

Figure S1. Analysis of the ratio of BAT weight/body weight and the mRNA expression of genes regulating lipolysis in BAT in WT ApoA5 ${ }^{-/-}$hamsters on chow diet.

A: The ratio of BAT weight/body weight from 3-month-old male WT and ApoA5-/hamsters on chow diet ($n=8 /$ group).

B: The expression levels of genes involved in lipolysis in BAT were determined by realtime PCR ($\mathrm{n}=4 /$ group). Error bars represent mean \pm SEM. *P <0.05; **P <0.01; ${ }^{* * *} P<0.001$; ns, not significant.

Figure S2. Alterations in the mRNA expression of the inflammatory and fibrotic genes caused by ApoA5 deficiency under HFD condition. A: The expression levels of genes involved in inflammation in the livers of HFD-fed WT and ApoA5-r hamsters for 12 weeks were determined by real-time PCR ($n=5-6 /$ group $)$.

B: The expression levels of genes involved in fibrosis in in the livers of HFD-fed WT and ApoA5-r hamsters for 12 weeks were determined by real-time PCR ($n=6 /$ group $)$. Error bars represent mean \pm SEM. ${ }^{*} \mathrm{P}<0.05$; ${ }^{* *} \mathrm{P}<0.01$; ${ }^{* * *} \mathrm{P}<0.001$; ns, not significant.

Figure S3. ApoA5 inactivation has mild effect on spontaneous atherosclerosis under chow diet and HFD conditions.

A-D: Analysis of atherosclerotic lesions in whole aorta (A, C) and sectioned aortic roots (B, D) of 8-month-old WT and ApoA5 ${ }^{-/}$hamsters ($n=8 /$ group).

E-F: Analysis of atherosclerotic lesions in whole aorta (E) and sectioned aortic roots (F) of 18-month-old WT and ApoA5-r hamsters ($\mathrm{n}=6$ /group).

G-J: Analysis of atherosclerotic lesions in whole aorta (G, I) and sectioned aortic roots (H, J) of HFD-fed WT and ApoA5 ${ }^{-1}$ hamsters for 12 weeks ($\mathrm{n}=5 /$ group). Error bars
represent mean \pm SEM. ${ }^{*} \mathrm{P}<0.05 ;{ }^{* *} \mathrm{P}<0.01 ;{ }^{* * *} \mathrm{P}<0.001$; ns, not significant.

Figure S4. Validation of the relationship between ApoA5 and NR1D1 in HepG2 cells

A: Western blot analysis of NR1D1 protein in the liver samples of HFD-fed WT and ApoA5-
${ }^{1}$ hamsters and quantitative data ($n=3 /$ group).
B: The mRNA expression levels of Apoa5 in HepG2 cells transfected with scramble and

ApoA5 siRNA were determined by real-time PCR ($n=3 /$ group $)$.

C: The mRNA expression levels of Nr1d1 in HepG2 cells described in (A) ($n=3 /$ group $)$.
D-E: Western blot analysis of NR1D1 protein levels in HepG2 cells described in (B) and quantitative data ($\mathrm{n}=3$ /group).

F-G: Western blot analysis of nuclear ApoA5 and NR1D1 protein levels in HepG2 cells described in (B) and quantitative data ($n=3 /$ group).

H-J: HepG2 cells were transfected with scramble or ApoA5 siRNA and treated with CHX (50 $\mu \mathrm{g} / \mathrm{mL}$) and MG132 ($10 \mu \mathrm{M}$) for 0 , 6 and 12 hours. The relative NR1D1 protein levels were quantified.

L: The mRNA levels of Nr1d1 of scramble or ApoA5 siRNA transfected HepG2 cells treated with Actinomycin D ($2 \mu \mathrm{~g} / \mathrm{mL}$) of HepG2 cells ($n=3 /$ group $)$.

M: The mRNA levels of Nr1d1 of NC (negative control) or ApoA5 plasmid transfected HepG2 cells treated with Actinomycin D ($2 \mu \mathrm{~g} / \mathrm{mL}$) of HepG2 cells ($\mathrm{n}=3 / \mathrm{group}$).

N: ChIP assays were performed by using HepG2 cell lysates and antibodies against ApoA5 and IgG. Error bars represent mean \pm SEM. *P <0.05; **P < 0.01; ***P <0.001; ns, not significant.

Figure S5. The changes in lipid profiling and the ratio of organ weight/body weight in CD-fed ApoA5 ${ }^{-/-}$hamsters exposed to the cold treatment.

A: Representative Western blots of plasma ApoB, ApoE and ApoA1 from 3-month-old male WT and ApoA5 ${ }^{-/}$hamsters with or without cold exposure for 5 days and quantitative data ($n=3 /$ group $)$.

B: Pooled plasma from the three groups were analyzed by FPLC. TG and TC contents in different fractions of pooled plasma from the animals described in (A) were measured ($n=4-5 /$ group).

C: The ratio of Liver/WAT/BAT weight and body weight from the animals described in
(A) ($\mathrm{n}=4-5 /$ group $)$. Error bars represent mean \pm SEM. *P <0.05; **P <0.01;
${ }^{* * *} P<0.001$; ns, not significant.

Figure S6. Activation of adipose tissue by CL316243 ameliorated lipid metabolism disorders and hepatic steatosis caused by ApoA5 deficiency

A-B: Plasma triglycerides (D) and total cholesterol (E) determined from WT and ApoA5-
${ }^{\text {- }}$ - hamsters treated with CL316243 4 weeks ($n=5 /$ group).

C: Representative Western blots of plasma ApoB, ApoE and ApoA1 from WT and ApoA5 ${ }^{-1}$ hamsters treated with CL316243 for 4 weeks and quantitative data ($\mathrm{n}=$ 3/group).

D: Pooled plasma from the three groups were analyzed by FPLC. Triglyceride and cholesterol contents in different fractions of pooled plasma from WT and ApoA5-/ hamsters treated with CL316243 for 4 weeks were measured ($n=5 /$ group).

E : The representative images of HE and UCP1 immunohistochemical staining in BAT and eWAT sections of WT and ApoA5 ${ }^{-/}$hamsters treated with CL316243 for 4 weeks and quantitative data ($n=5 /$ group).

F: The representative images of CD68 immunohistochemical staining in eWAT sections of WT and ApoA5 ${ }^{-1}$ hamsters treated with CL316243 for 4 weeks and quantitative data ($n=5 /$ group).

G: The representative images of TH immunofluorescence staining in eWAT sections of WT and ApoA5 ${ }^{-r}$ hamsters treated with CL316243 for 4 weeks and quantitative data (n = 5/group).

H: The representative images of IL-6 immunofluorescence staining in BAT sections of WT and ApoA5-- hamsters treated with CL316243 for 4 weeks and quantitative data (n = 5/group).

I: The representative images of oil red O staining in liver sections of WT and ApoA5-/hamsters treated with CL316243 for 4 weeks and quantitative data ($n=5 /$ group $)$. Error
bars represent mean \pm SEM. ${ }^{*} P<0.05$; ** $P<0.01$; *** $P<0.001$; ns, not significant.

Table S1 The list of primers used for quantitative real-time PCR.

Apoa5-F	GCCCACTCTTACTGAAGGCT
Apoa5-R	GCTGCTCTGGCTGAAGTAGT
Apoa1-F	CTGCAGGAGAAGCTAACCCC
Apoa1-R	TTCTTGCTGGCTTCCTCGAC
Apoa4-F	TGACACCCTATGCCAACGAG
Apoa4-R	CCTCCAGGTTCTGGTCGATG
Apoc3-F	TTTCCTTCAGGTGCGTTGGT
Apoc3-R	GAAACCCCAGGCCCAACC
Mttp-F	CAGGTCCAAGAATGGTGCCT
Mttp-R	CTCCGCCAGAGAAGGACATC
Pla2g12b-F	AGACACGTGTGCCTGGAAAT
Pla2g12b-R	CTGGCAACTGAAACATGGGC
Cideb-F	CTGCCGTGGAGAGTGAGGACTT
Cideb-R	GTTCAGGCTGCCGAAGAGGTCT
Sar1b-F	AAGACAAGGCTATGGAGAAG
Sar1b-R	ATTCAAGTTATGCGTGTTGG
Arf1-F	GTGACCACGATTCCCACCAT
Arf1-R	CGCCATAGCGGTCTGATCTT
Sec22b-F	CTGGAAGACCTGCACTCGGAAT
Sec22b-R	CACTACACCTCACAGCCACCAA

Surf4-F	TATTGACACGACCTGGAGCTG
Surf4-R	CTCACGCATGGTTGGAACAC
Lpl-F	TCCTACTTCAGCTGGTCGGA
Lpl-R	CACTTCACAAACACTGCGGG
Abhd5-F	CGGATAGGAGACTTGCACCC
Abhd5-R	TCACGTAGGACTTTGGTCGC
Atgl-F	AAGGAGTGCGCTATGTGGAC
Atgl-R	GATTGCGCAGGTTGAACTGG
Hsl-F	GTTGTCGTCCCTGGCTAACA
$H s /-R$	TTCCCGCAGGTCATAGGAGA
Plin1-F	CCCAGCCCTTCAATACCCTC
Plin1-R	TGGTGTGCCGAGAAAGAGTG
Hmgcs1-F	TGGAGGAACTGTCGGTGAGA
Hmgcs1-R	GTTGCAGAGCTAGTCACCGT
Idi1-F	AATTGGGGCTGACACCAAGA
Idi1-R	CTCCGTGCAGCTCGTTTTAC
Fdps-F	CTCCTCTCTCAGAATGAATGGG
Fdps-R	ATTGTACTTGCCTCCTACGGC
Fdft1-F	CACCTACCTGTCAAGGCTCC
Fdft1-R	TTATAACAGGCAGCCAGCGT
Mvk-F	CCAGCAAGGGAAGATGTCGT
Mvk-R	CACTCCAGGGATATGGCGTC

Sc5d-F	AGAATGGTGGCCTCTGCTTC
Sc5d-R	TGGCCTCCTCTACCATCCTC
Sqle-F	TCCGGACCTTTGTGACGATG
Sqle-R	ACCCGTCACACATTCTCCAC
Dhcr7-F	CACTTTGGGTGGTACCTGGG
Dhcr7-R	GCGGAACAGGTCCTTCTGAT
Srebp1c-F	GCGGACGCAGTCTGGG
Srebp1c-R	ATGAGCTGGAGCATGTCTTCAAA
Insig1-F	CTGGTCCTGGGTGTGATGAAG
Insig1-R	AATGTTCCAGTGCAGACAGGT
Acc1-F	ACACTGGCTGGCTGGACAG
Acc1-R	CACACAACTCCCAACATGGTG
Scd1-F	GGAGAAGCAGAAGACCGTTCC
Scd1-R	CCCCTCCTCATCCTGGTAGC
Fasn-F	GCAGTCTTGAGTAGCTTTGTGCT
Fasn-R	GGGAGCTGTCCAGATTAATACCT
Gpam-F	AAATGCAAACCGAAGGTGGC
Gpam-R	GAGGCGCCATTATTTGCAGG
Dgat2-F	ATGAAGACCCTCATCGCTGC
Dgat2-R	CATTCTTGTTCTCGCTGCGG
Nr1d1-F	GGGCTTCTCTCAGTTCCCAC
Nr1d1-R	ACTTGTCATGGGCGTAGGTG

Ucp1-F	GGACAGTTCCTGGTCTACGC
Ucp1-R	CCTCAACAGGTTAGGGGTCG
Cox8b-F	AGTTCCCCAGGCGGCTATAA
Cox8b-R	AGGTTGTGCTCCTTCCTTGG
Cidea-F	GGACAGTTCCTGGTCTACGC
Cidea-R	AAAGGAATGCACCTGGGCTC
Pgc1a-F	TGAATGCAGCGGTCTTAGCA
Pgc1a-R	TTGGAGGCGCATTTGTCTCT
Mrc1-F	GGTGTCGGAATCGCAGGTTA
Mrc1-R	GGCATACAGAGTGACCGAGG
Soat1-F	CGTGACAGCTATCCGAGGAC
Soat1-R	CACACCTGGCAAGATGGAGT
Rgs4-F	GCTCCCCTTCAGTGTTCTCC
Rgs4-R	CAGGCAGGCTCACCATATCA
Eps8-F	CCCAGTGGCTACGGAGTCTA
Eps8-R	CTGTCTCGGGCATAGTGCTT
Ccr5-F	GACACACTGCTGCATCAATCC
Ccr5-R	TGTGGACCGGGTATAGACTG
Col1a1-F	ATGCCGTGACCTCAAGATGTGC
Col1a1-R	TGCTCTCGCCGAACCAGACA
Col3a1-F	GGTCCATCTGGTGACAAGGG
Col3a1-R	GGGTCCAGCTCCTCCTCTAA

Tgfb-F	CAGTTGTACGGCAGTGGCTGAA
Tgfb-R	GTCACGGATGGTGCTCATGTCA
α-SMA-F	CCACCATGTACCCAGGCATT
$\alpha-S M A-R$	GGCGCTGAACCACAAAACAT
Timp1-F	CCGCAGCGAGGAGTTTCTCATC
Timp1-R	CTGTGGATTCCGTGGCAAGCA
Mmp9-F	CTCTACACGGAGCACGGCAATG
Mmp9-R	AACCATCCGAGCGACCTTCAGT
Ccn2-F	TCTCCAAGCCCGTCAAGTTC
Ccn2-R	GTAATGGCAGGCACAGGTCT
Pdgfb-F	GTGTGGGATGTGTGTTGCAC
Pdgfb-R	GGGCCTCGGAGTGAATTGAA
β-actin-F	ACTGCCGCATCCTCTTCCT
β-actin-R	TCGTTGCCAATGGTGATGAC
Human-Apoa5-F	AGATAGCTGCCTTCACTCGC
Human-Apoa5-R	TTGCTCAGAACCTTGCCACT
Human-nr1d1-F	CGACCCTGGACTCCAACAAC
Human-nr1d1-R	GACTGGAAGCTGCCATTGGA
Human-hdac3-F	AATGCCTTCAACGTAGGCGA
Human-hdac3-R	GGGTTGCTCCTTGCAGAGAT
Human-ncor-F	CAGGTTCTGACAGGCCTCAA
Human-ncor-R	TCATCTCCACATGGTTGCCC

Human-shp-F	TCAAGTCCATTCCGACCAGC
Human-shp-R	AAGAAGGCCAGCGATGTCAA
Human-hmgcr-F	CAGGGAACCTCGGCCTAATG
Human-hmgcr-R	ACAAGCTCCCATCACCAAGG
Human-hmgcs1-F	CGGCTGGAAGTTGGAACAGA
Human-hmgcs1-R	TACCAGGGCATACCGTCCAT
Human- β-actin-F	GCCGCCAGCTCACCAT
Human- β-actin-R	TCGTCGCCCACATAGGAATC

