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Figure S1: Quantitative volumetric comparison between NanoMASK and manually-created organ contours with data 4 
separately plotted according to sub-classifications of the tested dataset: experimental imaging timepoint (A,B), tumor 5 
status (C,D), or nanoparticle formulation (E,F). 6 
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Figure S2: Saliency maps produced by NanoMASK in comparison to selected views of PET and CT data. While PET 2 
data clearly varies between early and late timepoints for most organs, CT anatomical imaging remains consistent. 3 
Saliency maps show logical identification of features for organs across timepoints. 4 
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Figure S3: Additional correlations between ground-truth and predicted values for important pharmacokinetic 2 
variables. A) Mean volume, B) percent of injected dose (% ID), C) standard deviation of PET voxels in contoured 3 
volume, D) total PET intensity of voxels in contoured volume, E) minimum standard uptake value (SUVmin), and F) 4 
mean standard uptake value (SUVmean) all show reasonably high correlation, showing that NanoMASK functions well 5 
to generate any of these important pharmacokinetic variables. 6 
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Figure S4: Additional organ comparisons between NanoMASK and 20+ additional models subsetted according to 2 
imaging modality, timepoint, and tumor status as a means of investigating their impact on auto-segmentation 3 
performance. A) Lungs and kidneys are contoured equally well comparing NanoMASK to a CT Only model (p > 0.05) 4 
but a reduction in performance quality is seen compared to a PET Only model (p < 0.05), a trend which matches that 5 
of the heart, another organ with variable PET signal over 48 h as drugs are cleared from circulation. B) Similar to the 6 
heart, lung and kidney contouring accuracy was reduced when using a model trained only on later timepoints (48 h 7 
Only) and tested on data from earlier timepoints (1 h, 3.5 h); however, unlike the heart, it did not show the reciprocal 8 
trend of poor contouring of late-timepoint data when trained exclusively on early-timepoint data. The spleen showed 9 
no change in contouring accuracy across any timepoint-subsetted models. C) Contouring accuracy of lungs and 10 
kidneys is reduced when tumor-bearing animals are contoured using a Healthy Only model (p < 0.05) and when 11 
healthy animals are contoured using a Tumor-Bearing Only model (p < 0.05), similar to all other contoured organs. 12 
NanoMASK either outperformed or matched all subset models (A-C) in contouring accuracy. 13 
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Figure S5: Illustration of statistical tests (one-sided t-tests) comparing NanoMASK to timepoint-subsetted auto-2 
segmentation models for each organ. Data was split based upon experimental timepoint and compared separately. * 3 
represents significance using an adjusted significance threshold of α = 0.05 after Bonferroni correction for multiple 4 
comparisons (n=25), while ’ns’ means non-significant. 5 
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Figure S6: Comparison of saliency maps produced by NanoMASK in models trained exclusively on PET or CT data. 2 
Maps show more similar confidence in contouring specific regions when compared to the PET-trained model rather 3 
than the CT trained model, despite this not directly correlating with overall contouring accuracy. The variety in 4 
functional imaging contrast clearly informs contouring decisions made by NanoMASK. 5 
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Figure S7: Experimental comparison to illustrate auto-segmentation dependency on the manual organ contours 2 
providing as training input for the auto-segmentation model. Six additional auto-segmentation models were trained 3 
using the same training/testing data split architecture as the optimized model (NanoMASK), but selectively omitting 4 
each organ contours as a training input and examining its effect on the contouring accuracy of the other organs 5 
predicted by the model. The auto-segmentation quality for all of the subtracted models were not significantly different 6 
from the optimized model for any organ, suggesting that the organ inputs function highly independently from one 7 
another in the auto-segmentation model. 8 
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Figure S8: Experimental comparison to prove that timepoint-subsetted auto-segmentation models produce poor 1 
segmentations due to the contribution of the functional imaging input. In addition to the NanoMASK parent models 2 
and the 5 timepoint subsetted models trained only on data from a single experimental time, 4 additional auto-3 
segmentation models were created: (1) using only 1 h data and only CT information as an input, (2) using only 1 h 4 
data and only PET information as an input, (3) using only 48 h data and only CT information as an input, and (4) using 5 
only 48 h data and only PET information as an input. Each row represents volumetric comparison for a particular 6 
organ (from top to bottom: heart, lungs, kidneys, liver, spleen, tumor). Each column represents the modalities on 7 
which the models were trained (from left to right: trained on both PET and CT data, trained on CT data only, trained 8 
on PET data only). It is clear that the drastic reduction in quality when a timepoint-subsetted model is applied to 9 
untrained timepoints is massively impacted in the PET-trained models, while the CT-trained models experience less 10 
decline in accuracy. 11 
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Figure S9: Schematic of the deep learning architecture for NanoMASK. The model is based on a 3D U-NET style 16 
architecture utilizing combined inputs of both PET and CT data. The model was trained on 350+ multimodal data 17 
volumes for which anatomically correct, 3-dimensional volumes corresponding to key organ systems (heart, lungs, 18 
kidneys, liver, spleen, tumor) were manually constructed. It operates on raw PET and CT input data to generate 19 
accurate organ contours and automatically produce key pharmacokinetic outputs. 20 
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Supplementary Tables 2 

Table 1: Metrics of model accuracy for NanoMASK 3 
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Table 2: Training/Testing splits for NanoMASK and subsetted models 1 
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