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1.  Supporting Figures 

 

Figure S1. (A) Number of loaded Gd per HFn nanocage depends on the Gd dropping 

time. (B) HFn recovery yield (%) depends on the Gd dropping time. The encapsulated 

Gd was quantified using ICP-OES, and the HFn concentration was determined by using 

BCA protein assay kit.  
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Figure S2. Representative SEC analysis of the HFn and Gd-HFn NPs. 

 

 

 

 

 

Figure S3. Stability of Gd-HFn NPs in 10% mouse serum at 37 oC over 60 h of 

incubation (n = 3, bars represent means ± s.d.)  
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Figure S4. (A) Cell viability of MDA-MB-231 cells after treatment with Gd-HFn or 

Gd-DOTA for 24 h over a dose range of 0-2 mM Gd. CCK8 assay was used for cell 

viability assessment. (n = 5, bars represent means ± s.d.) (B) The percentage of necrotic 

cells measured by quantification of LDH release in the cell medium after incubation in 

the presence or absence (Negative control) of Gd-HFn or Gd-DOTA (2 mM Gd). 

Hydrogen peroxide (H2O2) was used as positive control. Results are expressed as 

percentage of dead cells with respect to the control. (n = 5, bars represent means ± s.d.) 

(C) Cell apoptosis analysis was performed using Annexin V-FITC assay using flow 

cytometry. Left, MDA-MB-231 cells untreated. Right, MDA-MB-231 cells treated with 

Gd-HFn for at concentration of 2 mM Gd. 
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Figure S5. Cellular uptake of Gd-HFn measured by ICP-OES (n = 5, mean ± SD, 

unpaired Student’s t-test, ***P < 0.001). 

 

 

 

 

Figure S6. MR imaging of large tumors with Gd-DOTA or Gd-HFn in living mice. 
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Figure S7. Toxicity evaluation of Gd-HFn in vivo. Healthy female BALB/c mice were 

administered intravenously on day 0 of Gd-HFn (0.016 mmol Gd/kg body weight) or 

PBS (n = 6 per group, bars represent means ± s.d.). n.s., not significant. 

 

 
Figure S8. Representative images of organ histology examination from mice 

administered with PBS or Gd-HFn at a dose of 0.016 mmol Gd/kg animal body weight. 

Tissue slices were stained with hematoxylin and eosin (H&E). No noticeable 

abnormality was found in the heart, liver, spleen, lung, and kidney.  
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Figure S9. Total body clearance of Gd-HFn. (A) Plasma concentrations of Gd as a 

function of time after injection. Five healthy mice were intravenously injected with Gd-

DOTA or Gd-HFn at a dose of 0.016 mmol Gd/kg animal body weight. Plasma samples 

at different time points were drawn and the plasma concentrations of Gd were measured 

by ICP-OES. (n=5 independent measurements, error bars represent mean ± s.d.). (B) 

Biodistribution of Gd-HFn. Tissue samples at different time points were drawn and the 

tissue concentrations of Gd were measured by ICP-OES. Data are presented as 

percentage of injected dose (%ID) per gram of tissue. Values are expressed as means ± 

s.d. for a group of five animals.  



S8 
 

Table S1. Blood routine parameters of healthy mice treated with PBS, Gd-DOTA or Gd-HFn. 

Blood routine 
parameters 

PBS (n=5) Gd-DOTA (n=5) Gd-HFn (n=5) Normal 
arrange 1 Week 2 Weeks 1 Week 2 Weeks 1 Week 2 Weeks 

WBC 3.96±0.76 8.94±0.96 4.55±0.64 8.78±0.70 4.34±0.87 8.82±1.27 0.80-10.60 
NEU 0.42±0.18 1.08±0.17 0.68±0.13 1.04±0.08 0.83±0.24 1.27±0.24 0.23-3.60 
LYM 3.41±0.75 7.52±0.89 3.71±0.61 7.09±0.63 3.28±0.67 6.77±1.23 0.60-8.90 
MON 0.06±0.01 0.25±0.05 0.09±0.01 0.36±0.04 0.10±0.02 0.31±0.07 0.04-1.40 
EOS 0.05±0.02 0.24±0.09 0.06±0.01 0.23±0.04 0.11±0.06 0.21±0.07 0-0.51 
BAS 0.01±0.00 0.05±0.01 0.02±0.01 0.05±0.02 0.02±0.01 0.06±0.02 0-0.12 

NEU% 10.84±5.25 9.66±1.95 15.00±3.37 11.88±0.64 19.30±4.50 14.70±5.62 6.5-50.0 
LYM% 85.72±5.24 85.38±3.44 81.30±3.64 80.70±1.29 75.40±4.99 78.84±6.38 40.0-92.0 
MON% 1.58±0.33 2.30±0.71 1.92±0.23 4.14±0.26 2.38±0.47 3.46±1.08 0.9-18.0 
EOS% 1.42±0.29 2.24±1.10 1.40±0.21 2.66±0.55 2.36±0.78 2.24±0.29 0-7.5 
BAS% 0.44±0.08 0.42±0.07 0.38±0.13 0.62±0.20 0.56±0.16 0.76±0.27 0-1.5 
RBC 9.62±0.35 9.17±0.43 9.57±0.23 8.86±0.51 9.07±0.61 8.97±0.43 6.50-11.50 
HGB 152.20±3.60 148.60±6.41 150.80±5.78 144.80±7.55 142.40±7.66 145.20±4.79 110-165 
HCT 46.24±1.76 44.30±1.73 46.30±1.36 43.78±2.29 43.52±2.42 43.78±1.39 35.0-55.0 
MCV 48.06±0.62 48.32±0.54 48.38±0.47 49.46±0.57 48.04±0.86 48.82±1.03 41.0-55.0 
MCH 15.84±0.22 16.22±0.25 15.74±0.31 16.38±0.40 15.76±0.27 16.24±0.27 13.0-18.0 

MCHC 329.60±5.46 335.20±2.79 325.40±6.15 331.20±4.49 327.60±2.73 332.40±2.33 300-360 
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PLT 
1051.40±129.5

6 
1028.40±373.36 

1055.00±118.
87 

940.00±169.
35 

1526.40±322.2
1 

1190.80±168.04 400-1600 

MPV 4.68±0.22 4.82±0.34 4.56±0.05 4.78±0.04 4.58±0.10 4.78±0.07 4.0-6.2 
PDW 15.18±0.07 15.28±0.07 15.30±0.11 15.22±0.07 15.14±0.12 15.18±0.12 12.0-17.5 

PCT 0.49±0.07 0.48±0.17 0.48±0.05 0.45±0.08 0.70±0.13 0.57±0.08 
0.100-
0.780 

Plasma samples were obtained 1 week and 2 weeks after treatment. WBC, white blood cell; NEU, neutrophil; LYM, lymphocyte; MON, monocyte; 
EOS, eosinophilic cell; BAS, basophil; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean 
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT, Platelets; MPV, mean platelet volume; PDW, platelet 
distribution width; PCT, thrombocytocrit. 
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Table S2 Comparison of the relaxivity values of Gd-HFn with the major Gd-based 

contrast agents reported in the literature.  

Contrast agent Structure r1 (mM-1 s-1) r2 (mM-1 s-1) Refs 

Magnevist® Gd-DTPA 
3.9-4.3 (1.5 T) 
3.5-3.9 (3 T) 

3.5 ± 0.1 (1.4 T) 

3.8-5.4 (1.5 T) 
4.3-6.1 (3 T) 

5.1 ± 0.2 (1.4 T) 
[1,10] 

Omniscan® Gd-DTPA-BMA 
4.0-4.6 (1.5T) 
3.8-4.2 (3T) 

4.2-6.2 (1.5 T) 
4.7-6.5 (3 T) 

[2] 

ProHance® Gd-DO3A-HP 
3.9-4.3 (1.5 T) 
3.5-3.9 (3 T) 

4.2-5.8 (1.5 T) 
4.8-6.6 (3 T) 

[2,9] 

Dotarem® Gd-DOTA 

3.94 (0.25T) 
2.96-3.8 (1.5 T) 

3.3-3.7 (3 T) 
2.85 (9.4) 

3.4-5.2 (1.5 T) 
4.0-5.8 (3 T) 

[3,5,8,9] 

Multihance® Gd-BOPTA 
6.0-6.6 (1.5 T) 
5.2-5.8 (3 T) 

7.8-9.6 (1.5 T) 
10.0-12.0 (3 T) 

[3] 

OptiMARK® Gd-DTPA-BMEA 
4.4-5.0 (1.5 T) 
4.2-4.8 (3 T) 

4.3-6.1 (1.5 T) 
5.0-6.8 (3 T) 

[3] 

C-Cha-DOTA 

(Gd3+)-chelating 
1,4,7,10-

tetraazacyclododecane-
1,4,7,10-tetraacetic 

acid (DOTA) 

19.5 (sphere),  
17.2 (fiber)   

/ [4] 

Ppdf-Gd 
piX-PEG8-

SSSPLGLAK 
(DOTA)-PEG6-F4 

28.2 (sphere),  
51.5 (fiber) (0.25 

T) 
/ [5] 

SMNs-Gd, 
FMNs-Gd 

spherical micellar 
nanoparticles (Gd3+), 
fibril-shaped micellar 
nanoparticles (Gd3+) 

15.6, 18.5 (0.5 T) / [6] 

ultrasmall 
gadolinium 

oxide 

poly(acrylic acid-co-
maleic acid) (PAAMA) 

-coated ultrasmall 
Gd2O3 

40.6 (3 T) 63.34 (3 T) [7] 

PEG-P(Lys-
DOTA-Gd) 

the micelle‑forming 
poly(ethylene  

glycol)‑b‑poly(lysine) 

13.31 (1.5 T) 
5.54 (9.4 T) 

/ [8] 

Elucirem® 
(FDA approved 

in  2022) 

Gadopiclenol 
C35H54GdN7O15 

12.8 (1.4 T) 
11.6 (3 T) 

/ [9] 



S11 
 

 

References:  
1. Caravan P, Ellison J, McMurry T, Lauffer R. Gadolinium (III) chelates as MRI 

contrast agents: structure, dynamics, and applications. Chem Rev, 1999; 99(9): 2293-
2352. 

2. Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic 
chemistry and safety. J Magn Reso Imaging, 2012; 36(5): 1060-1071. 

3. Yan GP, Robinson L, Hogg P. Magnetic resonance imaging contrast agents: 
overview and perspectives. Radiography, 2007; 13: e5-e19. 

4. Kim I, Han EH, Ryu J, Min JY, Ahn H, Chung YH, et al. One-dimensional 
supramolecular nanoplatforms for theranostics based on co-assembly of peptide 
amphiphiles. Biomacromolecules, 2016; 17(10): 3234-3243. 

5. Zhang J, Mu YL, Ma ZY, Han K, Han HY. Tumor-triggered transformation of 
chimeric peptide for dual-stage-amplified magnetic resonance imaging and precise 
photodynamic therapy. Biomaterials, 2018; 182: 269-278. 

6. Randolph LM, LeGuyader CL, Hahn ME, Andolina CM, Patterson JP, Mattrey RF, 
et al. Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped 
nanoparticle MRI contrast agents, Chem Sci. 2016; 7(7): 4230-4236. 

7. Jang YJ, Liu S, Yue H, Park JA, Cha H, Ho SL, et al. Hydrophilic biocompatible 
poly (acrylic acid-co-maleic acid) polymer as a surface-coating ligand of ultrasmall 
Gd2O3 nanoparticles to obtain a high r1 value and T1 MR images. Diagnostics, 
2020; 11(1): 2. 

8. Yokoyama M, Shiraishi K. Stability evaluation of Gd chelates for macromolecular 
MRI contrast agents. Magn Reson Mater Phy, Biology and Medicine, 2020; 33: 527-
536. 

9. Lancelot E, Raynaud JS, Desché P. Current and future MR contrast agents: seeking 

 GONP-12 Gd2O3 -PAMPS-LA 63.0±4.4 (9.4 T) 73.5±2.4 (9.4 T) [10] 

Gadolinium 
Oxide 

Nanoparticles 

PASA-coated Gd2O3 
nanoparticles 

19.1 (3 T) 53.7 (3 T) [11] 

RGD2 
ES-GON5-

PAA@RGD2 
68.7±2.3 (1.5 T) 
19.9±0.8 (7 T) 

70.5±1.6 (1.5 T) 
54.8±2.7 (7 T) 

[12] 

AFt–C4 NPs 
Gd(III) compound (C4) 

based on Apoferritin 
3.3 (0.5 T) / [13] 

Magnetoferritin Protein-coated  8 (1.5 T) 218 (1.5 T) [6] 

The proposed 
MRI contrast 

agent 
HFn-Gd 

549 (1.5 T) 
428 (3 T) 

1555 (1.5 T) 
1286 (3 T) 

This work 



S12 
 

a better chemical stability and relaxivity for optimal safety and efficacy. Invest 
Radiol, 2020; 55(9): 578-588. 

10. Stinnett G, Taheri N, Villanova J, Bohloul A, Guo X, Esposito EP, et al. 2D 
gadolinium oxide nanoplates as T1 magnetic resonance imaging contrast agents. Adv 
Healthc Mater, 2021; 10(11): 2001780. 

11. Marasini S, Yue H, Ghazanfari A, Ho SL, Park JA, Kim S, et al. Polyaspartic acid-
coated paramagnetic gadolinium oxide nanoparticles as a dual-modal t1 and t2 
magnetic resonance imaging contrast agent. Applied Sciences, 2021; 11(17): 8222. 

12. Shen Z, Fan W, Yang Z, Liu Y, Bregadze VI, Mandal SK, et al. Exceedingly small 
gadolinium oxide nanoparticles with remarkable relaxivities for magnetic resonance 
imaging of tumors. Small, 2019; 15(41): 1903422. 

13. Man X, Yang T, Li W, Li S, Xu G, Zhang Z, et al. Developing a gadolinium (III) 
compound based on apoferritin for targeted magnetic resonance imaging and dual-
modal therapy of cancer. J Med Chem, 2023; 66(11): 7268–7279. 

 


