination therapy. 
Hence, we also discussed the interplay of ncRNAs 
and AS in drug-resistant cells and the recent 
developments in cancer therapies targeting AS or 
AS-related ncRNAs.  

Currently, researches on ncRNAs-AS network 
are conducted at a single gene level, since original 
papers usually performed rescue experiments to 
prove the concept. However, this simple model of 
single gene cannot fully reflect the complexity of the 

ncRNAs-AS interactive network or explain their 
important roles in cancers. Therefore, the mechanisms 
and functions of ncRNAs-AS network need to be 
further investigated, especially using bioinformatics 
to identify AS isoforms or AS-related ncRNAs that 
serve as prognostic biomarkers or therapeutic targets 
[117, 118]. Recently, Deng et al. developed a 
comprehensive database LncAS2Cancer, which 
provides information regarding AS of lncRNAs across 
human cancers, as well as predicts the potential 
interaction between lncRNA and AS in cancers [118]. 
However, to systematically explore the interplay 
between ncRNAs and AS, the development of high 
through-put sequencing methods detecting ncRNA- 
pre-mRNA or ncRNA-SF interaction is demanded. 
Nevertheless, the evidence to date is sufficient to 
demonstrate the importance of ncRNA-AS interplay 
in cancer. The development of effective drugs or 
strategies to target AS events of ncRNAs or AS-related 
ncRNAs, and their combination with current chemo-, 
targeted-, or immuno- therapies hold the promise for 
combating cancer in the future. 
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Figure 5. Strategies targeting AS of ncRNAs or AS-related ncRNAs for cancer therapy. Several antitumor strategies have been developed to alter AS events at distinct levels and 
consequently reverse the course of drug-resistant cells or carcinogenesis. These strategies include small molecule inhibitors of targeting SFs (such as RBM39) and splicesomal 
components (such as SF3B1), splice-switching antisense oligonucleotides (SSOs) targeting splicing "switch", antisense oligonucleotides (ASOs) targeting specific RNA isoforms, 
specific antibodies and protein degraders targeting oncogenic protein variants, and RNA therapies targeting AS-related ncRNAs. 
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