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Abstract 

Drug evaluation has always been an important area of research in the pharmaceutical industry. However, 
animal welfare protection and other shortcomings of traditional drug development models pose 
obstacles and challenges to drug evaluation. Organ-on-a-chip (OoC) technology, which simulates human 
organs on a chip of the physiological environment and functionality, and with high fidelity reproduction 
organ-level of physiology or pathophysiology, exhibits great promise for innovating the drug development 
pipeline. Meanwhile, the advancement in artificial intelligence (AI) provides more improvements for the 
design and data processing of OoCs. Here, we review the current progress that has been made to 
generate OoC platforms, and how human single and multi-OoCs have been used in applications, including 
drug testing, disease modeling, and personalized medicine. Moreover, we discuss issues facing the field, 
such as large data processing and reproducibility, and point to the integration of OoCs and AI in data 
analysis and automation, which is of great benefit in future drug evaluation. Finally, we look forward to the 
opportunities and challenges faced by the coupling of OoCs and AI. In summary, advancements in OoCs 
development, and future combinations with AI, will eventually break the current state of drug evaluation. 
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Introduction 
Drug discovery and development is one of the 

most significant translational science activities 
contributing to human health and well-being. 
Nevertheless, the discovery and development 
pipelines are time-consuming and incur massive 
costs, primarily because of the preclinical validation 
as well as clinical trials involved [1, 2]. It is estimated 
that over 10 years are needed to evaluate a new drug 
before it enters the market, and the average cost will 
be $2.5-5 billion [3, 4]. Generally, a standard drug 
discovery process can be conceptually divided into 
three parts: target selection, lead identification, and 
preclinical studies [5]. In the early preclinical stage of 
drug development, drug evaluation is crucial for 

confidently advancing a new drug candidate. Drug 
evaluation mainly focuses on physicochemical 
properties, biological activity, toxicity, safety, 
metabolism, pharmacological efficacy, and medicinal 
value of newly developed drugs, which in order to 
preliminarily verify their safety and effectiveness for 
further clinical trials, and to protect people from 
drugs which are unsafe, ineffective, or both [6-8]. 
Traditional drug evaluation has mainly relied on 
cellular monolayer planar culture models and animal 
experiments. However, traditional methods face 
several challenges, in part due to the intrinsic 
limitations of two-dimensional (2D) cell culture 
models that may not be able to mimic the 
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microenvironment in an organ, and animal models 
may not accurately represent what occurs in humans 
[9-11]. In addition, animal models are often not 
suitable for high-throughput bioassays as well as 
large-scale drug screening [12], and are also often 
cost-prohibitive. A bill signed in December 2022 
allows the United States Food and Drug Adminis-
tration (FDA) to approve new drugs without being 
tested on animals. This marks a major change in 
people’s use of animals after more than 80 years of 
drug safety supervision. Thus, it necessitates quick 
and robust methods with the goal of discovering, 
analyzing, and optimizing a reliable drug candidate 
[1, 13]. 

Microfluidics is the science and technology of 
manipulating and detecting fluids on a micro-scale 
[14]. With its obvious advantages, including fast 
processing speed, high spatial resolution, sensitivity, 
and integration, easy control, and low cost of 
reagents, microfluidics has become an increasingly 
attractive tool for both fundamental and practical 
research [15]. Furthermore, microfluidics has already 
been utilized to create more in vivo-like models of cell 
culture because of the dimensional comparisons with 
biological cells [16, 17]. Notably, microfluidics has the 
ability to capture, align, and manipulate single cells in 
drug discovery. Furthermore, microfluidic system has 
the capability for higher-throughput screening, and it 
could be used for screening drugs at different species 
and concentrations. As a valuable tool for developing 
more in vitro models which capture cellular and 
organ-level responses, microfluidic technology is 
widely used for fast and animal-free risk evaluation of 
new drugs [18]. 

As a product of microfluidic technology 
gradually developed, OoCs could faithfully mimic the 
pathophysiological microenvironment of target 
organs in vivo, offering exciting potential to bridge the 
gap between in vitro evaluation models and in vivo 
pathophysiological complexity [19, 20]. In 2004, 
adapting microfluidic technology for modeling 
organs and systemic-level functions of human 
physiology or disease research was first published 
[21]. Then, the most famous and landmark OoC 
device, known as the ‘breathing lung’ (lung-on- 
a-chip) was designed in 2010 [22], which initiated the 
advancement of the biologically inspired OoCs today. 
Since then, examples of single OoCs include 
brain/blood-brain barrier [23-25], lung [22, 26, 27], 
heart [28-30], liver [31-33], kidney [34-36], gut [37-39], 
vasculature [40-42], skin [43, 44], bone/bone marrow 
[45, 46], retina [47, 48], muscle [49, 50], fat [51, 52], and 
tumor/cancer [53-56] have been successfully 
developed, all of these can be used for drug research. 
Furthermore, it is possible to investigate organ-organ 

interactions and systemic diseases like drug off-target 
toxicity, cancer metastasis, and inflammation by 
coupling multiple OoC platforms together through 
vascular perfusion of supernatant exchange or a 
shared blood substitute [57]. 

The mechanism of action of drugs is diverse, 
with various phenotypic effects on cells and organs. 
Simply recognizing and categorizing these features 
from the perspective of molecular indicator detection 
is time-consuming and laborious, which has become a 
challenge for large-scale molecular library (estimated 
to be more than 1060 molecules [58]) drug screening, 
and it is even more difficult to display real-time 
changes in cellular mechanisms. Nowadays, the 
functional disclosure of drug targets tends to reveal 
their functions in the dynamic process of life. During 
this process, drug evaluation with the OoC platform 
will generate many images and datasets, and the 
feature extraction of these dynamic data cannot be 
completed manually. In recent years, the application 
of AI in microfluidics has achieved significant results, 
with new deep learning methods and deep neural 
network models constantly emerging. OoCs are now 
starting to attract AI, especially the machine learning 
(ML) and deep learning (DL) approaches to 
experimental design and data interpretation [57]. 
Deep learning was introduced into the field of 
machine learning by Rina Dechter as early as 1986, 
and in 2000, Aizenberg introduced Artificial Neural 
Networks in the field of machine learning [59]. Visual 
recognition and data processing based on AI will 
bring possibilities to solve the above problems, 
including culture conditions optimization, image 
detection and tracking, and processing such a large 
volume of data. 

At present, OoCs and AI are hot topics in 
research, and researchers hope to generate more 
possibilities through the combination of the two. Drug 
discovery and pharmacological researchers also hope 
to see this type of review article to obtain relevant 
knowledge simply and directly. However, most of the 
current reviews are still focused on discussing the 
combination of microfluidics and AI (machine 
learning and deep learning) [60-64]. Although a recent 
review focused on the combination of OoCs and deep 
learning, the core of this review was not specifically 
on the application of integration in drug evaluation 
[19]. In fact, drug evaluation is one of the most 
important areas of OoCs application. Thus, a 
summary of the application of OoCs in drug 
evaluation, as well as a timely and comprehensive 
review of the driving role of AI in this field, will 
facilitate the combination of both for drug evaluation 
in the future. In this review, we first give a brief 
overview of basic information on microfluidics-based 
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organ-on-a-chip. Then, we introduce the most recent 
advances in the field of OoCs, which exhibit clinical 
mimicry by simulating human patient responses or 
have utilized this technology to further drug 
development and personalized medicine. Moreover, 
we reviewed typical cases of AI application in drug 
evaluation using OoCs, which will pave the way for 
future drug development (Figure 1). Finally, we 
discuss opportunities and challenges for the future of 
the field. In addition to cells and tissues, the “organ” 
here also includes organoids, and organoid-on-a-chip 
has been included in here OoCs. 

The background of OoCs invention 
In traditional, 2D cultures cells grow in a culture 

flask or dish as an adherent monolayer, attached to a 
plastic surface [65]. Although 2D monolayer-based 
assays have proven to be a valuable method for 
cell-based studies of low cost, ease to use, and high 

throughput, adherent culture also has numerous 
disadvantages, and its limitations have been 
increasingly recognized [66, 67]. One such key 
limitation is that 2D cultured cells fail to accurately 
reproduce the natural human physiology, which 
prevents this culture method from replicating the 
cell-cell and cell-environment interactions present in 
native tissue. As a result, drugs respond differently 
between cells cultured in 2D and corresponding 
tissues [68]. In addition, a drawback is that the cells in 
the monolayer have unrestricted access to the 
components of the medium, such as nutrients, 
metabolites, oxygen, and signal molecules [69]. 
Meanwhile, adherent culture usually allows the study 
of only a single cell type, which results in cells lacking 
the microenvironment, or niches, in which they reside 
in vivo. Thus, the predictive value of 2D monoculture 
models is quite limited.  

 

 
Figure 1. Schematic of organ-on-a-chip meets artificial intelligence in drug evaluation. OoCs have been utilized to model almost all organs in humans for drug 
testing, disease modeling, personalized medicine, and others. To improve the physiological relevance of OoCs, various factors including cell types, stimulations, and materials are 
considered and incorporated. Finally, OoCs combine with AI will be of great benefit in experiment design and control as well as data extraction and analysis, which holds exciting 
promise for drug evaluation with OoCs. Abbreviations: iPSCs: induced pluripotent stem cells; ECM: extracellular matrix. Created with BioRender (www.biorender.com). 
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Efforts to address some limitations of 2D culture 
models, 3D culture models have been developed, 
which provide in vivo-like microenvironments and 
have received much attention. These models use 
synthetic or natural cell scaffolds (decellularized) to 
support cell attachment, growth, and morphogenesis 
in a 3D environment [70]. Synthetic cell scaffolds 
typically contain biocompatible polymer materials, 
such as a variety of fiber and hydrogel scaffolds [71]. 
Natural cell scaffolds are made from extracellular 
matrix gels, which contain such as collagen and 
glycoproteins, and minerals including hydroxyapatite 
[72]. While the 3D conditions more closely resemble 
the in vivo state, these models remain lack the 
multiscale structures and tissue interfaces that are 
meaningful for organ function. In addition, the lack of 
controlled and precise application of nutrient supply 
gradients and chemical cues, results in the poor 
modeling of an in vivo physiological micro-
environment. Importantly, cells are typically not 
exposed to physical stimuli that are essential for organ 
development and functioning [6]. Of note, one of the 
most significant paradigm changes in medicine 
recently has been the recognition of the central role 
displayed by the microbiome, which is made up of 
host-specific communities of commensal microbes, in 
human health and disease [39]. However, it is not yet 
possible for human cells to co-culture with complex 
microbial that come into direct contact, as this 
frequently leads to culture contamination and cell 
death within hours [73]. These all limit their use in 
drug screening. 

Preclinical animal models are an essential 
component of the drug discovery and development 
process. Although animal models have offered a 
living system to assess the efficacy of drugs on target 
site and non-target organ toxicity, it captures the 
physiological complexity with a high degree of 
fidelity. However, it is not really representative of 
human physiology, pathological, and genetic 
characteristics, thus failing to accurately anticipate 
drug response in humans [74], as the pharmaceutical 
industry is gradually discovering. Of note, recent 
systematic studies on the correlation between animal 
data and human outcomes have shown a weak 
predictive ability of animal models [75], and the 
clinical translatability of drug efficacy tests conducted 
on animal models is highly controversial [76]. 
Furthermore, animal models have been associated 
with ethical concerns, high costs, and low yields, as 
well as difficulty in performing high-throughput 
evaluations of drugs. Thus, preclinical drug testing 
models with better physiologically relevant are 
needed to simulate complex human-relevant 
conditions, enable high-throughput assessment of 

drug candidates, improve the success of clinical trials, 
and ultimately deliver safe and effective drugs to the 
market. 

Organ-on-a-chip is an in vitro microphysiological 
system (MPS) used for mimicking the human body 
environment, representing a simplified but realistic 
model of its organ-level and even organism-level 
functional counterpart with functionality read-outs 
matching the intended application [77]. Microfluidics- 
based OoCs take advantage of control strategies and 
multiparametric approaches designed for micro-
fluidics, compared to static culture models, which 
allows better oxygen perfusion, continuous nutrient 
exchange, physiological microenvironments, and 
tissue mechanical forces to provide sufficient 
nutrients and necessary chemical/mechanical stimuli 
to better emulation of conditions within the 
organisms [78, 79]. Notably, OoCs have realized 
co-culture with microorganisms [39, 80-82]. Animal 
models often lack the ability to predict results in 
human drug response. Humans and animals differ 
substantially in physiological structure, complexity, 
tissue/organ function, and other parameters, 
resulting in reduced accuracy and reproducibility of 
experimental results [83]. For instance, drug 
metabolism can lead to the production of metabolites 
with physicochemical and pharmacological properties 
significantly different from the parent drug, thereby 
enhancing biological activity or producing adverse 
biological consequences [84, 85]. Thus, species 
differences in metabolism may result in an inability to 
predict the efficacy/toxicity of a drug in humans. For 
the same drug, it may have different or even opposite 
pharmacological effects between humans and animals 
due to differences in the species’ target expression, 
binding capacity, and drug pharmacokinetics and 
pharmacodynamics (PK/PD). Furthermore, other 
problems such as ethical concerns, which have also 
greatly limited progress in drug development. To that 
end, as an emerging in vitro model, OoCs have been 
envisioned to replace animal studies. Meanwhile, 
OoCs may improve the current lack of female 
individuals in human clinical trials [73]. 

As a type of microfluidic device, OoCs are 
created with microchip-manufacturing methods with 
a miniaturization feature. Owing to the intrinsic 
characteristics of microfluidics (e.g., compact micro-
channels), OoCs can provide accurate control of 
biophysical, biochemical, and cellular parameters [86], 
and reduces the sample sizes and materials 
consumption required for drug testing [65]. 
Importantly, OoCs can simulate chemical concen-
tration gradients, which are essential for the 
regulation of various biological processes and drug 
studies. Furthermore, OoCs with a physiological 
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barrier function can better mimic the delivery and 
absorption of drug compounds in vivo [87]. 
Polydimethylsiloxane (PDMS) is the preferred choice 
for manufacturing OoCs, with advantages such as 
ease of fabrication and handling, gas permeability, 
low cost, and optical transparency for real-time 
culture monitoring [88]. Finally, membranes can be 
integrated into the chips to create multiple channels 
and separate cells [65]. 

To date, researchers have developed 
single-organ-on-a-chip for almost organs in the 
human body, all of which can be used for drug 
research. Nevertheless, they lack both a systemic 
dimension and cross-organ communication [89]. As 
the human body is a physiologically complicated 
system, thus necessary to evaluate drug disposition 
throughout the whole body as well as to quantify 
PK/PD parameters that contribute to direct clinical 
trial design, and try to gain more understanding of 
diseases which is caused by multiorgan interactions 
[90, 91]. Multi-organ-on-a-chip, coupled single organs 
by flow, have been created to recapitulate 
organ-organ interactions and potentially whole-body 
responses to drugs and to serve as models for diseases 
[92]. 

After rapid developments in recent years, OoCs 
that replicate human organ functions are a promising 
technology for drug evaluation (e.g., drug transport, 
metabolism, toxicity, and therapeutic effects), disease 
modeling, and personalized medicine, which 
indicates its potential role in all phases of the drug 
development (Figure 2). The rise of OoCs has brought 
a new dawn to drug evaluation. Therefore, in the 
following, we will outline instances of various single 
and multi-OoCs examples to discuss recent advances 
in OoCs development, with a focus on their 
application in drug evaluation in a human-relevant 
manner. 

 

The application of single-organ-on-a-chip 
in drug evaluation 

The design guidelines for OoCs are founded on 
the objective of recapitulating the physiology of the 
organ system under study. Ideally, the OoCs 
environment should be created using a minimally 
functional (simplest feasible) unit of each organ 
system [78]. Since 2010, almost all organ systems have 
been modeled using OoCs to gain a new 
understanding of the molecular and cellular 
underpinnings of various physiological and 
pathophysiological processes, and to recapitulate 
clinical responses to therapeutics seen in human 
patients [73]. In this section, we review the key human 
single-organ-on-a-chip studies, especially under the 
background of drug development (Figure 3 and Table 
1). 

Brain/BBB-on-a-chip 
The structural and functional complexity of the 

human brain presents unique challenges for 
neurological drug development. A major obstacle is 
the blood-brain barrier (BBB), which selectively 
controls the passage of drugs into the central nervous 
system (CNS) and prevents it from blood-borne 
neurotoxic substances as well as maintains 
homeostasis for optimal brain function [93]. In 
addition, the complexity also makes it challenging to 
research in non-human models. In this context, OoCs 
emulating the function of BBB is of particular interest 
as they enable testing of whether drugs used for the 
treatment of neuro-related diseases could act across 
the BBB to their designated targets [78, 94]. The very 
first BBB model design consisted of an upper and a 
lower PDMS channel divided by a porous membrane, 
similar to a sandwich structure [95]. Usually, 
astrocytes, pericytes, or other types of brain cells are 
cultured in the lower channel, while endothelial cells 
are seeded in the upper channel. Moreover, the 

 

 
Figure 2. At various phases of drug development, the comparison of throughput and reproducibility with physiological relevance and complexity of different in vitro drug 
evaluation models. Created with BioRender (www.biorender.com). 
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neurovascular unit OoC systems were created to 
develop a more faithful model of the BBB [96], as the 
BBB is a significant obstacle to the delivery of a lot of 
neuroactive therapeutics. Although sometimes used 
interchangeably, the BBB is described as the 
neurovascular unit free of microglial and neuronal 
components [97]. These models employ transendo-
thelial resistance (TEER) as a functional readout, 
which is a gold standard method for measuring the 
‘tightness’ of the constructed BBB [94]. Previously, it 
has been demonstrated that using microfluidic 
perfusion improves physiological barrier function and 
offers a more predictive drug reaction [98]. For 
instance, hypoxia-enhanced BBB OoC platform 
outlines the shuttling of CNS-targeting drugs and 
antibodies in vivo, which may contribute to the 
development of drugs or delivery vehicles (Figure 3B) 
[23]. More recently, a BBB OoC device was employed 
to investigate stem cell-based therapies’ therapeutic 
potential for ischemic stroke. This model demon-
strated clinically relevant responses to an ischemic 
injury, and recapitulated the interactions between 
therapeutic stem cells and host cells [24]. Therefore, a 
human-specific model of the BBB would enhance the 
comprehension of human neurodegenerative diseases 
and the discovery of neurological drugs. 

Lung-on-a-chip 
As the lung fills with air, the respiratory regions 

cyclically expand and contract to increase the surface 
area accessible for gas exchange. When the alveoli 
were considered the smallest functional unit of the 
lung, cyclic expansion can be simulated by applying 
mechanical stretch to the gas exchange surface [78]. 
The most well-known organ-on-a-chip, known as the 
‘breathing lung’ (lung-on-a-chip) was designed in 
2010 (Figure 3A) [22]. This device has a microporous 
membrane between two layers of a channel 
construction which in human alveolar epithelial cells 
lined the upper layer of the membrane and human 
pulmonary endothelial cells lined the bottom layer. 
Once the alveolar cells were confluent, the medium 
inhaled from the upper channel formed an air-liquid 
interface with the alveolar cells. The lung structure is 
replicated on a platform using flowing air and culture 
medium, respectively, and the extension and 
contraction of the porous membrane are achieved by 
varying the internal pressure of the channels on either 
side of the channel during particular cycles to mimic 
physiological respiration [70, 99, 100]. The subsequent 
model used a similar chip design and cell seeding 
with modifications and additional improvements for 
various applications, including replicating the drug 
toxicity seen in cancer patients receiving IL-2 [26], and 
investigating the pulmonary toxicity of nanoparticles 

[101]. In addition, the model of lung airway OoCs was 
designed to reproduce the lung airway microenviron-
ment [102]. Taking the presently well-known 
COVID-19 as an example, the lung airway OoC 
system was rapidly being used to repurpose 
FDA-approved drugs as possible treatments against 
SARS-CoV-2 [103], and amodiaquine was discovered 
through this platform to be a potential entry inhibitor 
for SARS-CoV-2 [27]. More recently, a model that 
simulates alveoli in vivo using collagen and elastin has 
been developed, which was called the second- 
generation lung OoCs [104]. 

Heart-on-a-chip 
The heart is one of the least regenerative organs 

in the body [105], which is also a significant target 
organ for toxicity. Cardiotoxicity as one of the most 
common causes of drug failures [106], drives the 
development of heart OoCs. Cardiac muscle is a 
highly ordered dense tissue that is susceptible to 
interference from drugs, drug-drug interactions, or 
off-target side effects [79]. So far, a variety of heart 
OoC platforms have been developed, including 
co-culture of multiple cell types such as 
cardiomyocytes, endothelial cells, and cardiac 
fibroblasts, focused on establishing biomimetic and 
functional aspects of the heart [107]. Interestingly, 
most cardiac OoCs are primarily used in 
cardiotoxicity research. In order to improve the 
assembly of functional tissue models, anchoring 
pillars, posts, and wires were utilized to stretch 
cardiac tissues [108]. A platform that used a ‘Biowire’ 
model showed it enabled the generation of highly 
aligned heart tissues and matured these microtissues 
by electrical stimulation to achieve functional 
characteristics resembling those of native human 
cardiac muscle [109]. In addition, a novel based on 3D 
bioprinting was used to construct endothelialized 
human myocardium for cardiovascular toxicity 
evaluation, reproducing the cancer drug 
doxorubicin-related myocardial toxicity that has been 
clinically observed [28]. However, a challenge is the 
limited ability of mature cardiomyocytes to self-renew 
[110]. In this framework, induced pluripotent stem 
cells-derived cardiomyocytes (iPSC-CMs) hold great 
promise; yet, the limitation of its immaturity still 
remains, which ultimately affects the pharmacological 
response [28, 107]. To obtain a cardiac model with 
adult-like features, methods such as mechanical, 
electrical, and hydrodynamic stimulation were used 
to improve tissue maturation [108]. Despite this, it still 
further expands the potential application of heart 
OoCs in the field of cardiotoxicity. Heart OoCs are 
also used to evaluate potential treatments for 
COVID-19. A study found that azithromycin and 
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hydroxychloroquine, two drugs considered to have 
therapeutic promise for SARS-CoV-2, when used 
separately or together as a therapy both have a 

proarrhythmic potential, which is in accordance with 
clinical literature [29]. Another comparable study 
came to a similar conclusion [111].  

 
 

Table 1. Representative examples of drug evaluation in single-organ-on-a-chip. 

Single-organ Materials Channel Cell sources Applications Ref. 
Brain/BBB PDMS Two Human brain microvascular endothelial cells (HBMVECs) 

(iPSCs), pericytes, astrocytes 
Drug and antibody transport [23] 

PDMS Three Microglia cells (HMC3), HBMVECs, astrocytes, pericytes Stem cell therapy efficacy [24] 
PDMS Two HBMVECs (iPSCs), brain pericytes, astrocytes Drug transport [25] 

Lung PDMS Two Human pulmonary microvascular endothelial cells 
(HPMECs), alveolar epithelial cells, neutrophils 

Nanoparticulate toxicity [22] 

PDMS Two HPMECs, alveolar epithelial cells Drug toxicity [26] 
PDMS Two Human lung bronchial-airway epithelial basal stem cells, 

HPMECs, neutrophils 
Drug efficacy [27] 

Heart PDMS and PMMA - Human umbilical vein endothelial cells (HUVECs) (3D 
printed), cardiomyocytes (iPSCs) 

Drug toxicity [28] 

PDMS Two Cardiomyocytes (iPSCs) Drug toxicity [29] 
Gelatin Two Cardiomyocytes (iPSCs) Drug toxicity [30] 

Liver Glass and plastic Two Hepatocytes (iPSCs), HMEC-1 endothelial cells, THP-1 Drug toxicity [31] 
PDMS Three Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells 

(HLSECs), hepatic stellate cells 
Drug efficacy [32] 

PDMS Two HLSECs, hepatocytes, stellate cells, Kupffer cells Human and cross-species 
(rat, dog) drug toxicities 

[33] 

Kidney PDMS Two Human proximal tubular epithelial cells Drug transport and toxicity [34] 
 Plastic Three Podocytes, glomerular endothelial cells Drug efficacy and toxicity [35] 
 PDMS Two Podocytes, vascular endothelial cells Drug toxicity [36] 
Gut PDMS Two Caco2 Drug permeability [37] 
 PDMS Two HUVECs, intestinal epithelial cells, Caco2 Drug efficacy [38] 
 PDMS Two Human intestinal microvascular endothelial cells, Caco2 Microbiome-host interactions [39] 
Vasculature PDMS Four HUVECs, lung fibroblasts Nanomedicine efficacy [40] 
 PDMS Two HUVECs mAb therapy toxicity [41] 
 PDMS Three HUVECs Drug efficacy [42] 
Skin PDMS One Fibroblasts, keratinocytes Drug efficacy [43] 

PMMA Two Keratinocytes Drug toxicity [44] 
Bone/Bone barrow PDMS Two Bone marrow stromal cells, HUVECs, CD34+ cells Drug toxicity [45] 
 PDMS Five Bone marrow mesenchymal stem cells, HUVECs, CD34+ 

cells 
Radiation toxicity [46] 

Retina PDMS Two Retinal pigmented epithelial cells, 
seven essential retinal cells (iPSCs) 

Drug toxicity [47] 

 PDMS Four Retinal pigment epithelium cells (ARPE-19), 
HUVECs, 
lung fibroblasts 

mAb therapy efficacy [48] 

Muscle PDMS Three Human aortic smooth muscle cells (HAoSMCs) Drug efficacy [49] 
 PDMS - HAoSMCs Drug efficacy [50] 
Fat PDMS - Adipocytes, peripheral blood mononuclear cells (PBMCs) Drug efficacy, cell-cell 

interaction 
[51] 

 PDMS Two Adipocytes Drug efficacy [52] 
Tumor/Cancer PDMS Two Human lung microvascular endothelial cells, 

lung alveolar epithelial cells, 
non-small-cell lung cancer cell line (H1975) 

Drug efficacy [53] 

 PDMS Three HBMVECs, microglia cells (HMC3 or patients), PBMCs, 
macrophages 

Immunotherapy efficacy [54] 

 PDMS Two Human colonic microvascular endothelial cells 
(HCoMECs), colorectal cancer cell line (HCT-116) 

Nanomedicine delivery [55] 

 PDMS Two Human gastric epithelial cells (NCI-N87) Drug efficacy [56] 
Spinal Plastic - Human embryonic stem cells (WA09) Drug efficacy [275] 
Cartilage PDMS Two HUVECs, synovial fibroblasts, articular chondrocytes, 

monocytes, synovial fluid 
Drug efficacy [276] 

Placenta PDMS Two Human placental villous endothelial cells (HPVECs), 
trophoblast cells (BeWo b30) 

Drug transport [277] 

Pancreas PDMS and glass Two Pancreatic ductal epithelial cells (PDECs), 
pancreatic islets (all patient) 

Disease modeling [278] 

Teeth PDMS Three Stem cells from the apical papilla (SCAPs), 
dentinal tubules 

Biomaterials toxicity [279] 

Uterus PDMS Five HUVECs, endometrial epithelial cells, endometrial stromal 
fibroblasts 

Drug efficacy [280] 

Vagina PDMS Two Human vaginal epithelial cells, uterine fibroblasts Microbiome-host interactions [82] 
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Figure 3. Representative examples of single OoCs. (A) An OoC platform simulates physiological breathing movements by applying a vacuum to the lateral chambers to 
produce mechanical stretching of the PDMS membrane that forms the alveolar-capillary barrier. Adapted with permission from [22], copyright 2010 American Association for the 
Advancement of Science. (B) Reconstitution of BBB in a microfluidic device showed that hypoxia-enhanced BBB OoC platform reproduces the barrier function and outlines the 
shuttling of drugs and antibodies. Adapted with permission from [23], copyright 2019 Nature Publishing Group. (C) A bone marrow (BM) OoC platform could summarize both 
the central perivascular BM niche (without OBs) and the vascularized endosteal BM niche (with OBs) that is discovered in the cavities of long bones. Adapted with permission 
from [46], copyright 2021 Elsevier.  (D) A retina microfluidic platform including an RPE monolayer and adjacent perfusable blood vessel network with barrier function of oBRB 
successfully mimics the pathogenesis of CNV, especially in terms of morphogenesis. Adapted with permission from [48], copyright 2018 Wiley. (E) A patient-specific glioblastoma 
OoC platform with immunosuppressive tumor microenvironments was used to dissect the heterogeneity of immunosuppressive tumor microenvironments to optimize PD-1 
immunotherapy. Adapted with permission from [54], copyright 2020 eLife Sciences Publications. (F) A gut OoC device contains a complex human microbiome, which makes the 
study of host-microbiome interactions possible. Adapted with permission from [39], copyright 2019 Springer Nature. (G) A vascularized dual-channel microphysiological system 
provides a platform to evaluate the renal secretion of novel drug candidates. Adapted with permission from [128], copyright 2020 American Chemical Society. (H) A fat OoC 
platform combines adipocyte and immune cells to model the inflamed adipose tissue for the analysis of immune-metabolic in type II diabetes. Adapted with permission from [51], 
copyright 2019 Nature Publishing Group. 
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Liver-on-a-chip 
The liver has a complex microarchitecture with 

various functions and displays a central role in the 
synthesis and metabolism of various substances [112]. 
Drug-induced liver injury (DILI) is the most frequent 
reason for drug candidate failure in preclinical and 
clinical trials, as well as a common reason for 
withdrawal from the market after drug approval 
[113]. Thus, during the drug discovery process, 
accurate prediction of its metabolic capacity and 
toxicity is extremely important [99]. Today, a variety 
of in vitro models have already been developed to 
accurately mimic the complex liver architecture and 
physiology, and to generalize the human liver’s 
response to drugs [114]. Notably, these liver 
organoids successfully reproduce express cytochrome 
P450 and secrete serum albumin of hepatocytes, 
recapitulating the function of the native liver [115]. 
The liver is constituted of approximately 1 million 
lobules which are its constitutional unit, and contain 
the hepatocytes responsible for drug metabolism 
[116]. However, liver OoC systems usually use 
primary human hepatocytes or cell lines that decline 
in function with increasing culture time, which 
challenge could be overcome by co-cultures with like 
Kupffer cells, fibroblasts, stellate cells, and endothelial 
cells, as well as perfusion [88]. Recently, a 
high-throughput hepatotoxicity screening OoC 
device, OrganoPlate LiverTox™, which contains 
iPSC-derived hepatocytes, endothelial cells, and 
Kupffer cells, was used to evaluate 159 compounds 
known to cause hepatotoxicity, and the toxicological 
prioritization scores were computed (Figure 5A) [31]. 
Another collagen-based liver OoC platform showed 
better predictive sensitivity than all previously 
reported in vitro models after screening 122 clinical 
drugs for liver toxicity [117]. Furthermore, a study 
that investigated the impacts of human population 
variability on liver drug metabolism with the use of 
hepatocytes from different donors, and an analysis of 
six drugs confirmed significant inter-donor variability 
in hepatocyte function. The predicted clearance 
values and those observed in vivo had excellent 
correlations [118]. Of note, one of the beneficial 
applications of liver OoCs is to mimic human-specific 
hepatotoxicities, which is frequently overlooked in 
preclinical animal models [73]. A study comparing 
human, dog, and rat liver OoC platform highlighting 
demonstrated species-specific differences in drug 
metabolism and toxicity (including hepatocellular 
injury, steatosis, cholestasis, and fibrosis) [33], 
showing the significance of employing 
human-specific cells in some experiments, while 
confirming the relevance of using non-human models. 

Meanwhile, the largest OoCs study to date, in which 
780 liver OoC devices were used to evaluate the 
toxicity risk of a blinded group of 27 known 
hepatotoxic and nontoxic drugs, showed a sensitivity 
and specificity of 87% and 100% for liver OoCs, 
respectively [119]. These results are superior to animal 
and microsphere models, and support the application 
of OoCs in preclinical toxicology evaluation. With 
further development, liver OoCs will contribute to 
predicting drug toxicity early and reduce the 
occurrence of adverse drug events. 

Kidney-on-a-chip 
The kidney is a significant organ responsible for 

metabolism, excretion, and reabsorption, which is a 
frequent site of toxicity during drug discovery [120]. 
Drug-induced kidney injury (DIKI) is frequently 
observed in drug therapy and may as a dose-limiting 
factor [121]. Accurately identifying nephrotoxic 
compounds during the preclinical testing stage would 
enable effectively avoiding nephrotoxic drugs during 
development. The minimal functional unit of the 
kidney is the nephron, which contains the 
glomerulus, proximal convoluted tubule, loop of 
Henle, distal convoluted tubule, and collecting duct 
[122, 123]. In 2008, a nephron-on-a-chip containing the 
glomerulus, the proximal tubule, and the loop of 
Henle was designed to replicate the function of a 
single nephron [124]. Because of their physiological 
functions and high energy requirements, proximal 
tubule cells are particularly susceptible to drug 
toxicity [125]. The first nephrotoxicity study was 
performed using proximal tubule OoC device 
consisting of Human Renal Proximal Tubular 
Epithelial Cells (HRPTEpiC), exposed to fluid flow 
[34, 126]. After that, the proximal tubular model is the 
main type of OoCs to predict drug-induced 
nephrotoxicity. Recently, a study showed that 
proximal tubular OoC platform successfully predicted 
the nephrotoxicity of a drug (SPC5001). Of note, the 
drug exhibited nephrotoxicity in phase I clinical trials 
but not in preclinical animal testing on mice and 
non-human primates [127]. A vascularized human 
proximal tubule model was developed in a 
dual-channel OoC system, which is an advancement 
of previous studies (Figure 3G) [128]. In addition, 
glomerulus OoCs have been developed in the OoCs 
field in recent years. In a model, human glomerular 
endothelial cells and podocytes were seeded to 
reproduce the glomerular filtration barrier [35]. 
However, other kidney structures, including the distal 
tubules and collecting duct, have not yet been 
replicated by human cells and used for toxicological 
applications [129]. 
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Gut-on-a-chip 
For drug administration, the oral route is the 

most common. As the first step of ADME (absorption, 
distribution, metabolism, and excretion), absorption is 
the vital precondition to play the therapeutic effects of 
oral drugs [130]. The gut is the main digestive organ, 
responsible for the digestion and absorption of drugs. 
Thus, understanding the absorption and metabolism 
of drugs in the gut is critical to drug discovery and 
development [68]. The development of gut OoCs has 
made it feasible to study the absorption, metabolism, 
and transport of oral drugs. Early gut OoCs consisted 
of two overlapping cell culture chambers divided by a 
membrane lined with Caco-2 cells. To reproduce the 
dynamic mechanical microenvironment of the gut, 
this system included symbiotic microbial flora and 
utilized negative pressure-driven membrane 
stretching to simulate peristaltic movements. Under 
these physiological conditions, the cultured cells were 
reprogrammed to undergo spontaneous 3D villus 
morphogenesis and small intestinal cell differen-
tiation [131, 132]. Importantly, except for the barrier 
function of the human intestine, the model also has 
absorption properties that can be used for drug 
absorption studies [87], for example, to analyze the 
intestinal permeability of the model drug curcumin in 
real-time and generate data that are consistent with 
prior research on the function of the human intestinal 
barrier [37]. Furthermore, exposure to associated 
biomechanical forces, like flow and peristalsis, can 
mimic some aspects of the drug’s bioavailability and 
activity [79]. What’s more, gut OoCs are stable to 
create the physiologically relevant oxygen gradient 
support co-culture of epithelium cells with stable 
communities of aerobic and anaerobic gut microbiota 
(Figure 3F) [39, 80], which is critical for true human 
relevance. 

Tumor/Cancer-on-a-chip 
It is still a challenge to predict clinical responses 

to anticancer drugs in cancer treatment [133]. Tumors 
possess a complicated microenvironment, which 
contains a dense extracellular matrix (ECM), various 
stromal/stem and immune cells, irregular blood 
vessels, and limited perfusion of nutrients, all of 
which have a significant effect on the efficacy of 
administered therapies [134, 135]. The advancement 
of cancer OoCs has significantly contributed to the 
capacity of in vitro models to reproduce the tumor 
microenvironment in vivo, as multiple factors in the 
tumor microenvironment (TME) can be controlled 
separately and precisely in microfluidic platforms, 
which is essential to improve anti-cancer drug 
selection strategies [65]. A breast OoC platform 
mimicking cancer mammary ducts showed that 

tumor cells grown in channels have distinct 
morphologies and exhibit various sensitivities to two 
anticancer drugs (bleomycin and doxorubicin) 
compared to traditional flat surface culture [136], 
which provides novel insight into the development 
and testing of cancer therapies. Human orthotopic 
models of non-small-cell lung cancer OoCs can be 
able to simulate growth patterns observed in patients, 
and is consistent with the published results of human 
clinical trials, indicating that under physiological 
breathing motions, the growth and invasion of cancer 
cell were suppressed, and almost completely resistant 
to the inhibitory effects of the rociletinib [53]. In 
addition, a pancreatic ductal adenocarcinoma OoC 
platform was developed to further comprehend 
pancreatic ductal adenocarcinoma-vascular interact-
ions. The authors identified the activin-ALK7 
pathway as a mediator of endothelial ablation by 
pancreatic ductal adenocarcinoma, which results in 
the limitation of the delivery of chemotherapeutic 
drugs to the tumors at later stages, and they replicated 
their findings in mice [137]. Researchers utilized 
patient-specific glioblastoma OoCs to anatomize the 
heterogeneity of immunosuppressive tumor microen-
vironments and personalize anti-PD-1 immunothe-
rapy for various glioblastoma subtypes (Figure 3E) 
[54]. Hypoxia (Oxygen content below 3%) is a key 
feature of tumors, which can influence the cancer 
response to therapies and facilitate immune escape 
[138]. Another bioprinted patient-specific glioblas-
toma OoC device reproduces clinically reported 
patient-specific resistances to concurrent chemoradi-
ation and temozolomide treatment by selectively 
using materials with different gas-permeable 
properties to generate an oxygen gradient, and 
exhibits patient-specific sensitivity to possible drug 
combinations [139]. 

At present, tumor OoCs also include colorectal 
[55, 140], ovarian [141, 142], prostate [143, 144], 
bladder [145, 146], cervical [147, 148], gastric [56, 149], 
and skin [150, 151] cancer. As described, tumor OoCs 
have the capacity to reconstruct major tumor 
microenvironment characteristics and have great 
potential to study the mechanisms of tumor 
development, screen anticancer drugs, and evaluate 
cancer therapeutics, as well as toward precision 
medicine. 

Other single-organ-on-a-chip  
The vasculature is important for providing 

adequate gas, transporting nutrients, removing waste, 
and offering a selective barrier for drugs introduced 
through the circulatory system [78, 152]. As a 3D 
metabolically active matrix in vitro, which contains a 
capillary network for the first time that allows 
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operating within physiological pressure gradients and 
interstitial flow ranges, showed an application in drug 
discovery [153]. Meanwhile, perfusable 3D 
microvascular networks were successfully designed, 
promoting the development of vasculature OoCs 
[154]. At present, vasculature OoCs are formed by 
providing endothelial cells with various chemical, 
cellular, or biophysical substances to induce 
self-assembly of the microvascular network; seeding 
endothelial cells onto preformed support structures 
(e.g., by injection molding, 3D printing, and the use of 
sacrificial network) or embedding cells into 
hydrogels, and then inducing germination by flow 
and chemical factors (e.g., hypoxia, VEGF, and 
nutrient deprivation). Recently, a vasculature OoC 
platform with innate immunity identified 
angiopoietin-1 derived peptide that can be used to 
therapeutic SARS-CoV-2 induced inflammation [155]. 

The skin acts as the largest organ in the human 
body and severs as the main barrier to the 
environment, which is critical for evaluating the 
cutaneous effects of drugs and modeling transdermal 
drug absorption [78]. In recent years, drug delivery 
through the skin has also been a hot topic of research 
[112]. Thus, when designing skin OoCs, the 
reproduction of multiple layers of skin is crucial (i.e., 
epidermis, dermis, and hypodermis). However, 
because of its complexity, it is challenging to develop 
a suitable substitute that can simulate all the skin’s 
properties [156]. In this context, the most common 
skin OoCs has been those generated by introducing 
directly the tissue inside the model, which continues 
to be regarded as the gold standard method for 
simulating physiological situations in a realistic 
setting [157, 158]. Nonetheless, the variability of 
donor skin could affect the analysis and present 
challenges in evaluating compounds over time, as is 
typical in the drug development process. In addition, 
the availability is another limitation [159]. Given this, 
both reconstructed human epidermis (including 
EpiDermTM, EpiSkinTM, and SkinEthicTM) and 
full-thickness skin models have been used for many 
applications, such as pharmacological [160]. Despite 
this, challenges still remain in these models to 
evaluate the absorption or permeability of drugs and 
systemic exposure with the use of topically applied 
drugs. 

The bone is one of the active organs which is 
undergoing a carefully choreographed remodeling 
process throughout the life course [161]. In recent, a 
microfluidic device fabricated from hydroxyapatite 
and PDMS provided a highly bionic bone 
environment. This model successfully produced a 
concentration gradient of the model drug, 
demonstrating the tremendous potential for 

bone-related drug screening in high-throughput [162]. 
In addition, a vascularized human bone marrow OoC 
platform containing bone marrow-derived stromal 
cells and CD34+ cells, which can generalize 
myeloerythroid toxicity following exposure to 
chemotherapeutic agents [45]. Another bone marrow 
OoC device consists of the human endosteal, central 
marrow, and perivascular niches, which can be 
utilized to obtain a better understanding of normal 
and impaired hematopoiesis, and a variety of bone 
marrow pathologies (Figure 3C) [46]. 

Human donor retinal explants offer a fully 
functional model, but due to inter-donor variability, 
limited availability, and poor cultivability, it is not 
suitable for drug development and testing [47]. 
Recently, a study demonstrated that the interaction of 
mature photoreceptor segments with the retinal 
pigment epithelium (RPE) can be reproduced in vitro 
by a retina OoC platform, which was integrated with 
over seven different hiPSC-derived essential retinal 
cell types. Importantly, the model recapitulated the 
retinopathic side effects of the antibiotic gentamicin 
and the anti-malaria drug chloroquine, exhibiting the 
potential of facilitating drug development [47]. As 
another example, a model supporting the outer 
blood-retinal barrier (oBRB) barrier function 
successfully mimicked the pathogenesis of choroidal 
neovascularization (CNV, a key pathological step in a 
variety of ophthalmic diseases), and proved that 
bevacizumab alleviated pathological angiogenesis 
(Figure 3D) [48]. 

Nowadays, muscle OoCs have been employed in 
mechanistic research to better comprehend the human 
skeletal muscles and assess the effects and toxicity of 
drugs [163]. The development of safer and more 
effective drugs could be helped with the obtained 
accurate contractility data. Given this, a muscle 
thin-film technology-based muscle OoC platform 
demonstrated its ability to simultaneously analyze the 
contractility of both striated and smooth muscle on 
the same chip [164]. Recently, a high-throughput aorta 
smooth muscle OoC device replicated the abnormal 
activation of HIF-1α observed in aortas from thoracic 
aortic aneurysm patients, and finally identified the 
two most effective drugs (2-methoxyestradiol and 
digoxin) from the seven specific HIF-1α inhibitors 
[49]. 

Fat tissue, as a major energy reserve, will 
contribute to obesity due to the imbalance between 
energy intake and expenditure, and its associated 
comorbidities present a looming challenge to 
healthcare delivery throughout the world [165, 166]. 
The interaction of immune cells and adipocytes may 
lead to chronic low-grade inflammation, which will 
then result in insulin resistance. An OoC system for 
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characterizing the interaction of adipocytes with 
immune cells displayed increased pro-inflammatory 
cytokine secretion and insulin resistance, relative to 
adipocytes alone. Compared to the previously 
reported data, the known diabetic drug metformin 
and the nutraceutical compound omega-3 showed 

satisfactory results (Figure 3H) [51]. Another OoC 
platform allows monitoring of the intake of fatty acids 
and quantification of metabolite released into the 
effluent media in real-time, and its applicability for 
pharmaceutical research has been assessed by using 
isoproterenol, which is known to induce lipolysis [52]. 

 
 

Table 2. Representative examples of multi-organ-on-a-chip for applications in drug evaluation. 

Number Multi-organ Cell types Medium Duration Applications Ref. 
Two Liver-lung Primary cell, cell line PneumaCult™-ALI 28d Drug toxicity [169] 

Liver-heart Primary cell, iPSCs Serum-free medium (HSL2 and HLS3) 28d Drug toxicity [170] 
Liver-skin EpiDermTM, primary 

cell, cell line 
“Co-culture Medium”: 
EPI-100-NMM-WE 

6d Drug PK/PD analysis [179] 

Live-heart Primary cell, iPSCs RPMI 1640 and  
DMEM (1:1 ratio) 

5d Drug toxicity [197] 

Lung-skin Primary cell, 
cell line 

E3 medium supplemented with 
glucose 

5d mAb therapy efficacy and 
toxicity 

[198] 

Liver-gut Primary cell, cell line Serum-free common medium 
contained Williams E medium, Gibco 
Cocktail B, and hydrocortisone 

3d Drug PK modeling [281] 

Liver-testis Primary cell, cell line William’s medium E supplemented 
with CTSTM KnockOutTM SR XenoFree 
medium 

7d Drug toxicity [282] 

Liver-gut/skin Primary cell, cell 
line, tissue 

N.A 14d Oral or transdermal drug 
absorption 

[283] 

Liver-pancreas iPSCs Co‐culture medium: RPMI 1640 with 
glucose, N-acetylcysteine, B27 supple-
ment, N2 supplement, GlutaMAX, 
and non‐essential amino acids 

30d Glucose‐stimulated 
insulin secretion, drug 
efficacy 

[183] 

Liver-kidney Cell line DMEM (high glucose) 1d Drug metabolism [284] 
Three Liver-kidney-gut/bone marrow Primary cell, cell line “Blood substitute”: DMEM/F12 with 

EGM-2 supplements, growth factors, 
and FBS 

10d Drug PK/PD analysis 
and toxicity 

[177] 

Liver-kidney-gut Cell line DMEM (high glucose) 3d Drug PK analysis, and 
metabolism 

[178] 

Liver-lung-heart Primary cell, iPSCs α-MEM with FBS and L-glutamine 9d Drug efficacy, toxicity, 
and metabolism 

[285] 

Liver-heart-skeletal muscle Primary cell, iPSCs Serum-free medium (blood surrogate) 7d Drug PK/PD analysis, 
immune response 

[286] 

Liver-lung-colon cancer Cell line DMEM-10 and EGM-2 with FBS (3:1 
ratio) 

15d Cancer metastasis [287] 

Liver-lung-breast cancer Cell line “Device medium”: EMEM supple-
ment with FBS 

2d Inhalation and intra-
venous therapy, drug 
efficacy and toxicity 

[288] 

Liver-lung-gut Cell line DMEM supplement with FBS and 
MEM non-essential amino acids 

3d Oral administration, drug 
efficacy 

[289] 

Four Liver-heart-neuronal-muscle Primary cell, iPSCs, 
stem cell, cell line 

Serum-free medium supplemented 
with growth factors 

14d Drug toxicity [172] 

Liver-gut-colon cancer-connective 
tissue 

Cell line Medium 670 3d Drug metabolism and 
efficacy 

[290] 

Liver-kidney-gut-brain iPSCs HepaRG medium 14d Personalized medicine [199] 
Liver-kidney-BBB-gut Primary cell, cell 

line, iPSCs 
Functional coupling medium N.A Drug metabolism and PK 

analysis 
[291] 

Liver-heart-breast-vulva cancer Primary cell, cell 
line, iPSCs 

Custom serum-free medium formu-
lation 

14d Drug metabolism, effi-
cacy, and toxicity 

[292] 

Five Liver-fallopian 
tube-uterine-cervix-ovary (mouse) 

Primary cell Maturation medium (with prolactin, 
day 0 to day 14) 

28d Human menstrual cycle [173] 

Six Liver-heart-lung- 
vasculature-testis-brain/colon 
(rabbit) 

Primary cell, iPSCs, 
cell line, stromal 
mesenchymal cell, 
stem cell 

Testis organoid media and EGM 
media (with supplements, without 
FBS) (1:1 ratio) 

28d Drug toxicity [293] 

Liver-heart-lung- 
vasculature-brain-testis 

Primary cell, iPSCs, 
stem cell 

Testis organoid media and EGM 
media (with supplements, without 
FBS) (1:1 ratio) 

21d Drug metabolism and 
toxicity 

[294] 

Seven Liver-brain-pancreas-lung-heart- 
gut-endometrium 

Primary cell, cell line N.A 14d Drug toxicity [295] 

Eight Liver-intestine-lung-brain-heart- 
skin-kidney-BBB 

Primary cell, iPSCs, 
cell line 

DMEM/F12 with EGM-2 
supplements, FBS, and growth factors 

21d Drug PK analysis [181] 

Ten Liver-intestine-lung-endometrium-
brain-heart-pancreas 
(rat)-skin-kidney-muscle 

Primary cell, iPSCs, 
cell line, tissue 
construct 

Mixed medium 28d Drug PK analysis [182] 
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Figure 4. Representative examples of multi-OoCs. (A) A Liver-heart platform for studying the effect of liver metabolism on off-target cardiotoxicity. Adapted with 
permission from [170], copyright 2018 Elsevier. (B) PhysioMimix gut-liver MPS consists of a controller machine with a pump system and a touchscreen that interacts with the 
user. The system was used for the quantitative pharmacokinetic study of mycophenolate mofetil. Adapted with permission from [180], copyright 2022 Royal Society of 
Chemistry. (C) A multi-OoC platform consisted of two bionic organ modules, an upstream ‘lung’ and a downstream ‘brain’, allowing to study of lung cancer brain metastasis. 
Adapted with permission from [187], copyright 2019 Elsevier. (D) A four-organ system for mimicking lung cancer cell metastasis to the liver, bone, and brain. Adapted with 
permission from [188], copyright 2016 American Chemical Society. (E) A multiple vascularized OoC platform utilizing fluid transfer coupling enables quantitative prediction of 
human PK responses. Adapted with permission from [177], copyright 2020 Springer Nature. (F) The differentiation and generation of hiPSCs-derived liver and islet organoids in 
a microfluidic device to simulate human-relevant liver-islet axis under both physiological and pathological conditions for future T2DM study and drug development. Adapted with 
permission from [183], copyright 2022 Wiley. (G) A 3D co-culture microfluidic model for simultaneous assessment of anti-EGFR-induced tumor and adverse skin impacts. 
Adapted with permission from [198], copyright 2018 Nature Publishing Group. (H) A multi-OoC system containing up to 10 different organs with different flow configurations, 
which include epithelial barrier tissues and non-barrier organs, for PK analysis of diclofenac metabolism. Adapted with permission from [182], copyright 2018 Nature Publishing 
Group. 
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The application of multi-organ-on-a-chip 
in drug evaluation 

As the development of single OoCs matures, 
when these single organs are fully functionally 
characterized (i.e., when they show the key 
characteristics of the desired simulated organ), they 
can be combined to create the proposed multi-organ- 
on-a-chip (often referred to as body-on-a-chip or 
human-on-a-chip). Connecting a single OoCs to 
another by microfluidics simulates the in vivo role of 
vascular perfusion and allows control of the culture 
environment to reproduce some aspects of 
homeostasis [78]. The main advantage of multi-OoCs 
is obvious, that is, these connections enable the 
complex and dynamic crosstalk between interested 
organs and promote a more physiological method for 
drug delivery, distribution, and absorption [167]. As 
reported, there are three main strategies for 
connecting single OoCs: 1) connecting the single 
organ modules with the use of capillary tubing; 2) 
attaching single organ modules to a microfluidic 
motherboard that contains all fluidic connections; 3) 
employing a user-friendly plate with all organ models 
connected to a channel that controls fluid flow in a 
manner similar to the vasculature [89]. So far, 
multi-OoCs may have from 2 to 10 different organs, 
generally between 2 to 4 organs, which have been 
capable of simulating complex physiological and 
pathophysiological responses in an impressive 
manner, and also offer new in vitro tools for assessing 
drug toxicity and PK/PD [73], finally towards 
personalized medicine. In this section, we focus on 
reviewing the main application scenarios of 
multi-OoCs (Figure 4 and Table 2). 

Drug safety evaluation  
In most cases, many drugs fail in phase III 

clinical trials or have serious side effects after 
marketing [78], leading to failure in the development 
of new medicine. Thus, the evaluation of toxicity is 
critical in late-stage preclinical and clinical research. 
Toxicity is closely related to liver metabolism, so 
multi-OoCs designed for toxicity purposes typically 
include a liver (as the primary site of drug 
metabolism) and at least one other (target) organ. For 
example, a biomimetic human liver OoC platform 
with lobule-like microarchitectures successfully 
analyzed unfavorable reactions caused by drug-drug 
interactions of clinical pharmaceuticals during hepatic 
metabolism, providing an evaluation device to assess 
drug-induced hepatotoxicity in vitro, especially 
during combinational therapies [168]. In addition, the 
use of the lung-liver OoC system in acute and chronic 
toxicity studies of drugs provides new opportunities 

for demonstrating the security and effectiveness of 
new drug candidates that target the lung [169]. A 
model with primary hepatocytes and iPSC-CMs 
allows non-invasive readouts of the cardiotoxicity of 
drugs and their metabolites while also exploring the 
impact of liver metabolism on off-target 
cardiotoxicity, which demonstrates the heart-liver 
crosstalk (Figure 4A) [170]. In a subsequent study, a 
heart-liver platform containing a skin mimic showed 
the differential effects of acute and chronic drug 
exposure, which can be utilized to assess potential 
drug toxicity from dermal absorption [171]. 
Moreover, multi-organ toxicity was exhibited in a 
four-organ system made up of neuronal, muscle, 
cardiac, and liver modules, and all drug treatments 
generally agreed with published toxicity results based 
on human and animal data [172]. Additionally, a 
system that integrates liver, lung, cardiac, colon, 
testis, vascular, and brain derived from human 
primary cells and stem cells, which can stay viable for 
at least 28 days, responding appropriately to a series 
of drugs, including those because of toxicity in 
humans that the FDA has removed from the market 
[173]. The promise of OoCs to promote drug 
development lies in their ability to provide 
humanized drug toxicity information, which can be 
used as a useful tool to assess drug toxicity effectively 
and accurately prior to the drug being approved for 
use in clinical trials. 

Drug PK/PD modeling 
After identifying candidate molecules and 

targets, PK and PD studies are conducted. On the one 
hand, PK researches describe drug concentrations at 
various organ sites during metabolism, which is 
referred to as the absorption, distribution, 
metabolism, and elimination (ADME) of drug 
candidates. On the other hand, PD researches 
investigate the effects of the drug on target organs or 
tissues, such as a correlation between drug dose and 
pharmacological or toxicological response [174]. The 
combination of PK/PD parameters is critical for new 
drug development because it can predict the drug 
response that will occur, thus minimizing the 
production of toxic metabolites and the side effects of 
drugs [175, 176]. For instance, a multi-OoC platform 
allowed recapitulation of physiological PK modeling 
of drug absorption, metabolism, and excretion which 
drugs first-pass. The model was verified using orally 
administered nicotine (using gut, liver, and kidney 
chips) and intravenously injected cisplatin (using 
coupled bone marrow, liver, and kidney chips). Also, 
the cisplatin PD predictions are consistent with 
previously published patient data [177]. Determi-
nation of drug-administration schemes for phase I 
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clinical trials may be improved by the quantitative 
in-vitro-to-in-vivo translation of PK and PD 
parameters via fluidically coupled OoCs (Figure 4E) 
[177]. In a recent study, a platform that adopted a 
multi-layer structure was used to systematic analysis 
the absorption, metabolism, and toxicity of 
ginsenoside compound K, and the PK results were 
consistent with previous reports [178]. Another 
multi-OoC platform called ‘HUMIMIC Chip2’ was 
used to integrate liver spheroids and a skin model for 
PK-PD studies with local exposure to chemicals of 
hyperforin and permethrin [179]. Moreover, 
integrating gut-liver OoC platform data with in silico 
modeling allows to investigate complex combinations 
of intestinal and hepatic processes for quantitative in 
vitro PK studies (Figure 4B) [180]. Recently, OoCs that 
combine more organs are designed to study PK/PD. 
A robotic interrogator maintained the viability and 
organ-specific functions of eight vascularized, 
two-channel OoC devices (liver, heart, kidney, 
intestine, skin, lung, brain, and BBB) for 3 weeks in 
culture, and predicted the distribution of an inulin 
tracer throughout the entire system [181]. Further-
more, a three-layer microbioreactor-based platform 
containing up to ten different organs, including 
epithelial barrier tissues and non-barrier organs, 
which can sustain cell cultures for more than four 
weeks. The functionality of the platform has been 
verified by modeling the PK of a nonsteroidal 
anti-inflammatory drug diclofenac, which revealed 
that both diclofenac and 4-OH-diclofenac were 
distributed throughout all the representative organs 
(Figure 4H) [182]. In summary, the outcomes from 
multi-OoCs provided insightful data that eventually 
be applied to evaluate the PK/PD of potential new 
drugs, leading to a more dependable preclinical stage 
in drug development. 

Disease modeling 
The dearth of clinically applicable models is a 

challenge for many human diseases, especially those 
complex diseases that involve multiorgan 
interactions. As a systematic multi-organ metabolic 
disease, Type 2 diabetes mellitus (T2DM) is 
characterized by the dynamic interplay of various 
organs [183], and a clinical cure is not yet available. 
Recently, a multi-OoC platform was used to model 
the liver-pancreatic islet axis under both normal and 
type 2 diabetes conditions, which successfully 
mimicked the functional coupling of the liver and islet 
organs’ response to external hyperglycemic stimulus 
and drugs is relevant to humans (Figure 4F) [183]. An 
ulcerative colitis multi-organ system was created by 
connecting the liver, gut, and circulating immune 
cells, showing that short-chain fatty acids (SCFAs) 

derived from the microbiome could either improve or 
worsen the severity of ulcerative colitis, and these 
converse results resting with the participation of 
effector CD4+ T cells [184]. This study brought new 
insights into the immune and metabolic regulation of 
pathophysiology. Moreover, multi-OoCs connected to 
the vasculature and circulatory system are critical for 
understanding local and distant disease development, 
like cancer initiation and metastasis [185], the latter 
contributes to up to 90% of cancer-related mortality 
[186]. For instance, a methodological platform that 
was used to study brain metastasis demonstrated that 
the protein Aldo-keto reductase family 1 B10 
(AKR1B10) contributes to brain metastasis of lung 
cancer cells (Figure 4C) [187]. Furthermore, a 
four-organ platform that reproduced lung cancer 
metastasis to the liver, bone, and brain, revealed 
tumor-induced tissue damage in the targeted bone 
and liver compartments (Figure 4D) [188]. These 
suggest that multi-OoCs are a practical alternative for 
predicting cancer metastasis and evaluating antimeat-
static therapies. In addition, the advancement of 
degenerative brain diseases including Parkinson’s or 
Alzheimer’s disease has been linked with gut 
microbiota, this functional relation is often referred to 
as the microbiota-gut-brain axis (MGBA) [189]. 
However, a comprehensive in vitro model was lacking 
for researchers to elucidate potential microbiota- 
neurodegeneration mechanisms. The European 
Research Council has funded a project called 
‘MINERVA’ (ID 724734), which seeks to build the first 
multi-OoC device for microbiome-gut-brain 
engineering to assess the effect of intestinal microflora 
on neurodegeneration [190]. More importantly, 
multi-OoCs are particularly valuable for clarifying 
mechanisms and developing treatments for rare 
diseases affecting multiple organ systems, where drug 
development is incredibly difficult because of the 
available human subjects being scarce, like 
Churg-Strauss syndrome and POEMS syndrome 
[191]. Thus, the application of multi-OoCs to model 
diseases improves disease comprehension, diagnosis, 
prevention, and treatment. 

Personalized medicine 
Although various in vitro platforms have been 

developed for drug development screening, there are 
few that exist for clinical deployment to benefit 
unique patients. This is an unmet clinical need 
because patient responses to drugs are frequently 
unpredictable due to genetic and microenvironmental 
heterogeneities [192]. Remarkable strides in the 
hiPSCs field allow for the development of 
patient-specific personalized therapies, making it 
possible to identify more efficient drugs for a 
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particular individual or patient group [175]. Recently, 
the integration of a heart chip and a liver chip, both 
created with the same hiPSC line, was reported to 
investigate the drug-drug interaction (DDI) of the 
fungicide ketoconazole and the arrhythmogenic 
gastroprokinetic cisapride, which facilitates the 
screening of DDI [193]. In the treatment of COVID-19, 
more attention should be paid to comorbidities. A 
lung OoC platform comprising infected cells from 
COVID-19 patients has the promise to overcome the 
potential effects, such as liver, cardiovascular, and 
kidney disease, or malignant tumors, as which have 
occurred in patients reported previously, and may 
assist in providing effective treatment for individual 
patients [175, 194]. Oncology diseases, which are 
characterized by rapid mutations that lead to 
morphological changes and various phenotypes of 
multidrug-resistant that affect the patient’s response 
to treatment, are another area where multi-OoCs have 
gained great attention in personalized treatment [195, 
196]. A multisensor-integrated multi-OoC system was 
developed, and by linking iPSC-CMs and primary 
hepatocytes together to achieve automated sensing of 
APAP-induced organoid toxicity. Using this model, 
hepatocytes were replaced by hepatocarcinoma cells 
to assess the chemotherapeutic drug doxorubicin 
treatment-induced pronounced cardiotoxicity [197]. 
Thus, this platform can be used in predicting the 
cardiotoxicity of drugs by using patient-specific 
iPSC-CMs. Moreover, a commercially available 
multi-OoC platform coupling two organs (lung cancer 
and skin) culture compartments fluidically for 
evaluating the efficacy of therapeutic anti-EGFR 
monoclonal antibodies while analyzing a side effect of 
dermatological toxicities. The results showed that it is 
possible to detect several key side effects on the 
cetuximab-exposed skin microtissues at a very early 
stage, as well as reproduce the inhibition of 
keratinocyte growth and altered expression of CXCL8 
and CXCL10 observed in patients [198]. We believe it 
will be achievable to personalize the screening of 
drugs using patient-specific preclinical models prior 
to treatment, while monitoring the adverse effects of 
all organ systems in the platform, and improving 
treatment outcomes. Of note, a four organ model 
integrated predifferentiated organs from the same 
human iPSCs and successful coculture over 14 days 
(although the renal model did not further 
differentiate) [199], which demonstrates the promise 
of taking advantage of OoCs to optimize the selection 
of therapeutics in a personalized manner. 

Integration OoC technology with 
artificial intelligence 

OoC technology and deep learning are frontier 

fields in biomedical engineering and AI, respectively, 
and represent an ideal combination of experimental 
and analytical throughput [60]. Here, we introduce 
various applications of AI to OoCs, trying to illustrate 
the power and versatility of integrating OoCs with AI. 
Although the integration of these two disciplines has 
not been extensively explored so far, especially in the 
field of drug evaluation, we can still get a glimpse of 
the great potential of OoCs combined with AI in 
future drug evaluation from the existing research. 

The challenges faced by OoCs in 
higher-throughput 

High-throughput platforms for preclinical drug 
screening are crucial to reducing the cost of drug 
discovery [200]. Nowadays, the relatively low 
throughput of the majority of OoC platforms has 
hampered the widespread adoption of organ-on-a- 
chip for drug screening. More reliable statistical data 
requires a large number of tests and results, hence the 
need for higher-throughput studies on OoCs. 
Recently, a few studies have been proposed to 
address this need (Figure 5). For instance, a 
microfluidic device for modeling the human 
microcirculation was demonstrated, as a protocol 
extension. This device can self-organize human 
microvascular networks, and then perfuse the tumor 
to summarize discrete steps of early metastatic 
seeding. Combined with high-resolution imaging, 
reliable and quick scoring of extravascular cells can be 
easily achieved. In addition, the ability to 
manufacture and seed up to 36 devices at once while 
not affecting cell viability was reported, which further 
allows for highly parametric studies, and generating a 
significant amount of data [201]. A high-throughput 
OoC platform with 96 devices integrated program-
mable fluid flow and real-time sensing for 
physiologically relevant tissue generation and 
measurement, enabling accelerated optimization of in 
vitro models (Figure 5C) [202]. Another 96-device 
platform (PREDICT96-ALI) is compatible with 
high-resolution in situ imaging and real-time sensing 
for rapid assessment of drug efficacy against viruses 
including coronaviruses (Figure 5D) [203]. In perfused 
microfluidic devices, extracellular matrix-supported 
intestinal tubules were introduced. The OrganoPlate 
platform is a standard 384-well microtiter plate format 
with 40 microfluidic channel structures. On this 
platform, a study containing 357 gut tubes was 
conducted to test against drug compounds at various 
concentrations to evaluate the impact on epithelial 
barrier integrity. Notably, the study produced more 
than 20,000 data points, which makes it the largest 
reported OoC platform data set to date (Figure 5B) 
[204]. Another microfluidic platform named 
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IFlowPlate was also built on a 384-well plate, which 
can be used to culture up to 128 organoids, achieved 
in vitro perfusable culture and vascularization of 
patient-derived colon organoids, and successfully 
developed a colon inflammation model with an innate 
immune function [205]. Thus, the higher-throughput 
nature of these studies suggests the potential of OoCs 
as novel, effective, and dependable preclinical models 
with applications in drug evaluation. 

However, it must be recognized that growing 
throughput typically causes large data generation, 
leading to labor-intensive and time-consuming 
processes. Thus, in order to streamline the 
experimental procedures, it is crucial to develop 
protocols that facilitate efficient device operation, data 
collection, and data analysis. For instance, robotics 
can be used to automate tasks (e.g., operating chips 
and gathering data), while machine learning can be 
used to speed up data analysis [93]. 

 

 
Figure 5. Representative examples of high-throughput implemented in OoCs. (A) An OrganoPlate 2-lane has 96 chip units, with the perfusion and organ channels 
divided by a Phaseguide. Adapted with permission from [31], copyright 2021 Elsevier. (B) An OrganoPlate contains 40 microfluidic channel networks, each of which consists of 
three channels (including a tubule with flow, an extracellular matrix gel, and a flow channel) that join in the center. Adapted with permission from [204], copyright 2017 Nature 
Publishing Group. (C) A platform incorporates 96 independent microfluidics-based organ models, each with two channels separated by a permeable membrane, and the 
micropumps integrated with the trans-epithelial electrical resistance electrodes and electronics of the micro-pump sensor array. Adapted with permission from [202], copyright 
2021 Royal Society of Chemistry. (D) A PREDICT96-ALI platform is a standard 384-well plate layout, which is an individual airway model with an oval-shaped upper chamber and 
an inverse U-shaped bottom chamber with inlet and outlet ports. Adapted with permission from [203], copyright 2021 Nature Publishing Group. 
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The increasingly prominent advantages of AI 
In the past few years, AI has supplied significant 

advantages in many areas of healthcare in research 
and clinical settings, such as disease diagnosis, 
precision medicine, and drug discovery and 
development. Notably, opportunities for applying AI 
arise at all stages of drug discovery and development, 
including clinical trials [206]. Applications include 
identification and validation of drug targets, 
designing of new drugs, quantifying structure- 
activity relationship, drug repurposing, improving 
the research and development (R&D) efficiency, as 
well as evaluation of absorption, distribution, 
metabolism, excretion, and toxicity, and even 
aggregating and analyzing biomedicine information 
and refining the decision-making process to recruit 
patients for clinical trials and so on [207-210]. 
Furthermore, the identification of new disease genes, 
pathways, and targets using omics analysis with AI 
becomes possible [211, 212], thereby providing new 
mechanisms for future drug discovery and 
development, as well as precision medicine. Facing 
massive volumes of accumulated data (e.g., medical 
images and gene expression data), AI-based 
approaches can further transform these enormous 
amounts of data into usable knowledge, thus 
facilitating systematical discovery, understanding, 
and learning [213]. Importantly, the application of AI 
offers the opportunity to overcome the inefficiencies 
and uncertainties in traditional drug discovery and 
development approaches, while also reducing human 
intervention and personal bias in the process [208]. 
Today, advances in areas OoCs and AI are 
increasingly providing the basis for more efficient and 
successful drug evaluation. Notably, multi-OoCs, and 
future coupling with AI, will provide a powerful tool 
for the pharmacological research of drugs, especially 
complex chemical drugs, botanical medicines, and 
Traditional Chinese Medicines. 

ML is a common technical means to achieve AI, 
and DL is a type of ML algorithm. Of note, DL is the 
most representative research field in AI [19]. ML 
could be categorized into supervised, unsupervised, 
semi-supervised, and reinforcement learning based 
on labels [214]. ML provides automated analytical 
statistical/model-building approaches for machines 
to make decisions by extracting information from data 
or identifying patterns (i.e., learning), without explicit 
human programming [215]. ML has been growing 
utilized to analyze data (e.g., to clarify processes and 
predict outcomes), which may reduce inter-operator 
variability during data analysis. Deep learning is a 
machine learning technique encompassing a variety 
of learning models known as deep neural networks 

(DNNs), which are referred to as ‘deep’ since 
containing multiple processing layers [213, 216]. The 
blooming of algorithms, including Deep Belief 
Networks (DBNs), Autoencoder Networks (AEs), 
Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), and Generative 
Adversarial Networks (GANs) [217, 218], leading to 
various studies with the use of DL-based AI in drug 
evaluation. In comparison to traditional ML, which 
has a limited ability in processing natural data in its 
raw form, while DL directly performs the feature 
extraction of the data [216], and is easier to have high 
accuracy by minimizing errors. Moreover, DL models 
previously trained on one task commonly could be 
retrained to execute similar tasks, named transfer 
learning, which typically needs raw data and fewer 
computational resources, making DL applicable to a 
variety of tasks [219]. 

With the development of OoCs, especially 
utilizing higher-throughput, highly parallelized 
microfluidic systems, generating unprecedented 
quantities of data; however, the large amount of data 
generated has far exceeded researchers’ capacity to 
process it efficiently, creating a bottleneck in the 
analysis [60]. Typically, manually analyzing data is 
inefficient and is likely to miss trends that are 
nonobvious or of interest [220], hence the need for 
appropriate systems to manage and analyze the data. 
Thus, AI has been applied to address the challenge of 
analyzing large and multidimensional datasets, and 
assists researchers to derive meaningful insights. In 
brief, new data processing systems should contain 
four main components: 1) the suitable measuring 
hardware and microchips, with precise sensors and 
microsystems to effectively monitor the required 
parameters; 2) the provided appropriate forms of data 
collection, transmission, and storage; 3) the improved 
machine learning algorithms which enable to extract 
desired information from the obtained massive 
amounts of data sets; 4) the proper explanation of the 
collected data, and applied to the discovery of new 
results [65, 213].  

AI-based visual recognition in data analysis of 
OoCs 

To date, the most common data output structure 
for OoCs is fluorescence microscopic images [60], due 
to the PDMS’s transparency and great compatibility 
with fluorescence microscopy. This is traditionally 
handled by manual methods, which are frequently 
inefficient, time-consuming, and error-prone [221]. 
However, it is important to note that DNN has been 
trained with organ autofluorescence images to 
achieve virtual histological staining for relevant 
assays, including hematoxylin-eosin (H&E), Masson’s 
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trichrome, and Jones silver stain. The outcomes 
showed that these computational stains are almost 
indistinguishable from the corresponding 

histologically stained tissue [222]. Thus, virtual 
staining of label-free samples on OoCs could be 
achieved by utilizing deep learning in the near future. 

 

 
Figure 6. Representative examples of OoCs integrated with AI for data analysis. (A) A CNN model was developed to identify important tumor cell behavior 
parameters from fluorescence images in a glioblastoma OoC platform, and combined with an in vitro-in silico approach to achieve real-time prediction of tumor evolution. Adapted 
with permission from [223], copyright 2021 Elsevier. (B) A deep prior algorithm, called Recursive Deep Prior Video, was developed for addressing the challenge of the low 
resolution in time-lapse microscope in OoC applications, and the approach was successfully validated. Adapted with permission from [225], copyright 2021 Elsevier. (C) A tumor 
OoC platform combining cancer, immune, endothelial, and fibroblasts recapitulated an anti-tumoral antibody-dependent cell-mediated cytotoxicity, and CellHunter method was 
used to track cancer-immune cell interactions. Adapted with permission from [233], copyright 2018 Cell Press. (D) The cells on the OoC are located and tracked through the 
video sequence obtained by time-lapse microscopy, and then extract relevant features from the visual atlas are for classification tasks with the use of a pre-trained DL-based 
algorithm. Adapted with permission from [228], copyright 2020 Nature Publishing Group. 
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In a recent study, a CNN model was developed 
to identify important tumor cell behavior parameters 
from fluorescence images in a glioblastoma OoC 
platform, and combined with an in vitro-in silico 
approach to achieve real-time prediction of tumor 
evolution (Figure 6A) [223]. A microfluidic 
multicellular coculture array (MCA) was developed 
and combined with ML to assess skin sensitivity to 
drugs. The performance prediction of MCA and 
support vector machine (SVM) classification 
algorithm demonstrated that the model has 87.5% 
accuracy, 75% specificity, and 100% sensitivity in 
predicting skin adverse drug reactions, with the 
potential as a platform for high-throughput drug 
screening (Figure 8A) [224]. For some OoC platforms, 
the segment of the special parts of the image with 
great significance is important for the analysis of 
experimental results. In this case, applying DL models 
to accomplish pixel-level segmentation of images 
acquired from OoCs, will help in the analysis of drug 
therapy [19]. Given this, researchers have developed a 
new DL-based algorithm without requiring any 
training, called Recursive Deep Prior Video, to 
address the challenge of the low resolution in 
time-lapse microscope in OoC applications, and the 
approach was successfully validated on real videos of 
OoC experiments associated with tumor-immune 
interactions (Figure 6B) [225]. Furthermore, a 
biomimetic bone OoC device has been developed to 
achieve simultaneous and high-throughput drug 
testing for osteoporosis. This device was integrated 
with CNN-based image segmentation algorithms for 
fluorescence image analysis, and successfully 
validated its feasibility for drug evaluation (Figure 
7A) [226], although mouse-derived cells were used, 
human-derived cells can be used for future studies. 

At the same time, the possibility to visualize cell 
morphology and trajectory in real-time is essential for 
the study of drug therapy in OoCs, especially in 
cancer OoCs. For example, in a muscle OoC device, 
the authors studied the temporal prediction of muscle 
cell morphology with the use of an RNN model with 
long short-term memory blocks. Next, a CNN model 
was trained with the temporal images of the RNN to 
judge the cell function (Figure 7B) [227]. Besides, a 
cancer OoC system with the use of a DL-based CNN 
architecture was used to evaluate the effectiveness of 
cancer drug therapies by discovering the hidden 
information within cell trajectories. The Deep 
Tracking was capable of accurately classifying the 
cells (91.5% on average), indicating that the DL 
approach is very proficient at identifying how drug 
treatments affect cell motility behaviors (Figure 6D) 
[228]. Notably, the use of a CNN algorithm for 
recognition achieved to perform accurate tumor 

boundary detection and analysis of tumor invasion 
[229], which could be further applied in OoCs. 
Another platform supported by automated image 
acquisition and cropping analysis has successfully 
implemented a label-free approach to evaluate the 
viability of tumor spheroids on a microfluidic 
platform with up to 1920 tumor spheroids. The 
authors trained a CNN model to estimate sphere 
viability based on bright-field images, and accurately 
evaluated the efficacy of three chemotherapeutic 
drugs, adriamycin, oxaliplatin, and irinotecan. It is 
important to note that the training networks of 
doxorubicin and oxaliplatin have been cross 
validated, indicating the possibility of using 
representative drugs to train a universal network and 
applying it to numerous different drugs in large-scale 
screening (Figure 7C) [230].  

A key challenge in cancer studies is the increased 
complexity of the tumor microenvironment. Recently, 
a novel 3D microfluidic blood brain niche (µBBN) 
platform quantified the microenvironment of brain 
metastatic tumors (breast cancer) by using confocal 
tomography and machine learning (neural networks 
and random forest learning algorithms) to identify 
intrinsic phenotypic differences in tumor cells capable 
of metastasizing through the model [231]. The same 
group performed a similar study prior to this one, in 
which breast cancer cell extravasation was analyzed 
within a μBBN device using an advanced live cell 
imaging algorithm to detect small differences between 
cells with and without brain metastasis potential 
(Figure 7D) [232]. The device enables further 
utilization to assess the molecular determinants of 
metastatic cancer cell migration and survival, and to 
evaluate the effectiveness of drug therapy. In 
addition, a more complex and better replicating breast 
tumor microenvironment was built and CellHunter 
was employed to track intercellular interactions 
between immune cells and tumor cells in OoCs 
(Figure 6C). Deep learning enables visualization and 
quantification of the complex dynamics of tumor 
OoCs, for characterizing drug responses at the 
ecosystem level, and for dissecting the roles of stromal 
components [233].  

CellHunter is a DL-based cell tracking analysis 
algorithm. As reported, CellHunter has been 
successfully applied to reveal the interactions 
between human peripheral blood mononuclear cells 
(PBMCs) and tumor cells in OoCs and showed that 
only cells from ‘wild type’ donors (FPR1 normal 
expression) establish sustained interactions with 
chemotherapy-treated cancer cells [234]. Another 
similar study investigated the effect of spatial and 
temporal resolutions of cell-cell interaction analysis in 
OoCs based on the same platform [235]. Furthermore, 
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a microfluidic platform combining advanced micro-
scopy and revised CellHunter was developed to 
assess the effective migration of interferon-α-condi-
tioned dendritic cells (IFN-DCs) toward drug-treated 
cancer cells, while discovering the involvement of 
major underlying factors, such as CXCR4 [236]. The 
oncolytic vaccinia virus is an emerging agent in cancer 
immunotherapy. Recently, a tumor OoC device 

revealed cooperative antitumoral activity of immune 
cells and oncolytic vaccinia virus by direct imaging 
and automatic analysis. In this work, the CellHunter 
algorithm was applied to high-resolution video 
analysis to localize and track cancer cells, which 
high-resolution video is aimed at measuring immune 
kinematics and cancer-immune interactions (Figure 
8B) [237]. 

 

 
Figure 7. Representative examples of OoCs integrated with AI for data analysis. (A) A biomimetic bone OoC device for high-throughput osteoporosis drug testing 
with AI-assisted image analysis. Adapted with permission from [226], copyright 2022 Wiley. (B) In a muscle OoC device, temporal prediction of muscle cell morphology was 
studied with the RNN model with long short-term memory blocks and trained a CNN model with the temporal images of the RNN to judge the cell function. Adapted with 
permission from [227], copyright 2019 Elsevier. (C) A microfluidic platform with up to 1920 tumor spheres integrated with a CNN model to assess the efficacy of chemotherapy 
drugs. Adapted with permission from [230], copyright 2019 American Chemical Society. (D) A µBBN platform for identifying the extravasation potential of cancer cells to brain 
metastasis niches with advanced live cell imaging algorithm and artificial intelligence. Adapted with permission from [232], copyright 2019 Royal Society of Chemistry. 
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Figure 8. Representative examples of OoCs integrated with AI for data analysis. (A) A microfluidic multicellular coculture array (MCA) was developed and combined 
with ML to assess adverse skin drug responses. Adapted with permission from [224], copyright 2022 Royal Society of Chemistry. (B) The combined anti-tumor activity of 
immune cells and oncolytic vaccinia virus in tumor OoC device was revealed by direct imaging and automated analysis. Adapted with permission from [237], copyright 2022 
Elsevier. 
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Angiogenesis has been reported to be associated 
with more than 70 diseases. Lately, a study has 
utilized DL-based image processing algorithms to 
analyze and quantify angiogenesis on a chip. This 
method allows the assessment of angiogenesis using 
up to 16 angiogenesis-related metrics and the 
extraction of 3D indicators from 2D images. In this 
work, the model successfully showed changes in 
response to biochemical gradients and can be applied 
to drug development [238]. Moreover, a new OoC 
platform for growing, vascularized, and perfused 
microtissues suitable for large-scale drug screening 
has been applied to assess the effectiveness of 
antiangiogenic compounds. This platform is based on 
a CNN method that enables fast and accurate flagging 
of compounds that effectively disrupt vascular 
networks from images of before and following drug 
applications with near-perfect accuracy. The CNN 
model significantly outperformed well-trained 
human raters, representing a substantive step in the 
automated analysis of data toward high-throughput 
drug screening [239].  

AI-based in electrochemical detection and 
analysis of OoCs 

Except for microscopic images, various data 
types, including electrochemical detection data, can 
serve as inputs for DL model development for 
training, enabling the detection of organ functions 
and drug treatment endpoints on OoCs. Electro-
chemical monitoring technology is automated and 
noninvasive, making it suitable for long-term 
operation in the monitoring of OoCs. By integrating a 
variety of online physical and biological electroche-
mical sensors to accomplish continual, automated, 
and in situ sensing of microenvironment biophysical 
and biochemical parameters (Figure 9A) [197], 
noninvasive monitoring OoCs and performing 
real-time data analysis (e.g., measurement of nutri-
ents, metabolites, proteins, growth factors, exosomes, 
shear forces, current/electrical resistance, pH, oxygen 
levels, and drug uptake) could be achieved for 
autonomous decision-making [240]. Importantly, all 
these real-time and continuously collected data could 
be combined with AI-based data processing for 
studying and optimizing closed-loop feedback-based 
experimental parameters. Eventually, the system will 
be able to automatically regulate and control various 
functional parameters of OoCs, achieving the 
development of intelligent OoCs [62, 241].  

AI-based experimental design and control of 
OoCs 

Although the most of current applications focus 
on post-experimental data analysis, DL has increasing 

potential for designing microfluidic systems and 
controlling systems during experiments [60]. 
Microfluidics represents an excellent platform for 
supporting automation and intelligent control of 
reaction conditions [242]. In the preparation phase of 
a project, DL can be employed for devices design and 
materials selection to make OoCs more suitable for 
specific applications [19]. Traditionally, soft litho-
graphy, photolithography, and etching techniques 
have been widely utilized in the manufacture of OoC 
devices. However, these methods presented serious 
limitations that hinder the pace of development and 
innovation of microfluidic applications [243]. Given 
this, 3D printing has the potential to be a promising 
solution. This technique provides high-throughput 
and scalability, and allows for industrial means of 
mass production. To date, a number of studies have 
applied 3D printing technology to build molds for 
manufacturing OoC devices. In a study, 3D printing 
was utilized in the manufacture of almost all chip 
components [244]. To realize high precision 
microscale structures, material properties, and 
printing parameters require delicate control [245]. 
During this process, AI could be applied to provide 
support to improve accuracy and efficiency, such as 1) 
the optimization of processes; 2) the detection of 
manufacturing defects; 3) the evaluation of 
dimensional accuracy; and 4) the prediction of 
material properties [246]. For instance, a computer 
vision-based (CNN-aided calibration) approach was 
used to rapidly and precisely design microfluidic 
devices and minimize absolute errors in device 
manufacturing, which offers a convenient, effective, 
and efficient solution for 3D printing of OoC 
platforms [247]. 

During the experiment, reinforcement learning 
(RL)-based deep Q network can utilize image 
feedback to assist in retaining stable flow conditions 
for prolonged periods by automatically adjusting flow 
conditions to mitigate the inconsistent system 
performance exhibited in microfluidic platforms 
during extended experiments (Figure 9B) [248], which 
could be applied to the control of culture media in 
OoCs. An emerging direction in the development of 
OoCs is vascularization, which is becoming a 
significant and necessary physiological level feature 
of most OoCs [249]. Recently, a study assessed the 
oxygen transport capacity of vascular network 
association with the most common morphological 
indicators through ML algorithms such as multiple 
linear regression and random forest. This approach 
will assist in measuring the performance or biological 
function of vascularized networks in OoCs (Figure 
9C) [249]. For lung OoCs, mechanical stretch is used to 
mimic the cyclical expansion, resulting in tissue 
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mechanical force control being critical. Therefore, 
automatic control of the applied tissue mechanical 
forces can be achieved by DL of cell morphology and 
microenvironment. Importantly, DL allows for the 
real-time monitoring of the entire system performance 
while continuously detecting cell processes and 
biomarkers without harming cell viability [19]. 
Researchers have proposed to regulate microenviron-
mental parameters through spectroscopy, automated 
multisensor, and microscopy monitoring systems, as 
well as through machine-intelligent data-driven 
optimization, as the cell microenvironment is crucial 
for maintaining physiologically relevant organ 
functions and responses to drugs [62]. A multi-OoC 
system achieved exact control of flow distribution and 
drug distribution to different organs using an 
on-board pneumatically-driven pump with indepen-
dently programmable flow rates [182]. Furthermore, 
an automated microfluidic platform was developed to 
accomplish dynamic and combinatorial drug 
screening, which allows for highly dynamic, 
reproducible, and reliable analyses of patient-derived 
organoids (Figure 9E) [250]. What’s exciting is that 
liquid-handling robotics control systems allowed the 
automated culture, perfusion, medium addition, 
fluidic linking, sample collection, and in situ 
microscopy imaging of up to ten organ models 
(Figure 9D) [181], which will be easier to integrate 
with pharmaceutical robotic pipelines [73]. Therefore, 
automation allows real-time data collection and 
analysis for feedback on target results. In the near 
future, it is conceivable that AI-guided organ-on- 
a-chip may in fact be more fundamentally natural 
than human control. 

In conclusion, even though only a few OoC 
studies have incorporated AI, we believe that these 
existing studies are sufficient to indicate exciting 
prospects for synergy between OoCs and AI in future 
drug evaluation (Figure 6-9). Nevertheless, much 
follow-up work and collaboration are still needed to 
drive the development of the combination of OoCs 
and AI, and ultimately to contribute to the 
advancement in the field of drug evaluation. 

The future prospect of OoCs and AI in 
drug evaluation 
OoCs will become an indispensable part of the 
future drug evaluation system 

OoCs using human cell sources (e.g., primary 
cells, cell lines, iPSCs, or organoids) could possibly 
eliminate the effects of cross-species differences 
introduced by utilizing animal models for clinical 
drug studies. A major obstacle of OoCs is the limited 
lifespan of cells in the device, and such limitation is 

exacerbated when not using immortalized cell lines 
[251]. Despite the widespread view that cell lines 
typically lack the ability to simulate tissue-specific 
functions with high fidelity; however, cell lines are 
able to provide a practically limitless supply of similar 
cells that could be utilized for studies in 
higher-throughput. This could potentially improve 
the reproducibility of results, making it highly 
valuable for drug development in the early stages 
[73]. A study demonstrated that the reproducibility 
was greatly dependent on the cell source [252]. It is 
noteworthy to mention that iPSCs, while iPSCs 
provide the same advantages, they are frequently 
limited the wide applicability by their failure to 
display a fully mature differentiated phenotype, and 
the necessary purity for many tissues [73].  

OoCs have been extensively used to build a 
variety of in vitro disease models, an important aspect 
of which is rare disease models, and OoCs could fill 
the gaps where animal models do not work or even 
do not exist. To date, only about 400 of over 7,000 
identified rare diseases have active research programs 
due to the absence of animal models for others, 
resulting in significant hindrances to the development 
of new drugs in the field [253]. In the past, OoCs have 
been used to successfully model many rare diseases. 
Recently, TNT005, a drug received clinical approval 
from the FDA based on preclinical efficacy data 
obtained from rare disease-on-a-chip, showing that 
OoCs have great potential in the field of rare diseases 
leading to the generation of IND [254]. OoCs-based 
models for rare diseases have the potential to produce 
significant data that are typically not observable in in 
vitro and in vivo models or clinical samples, as OoCs 
enable long-term and real-time monitoring of changes 
in physiological processes. Through further analysis 
of these data by ML/DL in real-time, it is possible to 
analyze the progression at the molecular level of such 
diseases, and eventually discover the specific 
mechanisms by which the diseases occur [19]. Thus, 
OoCs have a promising opportunity in rare diseases. 
Besides, similar approaches are applicable to other 
diseases as well. Furthermore, OoCs could be seeded 
with iPSCs and patient-derived organoids to develop 
patient-specific models, and deliver on the promise of 
advanced personalized medicine. 

Perhaps more importantly, OoCs can be used 
first time in emergencies for disease mechanism 
research and drug repurposing, discovery, and 
toxicity evaluation. For instance, during the 
COVID-19 global pandemic, several OoC platforms 
have been successfully used [27, 29, 111, 155, 203, 
255-258]. A vascularized lung OoC platform was 
utilized for SARS-CoV-2 infection and to identify the 
virus-induced vascular damage, including inflam-



Theranostics 2023, Vol. 13, Issue 13 
 

 
https://www.thno.org 

4550 

matory response and loss of barrier integrity, the 
latter can be alleviated by tocilizumab treatment [255]. 
The same team also revealed the SARS-CoV-2- 
induced intestinal injury and immune responses with 
the use of a gut OoC platform [256]. Moreover, lung 
airway OoCs have also been used for the 

reconstruction of clinically relevant influenza virus 
evolution [257]. Meanwhile, OoCs have also been 
successfully used in the study of other viruses [259, 
260]. Thus, the development of antiviral drugs will 
continue to be a major focus of drug discovery in the 
post-COVID-19 era [261]. 

 

 
Figure 9. Representative examples of OoCs combined with AI or automation for experimental design and control. (A) A multi-OoC system includes a physical, 
biochemical, and optical sensing platform that operates organ units continuously, dynamically, and automatically, achieving in situ monitoring of organoid behaviors. Adapted with 
permission from [197], copyright 2017 National Academy of Sciences. (B) Automatically adjusts flow conditions with reinforcement learning to assist microfluidic platforms in 
maintaining stable flow conditions over time. Adapted with permission from [248], copyright 2018 American Chemical Society. (C) The utilization of supervised ML to evaluate 
the morphological and biological functions of vascularized OoCs. Adapted with permission from [249], copyright 2023 Springer International Publishing. (D) A robotic system 
consists of a 3-axis motion system, automated liquid handler, peristaltic pump, and custom microscope stage that enables the continuous perfusion, linking, and image analysis of 
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up to ten organ models. Adapted with permission from [181], copyright 2020 Springer Nature. (E) A microfluidic platform based on a programmable membrane-valve allows to 
provision of combinatorial and dynamic drug therapies and enables analysis of organoids in real-time for personalized drug screening. Adapted with permission from [250], 
copyright 2020 Nature Publishing Group. 

 

New AI for new OoCs 
AI itself is a rapidly developing discipline, and 

deep learning networks and automated machine 
learning have promoted the development of 
generative AI. AI has shown unprecedented 
creativity, based on OoCs’ own needs and new 
creative needs, the development of OoCs will be 
greatly accelerated. 

Firstly, AI can address the bottleneck issue in the 
development of OoCs hardware. PDMS is one of the 
most popular materials for fabricating microfluidic 
devices. However, there is a common concern that 
OoCs made out of PDMS are unable to be utilized 
efficiently for drug research because of drug 
absorption [262]. But this issue has not proven to be as 
serious a concern as first thought, because only 
hydrophobic drugs are absorbed by PDMS, which is 
only a small portion of the drug development pipeline 
[73]. In fact, as previously mentioned, those showing 
in vivo simulations in response to clinically relevant 
drug exposures, as well as OoC platforms capable of 
quantitatively predicting human pharmacokinetic 
parameters, were manufactured almost by PDMS 
(Table 1). Despite this, the absorption of PDMS 
remains a significant challenge for drug screening of 
hydrophobic compounds like small molecule drugs, 
which could result in biased experimental results. 
Now, researchers could avoid the risk of small 
molecule drugs being absorbed by using alternative 
materials such as inorganic (e.g., glass and silicon), 
elastomeric (e.g., polyesters and polyurethane), and 
thermoplastic (e.g., poly(methyl methacrylate) and 
polycarbonate) materials, or coating PDMS with 
non-absorbent coatings [31, 44, 263, 264]. Never-
theless, a careful characterization of the 
adsorption/absorption curves is required for OoC 
platforms, regardless of the material of manufacture 
chosen [79]. Furthermore, PDMS-based devices 
frequently need to be manually cast, punched, and 
assembled, thus significantly reducing the 
reproducibility and throughput of the fabrication 
process [265], and that could be addressed by 3D 
printing/bioprinting [266, 267]. 3D bioprinting 
technology has been widely utilized in the 
construction of in vitro tissue/organ models and 
testing devices for drug screening [6], including 
OoCs. It makes it possible to precisely distribute cells 
or biomaterial in a target region, which allows the 
creation of more complex structures and 
microenvironments that more accurately mimic the 
function of living organisms [6, 268]. In fact, in other 

fields, AI and 3D bioprinting have been widely 
combined. AI-assisted artificial design of structures 
has a much faster optimization iteration speed than 
engineers, and the identification and discovery of 
material defects based on AI feature recognition are 
also faster and more accurate. In the future, generative 
AI will bring deeper technological changes to the 
development of OoCs in terms of drawing design, 
structural optimization, and even full process 
production. 

Despite this, OoCs remain facing various 
challenges that must get past in order to promote their 
physiological relevance and facilitate their translation 
into the clinic. For example, introducing more cell 
subtypes, metabolites, and microbiomes, as well as 
biochemical and biophysical gradients [175], or 
vascularization and innervation of organs [269], to 
increase the complexity of the models. More 
importantly, the body-on-a-chip system needs to be 
scaled according to the sizes of actual organs in vivo, 
relying on appropriate scaling rules and methods, and 
the fluid volume and dynamics in chips should be 
adjusted in accordance with specific human organs 
[175], which are key to simulate physiological 
responses. Of note, in the experiment design, a 
balance between the system’s feasibility and 
complexity should be considered carefully [174]. In 
addition, the use of robust culture media, especially 
for multi-OoCs, which can help to promote cell 
survival in different organ types and keep the various 
organs functional [175], is equally significant, as a key 
challenge. In microfluidic devices, organ function 
often declines in long-term culture, and tissue 
necrosis caused by a lack of oxygen diffusion 
continues to be a barrier to the use of larger or more 
complex organs, although vascularization of most 
organs has been achieved. In view of this, 
vascularized constructs with a tissue-specific 
vasculature and perfusable vascular network will 
offer the foundation for reliable OoCs with sustained 
functionality [269]. Notably, AI can use reinforcement 
learning to identify optimal medium compositions 
and dynamic culture conditions for particular cell 
types, possibly extending the lifespan and 
functionality of present in vitro organ models [62]. 
More importantly, for integrated multiorgan models, 
identifying optimal medium compositions and 
dynamic culture conditions for co-culture of various 
cell types, would make more sense. 

Secondly, AI will increase the detection 
throughput of OoCs. Typically, OoC devices are 
low-throughput, which limits their applicability in the 
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early phases of drug discovery [270]. However, 
considering that there are multiple stages in drug 
discovery and development where OoCs could be 
implemented, more complex low-throughput to 
medium-throughput OoC devices may be more useful 
at later stages, such as drug efficacy studies [79]. For 
pharmaceutical companies, the model can be selected 
according to the stage of drug development, after 
considering time, cost, and benefits. Although 
physiological relevance may be compromised in 
exchange for high-throughput [93], in fact, the 
recently developed high-throughput OoC devices still 
retain the key features required for drug developers 
[31, 203, 205]. Yet, the increase of larger data due to 
the use of high-throughput platforms is a new 
challenge, this could probably be solved with AI, as 
previously discussed. In addition, automation is 
another key requirement for developing reliable and 
high-throughput platforms [271], while such devices 
have been developed, they are extremely rare [181]. 
Importantly, OoCs successfully integrated with AI 
will be invaluable for its applications in drug 
development, and investigating how better to 
integrate is worthwhile. 

Finally, AI further promotes the convenience of 
OoCs data processing. At present, the iterative 
development speed of AI is astonishing. A simpler, 
more open, and more user-friendly AI-based 
algorithm platform will be developed, making image 
and big data analysis for OoCs dynamic processes 
simpler. Recently, especially with the emergence of 
open AI, it will also be applied in the scientific field. 
The design of OoCs and the extraction of more 
biological-related features will be completed by AI. 
Imagine the future, where people will become 
emitters of commands, AI-controlled automated 
OoCs production and analysis platforms will present 
the data we need, and drug evaluation will become an 
easy task at that time. 

We can foresee that AI will further help us 
invent new OoCs products in the design, production, 
and control of OoCs, as well as data processing, to 
expand the application of OoCs. While OoCs’ 
potential is exciting, the technology is still in its early 
stage [79]. Also, despite the significant benefits of 
coupling OoCs with AI, there are still some challenges 
ahead, especially as this fall within the healthcare 
field. For instance, as mentioned in section 5.2, how to 
achieve the proper explanation of the collected data. A 
typical issue of machine learning, particularly deep 
learning models is known as “black box approach”; 
that is, the lack of interpretability, which limits the 
obtaining of a suitable explanation from such models 
on how they arrive at their results [206]. This lack of 
interpretability may significantly hinder their 

application in the short term. Thus, explainable 
models are necessary to be developed to improve 
trust, which will promote the application of models in 
OoCs. Meanwhile, repeatability is another important 
issue. It may produce different results by using 
different algorithms, thereby increasing uncertainty 
[206]. To date, some solutions have been proposed to 
move AI towards reproducible [272]. The quality of 
the model depends on the quality and characteristics 
of the data, so the datasets collection and selection are 
very significant for building a model, which directly 
impacts the accuracy and predictability of the model. 
Of note, training, validation, and testing datasets are 
crucial for model development, but the amounts of 
datasets required depends on the complexity of the 
data type and the task [93, 273]. Despite such 
challenges, as both field progresses, the application of 
AI will undoubtedly bring greater vitality and 
impetus to the development of OoCs, especially in the 
area of drug evaluation.  

Last but not the least, while OoCs have advanced 
significantly in the academic environment, and a few 
OoC platforms have even been successfully converted 
into commercial products, numerous challenges 
prevent its complete deployment in an industrial 
setting, and OoCs are still marginalized in the 
pharmaceutical industry [14, 174]. To bridge the 
academia-to-industry gap and facilitate the adoption 
and implementation of OoCs in the drug 
development process, ongoing engagement, and 
discussions with OoCs developers, end users, and 
regulatory bodies are critical [79, 274].  From a 
long-term viewpoint, as technology improves and 
cost decrease, OoCs will finally be better accepted and 
adopted by the pharmaceutical industry. 

Conclusion 
In summary, organ-on-a-chip successfully 

replicates the critical physiological functions and 
environment of the human organs, as a 
state-of-the-art in vitro model, showing encouraging 
performances in a variety of drug evaluation 
platforms. Nevertheless, the current OoCs still must 
face many challenges that take it from academia to 
industry. Continuing development with AI, it is 
undeniable that OoCs will likely dramatically change 
drug development, disease modeling, and 
personalized medicine. 
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