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Abstract 

Background: The tumor-associated disialoganglioside GD2 is a bona fide immunotherapy target in 
neuroblastoma and other childhood tumors, including Ewing sarcoma and osteosarcoma. GD2-targeting 
antibodies proved to be effective in neuroblastoma and GD2-targeting chimeric antigen receptors (CAR)- 
expressing T cells as well as natural killer T cells (NKTs) are emerging. However, assessment of intra- and 
intertumoral heterogeneity has been complicated by ineffective immunohistochemistry as well as sampling bias 
in disseminated disease. Therefore, a non-invasive approach for the assessment and visualization of GD2 
expression in-vivo is of upmost interest and might enable a more appropriate treatment stratification. 
Methods: Recently, [64Cu]Cu-NOTA-ch14.18/CHO (64Cu-GD2), a radiolabeled GD2-antibody for imaging 
with Positron-Emission-Tomography (PET) was developed. We here report our first clinical patients’ series (n 
= 11) in different pediatric tumors assessed with 64Cu-GD2 PET/MRI. GD2-expression in tumors and tissue 
uptake in organs was evaluated by semiquantitative measurements of standardized uptake values (SUV) with 
PET/MRI on day 1 p.i. (n = 11) as well as on day 2 p.i. (n = 6).  
Results: In 8 of 9 patients with suspicious tumor lesions on PET/MRI at least one metastasis showed an 
increased 64Cu-GD2 uptake and a high tracer uptake (SUVmax > 10) was measured in 4 of those 8 patients. Of 
note, sufficient image quality with high tumor to background contrast was readily achieved on day 1. In case of 
64Cu-GD2-positive lesions, an excellent tumor to background ratio (at least 6:1) was observed in bones, 
muscles or lungs, while lower tumor to background contrast was seen in the spleen, liver and kidneys. 
Furthermore, we demonstrated extensive tumor heterogeneity between patients as well as among different 
metastatic sites in individual patients. Dosimetry assessment revealed a whole-body dose of only 0.03 
mGy/MBq (range 0.02-0.04). 
Conclusion: 64Cu-GD2 PET/MRI enables the non-invasive assessment of individual heterogeneity of GD2 
expression, which challenges our current clinical practice of patient selection, stratification and immunotherapy 
application scheme for treatment with anti-GD2 directed therapies. 

  

Introduction 
Although the overall survival of children 

suffering from all types of cancer is reaching 80%, the 
treatment of metastatic disease has not significantly 
improved in some entities like sarcomas in recent 
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years [1].  
The disialoganglioside GD2 is a tumor- 

associated antigen, which is overexpressed on cell 
surfaces of various cancer entities [2-4]. Because of its 
restricted expression in physiological tissues GD2 is a 
reasonable target for cancer immunotherapy [5] and 
various GD2-targeting antibodies have been applied 
in different cancer entities such as melanoma, neuro-
blastoma and osteosarcoma [6-9]. Immunotherapy 
with ch14.18 (dinutuximab) a chimeric monoclonal 
antibody against GD2, revealed a significant benefit in 
addition to standard therapy with retinoids 
improving overall survival in patients with high-risk 
neuroblastoma [10] and consecutively obtained a 
registered indication for maintenance therapy by the 
U.S. Food and Drug Administration (FDA) [11]. 
Recently, ch14.18/CHO (dinutuximab beta) an 
antibody produced in chinese hamster ovarian (CHO) 
cells was approved by the European Medicines 
Agency (EMA) in 2017 [12] and became standard of 
care for patients with high-risk neuroblastoma who 
have achieved at least a partial response to previous 
multimodal treatment [13]. However, this treatment 
can be associated with several adverse events, such as 
capillary leak syndrome, neuropathic pain and fever 
[14]. Though some side effects can be reduced by 
premedication and a decreased infusion rate, 
dinutuximab beta handling remains a clinical 
challenge in pediatric oncology [15] and its use is not 
yet established in other GD2-positive tumor entities. 
Clinical trials are currently underway evaluating the 
treatment of osteosarcoma (NCT02484443), leiomyo-
sarcoma (NCT05080790) and initial trials in Ewing’s 
sarcoma are ongoing [16].  

Recently, GD2-targeting chimeric antigen 
receptor (CAR) modified natural killer T cells (NKT) 
as well as T cell therapy [17]. In particular the CAR T 
cell approach has shown promising antitumorigenic 
effects in the treatment of relapsed or refractory 
high-risk neuroblastoma with a response rate of 63% 
[18]. In this study GD2 antigen expression as assessed 
by flow cytometric analysis of bone marrow samples 
before treatment or after treatment failure was shown 
to be positive in all patients, even in those with 
progressive disease. Thus, the authors concluded that 
mechanisms of resistance in neuroblastoma other than 
antigen loss might be responsible [18]. However, 
although GD2 expression is considered to be nearly 
ubiquitous in neuroblastoma, a complete or partial 
lack of its expression has been described in up to 12% 
of cases [19]. In addition, a higher intra- and 
interindividual variability in GD2 overexpression was 
shown in osteosarcoma and Ewing’s sarcoma ranging 
from 40 to 100% of the cases [20, 21]. Currently, 

expression analysis of GD2 is mainly performed 
in-vitro using immunohistochemistry, which requires 
individual tumor samples and is therefore susceptible 
to sampling bias. In addition, this procedure cannot 
provide a holistic representation of GD2 expression 
and thus cannot reveal potential intraindividual 
heterogeneity. Consequently, a non-invasive diagnos-
tic marker that enables both visualization and 
quantification of GD2 expression in-vivo is of utmost 
interest for appropriate treatment stratification, 
especially in those cancers where variable GD2 
expression may occur. This approach would have the 
potential to expand the use of GD2-targeting immu-
notherapies in cancers other than neuroblastoma, 
such as sarcoma, glioma or triple negative breast 
cancer, but also to prevent ineffective therapies in 
tumors with poor GD2-expression and to avoid the 
possibly severe side effects [18]. Furthermore, PET 
imaging with a radiolabeled GD2 antibody might 
provide a deeper insight into tissue penetration of 
GD2 antibody in-vivo revealing restricted access to the 
target and thus enable an early prediction of 
treatment failure. 

In response to this need, non-invasive GD2 
imaging has been extensively studied in preclinical 
settings by several investigators [22-24]. Recently, our 
group has developed the PET tracer [64Cu]Cu- 
NOTA-ch14.18/CHO (64Cu-GD2), which enabled to 
detect GD2 expression in a preclinical setting and 
initially showed to be clinically applicable in 
neuroblastoma as well as osteosarcoma [25, 26].  

We here report the first multi-patient cohort of 
tumor patients studied with 64Cu-GD2 PET/MRI. Our 
goal was to evaluate intra- and interindividual GD2 
expression for tumor targeting and to quantitatively 
reveal 64Cu-GD2 biodistribution. In addition, 
important specifically in children and young adults, 
we aimed to approximate the irradiation exposure of 
64Cu-GD2 in a subset of patients undergoing dual 
timepoint PET/MRI examination.  

Material and Methods 
Patients 

A total of 11 patients (mean age: 13.9 ± 5.0 years) 
underwent 64Cu-GD2 PET/MRI. All patients had 
histologically confirmed disease (6 patients suffered 
from neuroblastoma, 3 patients had osteosarcoma and 
2 patients had Ewing’s sarcoma). Patient character-
istics are provided in Table 1. 4 of them were scanned 
because of suspected cancer recurrence and the 
remaining 7 patients for the evaluation of GD2 
expression in already known tumor lesions.  
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Table 1. Patient characteristics. CTX = chemotherapy; hSCT = hematopoietic stem cell transplantation; IT = immunotherapy with 
dinutuximab beta; MIBG = 131I-MIBG therapy; RT = radiotherapy; S = surgery; NB = neuroblastoma; OS = osteosarcoma; ES = Ewing`s 
sarcoma 

Patient 
ID 

Age Sex Weight 
(kg) 

Injected activity 
(MBq) 

Antibody mass 
(mg) 

Histology Prior treatments Tumor lesion on 
MRI 

64Cu-GD2 expression on 
PET 

1 20 F 23 114 0.23 NB CTX, IT, MIBG, R, hSCT + + 
2 9 F 24 110 0.22 NB S, CTX, IT, RT - - 
3 16 M 55 94 0.19 OS S, Ch + - 
4 15 F 50 200 0.40 NB S, RT, IT, CTX + + 
5 17 F 48 234 0.47 OS S, CTX,  + + 
6 18 M 36 194 0.39 OS S, CTX, RT + + 
7 17 M 40 125 0.25 NB CTX, hSCT, RT, MIBG, 

IT 
+ + 

8 16 M 64 163 0.33 ES S, RT, CTX + + 
9 4 M 16 37 0.08 NB CTX, RT, IT + + 
10 7 M 21 78 0.16 NB MIBG, hSCT, CTX + + 
11 14 M 42 202 0.40 ES CTX, RT - - 

 
All patients and/or their parents gave written 

informed consent to undergo 64Cu-GD2 PET/MRI 
following the regulations of the German Pharma-
ceuticals Act (“Arzneimittelgesetz” AMG §13(2b)). All 
individuals were facing an unmet diagnostic 
challenge that could not be solved with standard 
diagnostic, either insufficient tumor delineation 
before planned surgery/ external radiation or need to 
evaluate the GD2 expression before administration of 
dinutuximab beta. This retrospective analysis was 
approved by the institutional review board (decision 
030/2023BO2). The need for written informed consent 
was waived for this study.  

Adverse Events 
Standard vital parameters were documented and 

patients were asked to report any abnormalities 
during or after 64Cu-GD2 infusion.  

Radiopharmaceuticals 
Dinutuximab beta was provided by EUSA- 

pharma. Synthesis and labeling of 64Cu-GD2 was 
performed as previously described [25]. In short, 1 mg 
of NOTA-conjugated antibody was incubated with a 
buffered solution of 500 MBq of 64Cu resulting in 
approximately 0.08 to 0.47 mg of dinutuximab beta 
injected.  

PET/MRI Data Acquisition 
To avoid adverse reactions to the antibody, H1 

and H2 receptor antagonists were given intravenously 
at least 30 min prior to tracer injection. 64Cu-GD2 was 
administered i.v. over 30 min using a dosage of 2-3 
MBq per kg/BW in the first four patients and was 
afterwards adapted to 4-5 MBq per kg/BW to 
improve the count rate (details provided in table 1). A 
first simultaneous PET/MRI examination (day 1) was 
performed 21 h p.i. (range 17-25 h) using a 
whole-body PET/MRI system (Biograph mMR®, 
Siemens Healthineers, Germany). In six patients a 

second PET/MRI scan (day 2) was executed at 43 h 
p.i. (range: 41-44 h). PET images (6 min acquisition per 
bed position, 4-6 bed positions) were reconstructed 
using an OSEM-3D algorithm and corrected for 
scatter and attenuation using an MR-based segmen-
tation as described previously [27, 28]. Simultaneous 
to PET imaging, a coronal T1-weighted 3D-encoded 
spoiled gradient-echo sequence with double-echo for 
Dixon-based fat-water separation for attenuation 
correction, a coronal T2 turbo inversion recovery 
magnitude (TIRM), a coronal T2 short inversion time 
inversion recovery (STIR), a transaxial T2 
half-Fourier-aquired single shot turbo spin echo 
(HASTE) and transverse diffusion-weighted (DWI) 
echo-planar imaging sequences were acquired. 

Semiquantitative Analysis of 64Cu-GD2 uptake 
64Cu-GD2 uptake measured with PET was 

quantified by means of VOI based mean and 
maximum standardized uptake values (SUVmean and 
SUVmax) using Hermes Affinity Viewer® software 
(Hermes Medical Solutions, Stockholm, Sweden). To 
quantify 64Cu-GD2 uptake in tumor lesions, a relative 
41% of maximum iso-contour VOI was used. The 
normal tissue uptake was evaluated with a 1 ml 
spheric VOI for small organs (thyroid, parotid gland, 
left ventricle myocardium, bloodpool in aorta 
descendens and pancreas) and by a 3 ml spheric VOI 
for larger organs (brain, lung, liver, muscle, spleen, 
kidneys and in a non-metastatic lumbar vertebra for 
the bone marrow). Tumor to background ratio 
(TBRmean) was assessed for various areas and organs.  

Visual Analysis of 64Cu-GD2 uptake 
A four-point Likert scale was defined for the 

visual assessment of 64Cu-GD2 uptake in the tumor 
areas compared to various background regions. 

Likert 0: 64Cu-GD2 < bone marrow 
Likert 1: 64Cu-GD2 uptake ≥ bone marrow; < 

bloodpool 
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Likert 2: 64Cu-GD2 uptake ≥ bloodpool 
Likert 3: 64Cu-GD2uptake >> bloodpool 
GD2 positive lesions were defined as Likert 2 or 

3. 

Image quality 
The image quality was subjectively evaluated by 

the readers. In addition, a coefficient of variation 
(CoV) was determined for objective analysis. This 
coefficient is considered a measure of the statistical 
technical variation in PET imaging [29]. For this 
purpose, a 14 ml spherical volume of interest (VOI) 
was placed in the right liver lobe and the 
standardized uptake value (SUV) was measured. CoV 
was calculated using the following formula: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆 
𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 

Biodistribution and Radiation Dosimetry 
Approximated dosimetry was calculated in the 

six patients scanned on two consecutive days. 
Radiation absorbed doses in organs such as liver, 
kidneys, lung or spleen and in tumor lesions were 
estimated from the 64Cu time-integrated activity 
coefficient (TIAC) in the predefined regions of 
interest. Radioactivity concentration was estimated 
from VOIs defined from MRI images at each 
timepoint using Hermes Affinity Viewer® software. 
OLINDA® software (Vanderbilt University, USA) 
was used for dosimetric analysis throughout.  

Histology and Immunohistochemistry 
Formalin-fixed and paraffin-embedded tissue 

sections were stained with hematoxylin and eosin 
(H&E). Immunohistochemistry was performed on a 
Ventana BenchMark ULTRA instrument using the 
Snp88 clone for synaptophysin (DCS-Diagnostics, 
Hamburg, Germany), the DAK-A3 clone for 
Chromogranin A (DAKO Products Agilent, Santa 
Clara CA, USA) and the 14.G2a clone for GD2 (Merck 
Millipore, Burlington MA, USA).  

Statistical Analysis 
Normality of distribution was tested using the 

Shapiro-Wilk test. Mann-Whitney U-Test was 
performed for not normally distributed variables. The 
statistical analysis was performed using GraphPad 
Prism® 9.4 software (GraphPad Software, Boston MA, 
USA). p < 0.05 was considered as significant. 

Results 
Tumor detection in 64Cu-GD2 PET/MRI and 
safety 

In 2 of 4 patients with suspected cancer 
recurrence, the presence of malignant tumor lesions 

could be excluded by PET/MRI, since no suspicious 
lesions were detectable (one patient with neuro-
blastoma and one patient with Ewing’s sarcoma). 
Consequently, PET/MRI imaging detected metastatic 
tumor disease, in 9 of 11 patients (Table 1). Of these, 5 
showed bone, 3 lung, 2 lymph node and one patient 
showed liver metastases (Table S1).  

Only one patient reported dizziness during 
64Cu-GD2 infusion, which disappeared by reducing 
the flow rate. No other drug-related pharmacologic 
effects or physiologic responses were reported. 

Image quality 
Increasing injected activity from 2-3 MBq per 

kg/BW as initially used in the first four patients to 4-5 
MBq per kg/BW in the following 7 patients improved 
the subjective image quality. To objectify this, the CoV 
was assessed (Figure 1), which showed a significantly 
higher CoV in the patients with lower injected 
64Cu-GD2 activity (2-3 MBq/kg/BW: 0.3 ± 0.1 vs. 4-5 
MBq/kg/BW: 0.2 ± 0.1; p = 0.02). Moreover, statistical 
image quality was found to decrease on day 2 in those 
patients with two PET/MRI imaging timepoints (n = 
6), as reflected by a rise of CoV (day 1: 0.2 ± 0.1 vs. day 
2: 0.3 ± 0.1; p = 0.10). 

Biodistribution and Dosimetry 
In one patient, no GD2-expression could be 

detected in any tumor lesions. The average SUVmean 

(5.8 ± 3.7) in representative GD2-positive lesions (n = 
8) was higher than that in the lung (0.8 ± 0.4), liver (3.4 
± 1.8), muscle (0.3 ± 0.1), bone marrow (1.1 ± 0.5) and 
bloodpool (4.0 ± 2.1) in the total population (n = 11). 
TBRmean was excellent in the bones (8.5), muscles 
(21.7), and lungs (7.9). Since 64CU-GD2 does not cross 
the blood-brain barrier, low SUV values were 
measured (Figure 2, Figure S1). 

When comparing only the patients who had two 
scans (n = 6) the average 64Cu-GD2 uptake of the 
tumor lesions decreased between day 1 (SUVmean 7.4 ± 
3.8) and day 2 (SUVmean 6.0 ± 2.3). No additional lesion 
was detected on day 2, when compared to day 1. 
Therefore, data from day 1 were used for further 
analyses of all patients. Normal tissue biodistribution 
on day 1 and day 2 is provided in Figure 2 and Figure 
S1. 

The quantification of the absorbed dose is 
presented in Table 2. The highest radiation dose in 
normal tissue was estimated in the liver with a mean 
dose of 0.15 mGy/MBq (range: 0.04-0.21 mGy/MBq) 
and in the spleen with 0.11 mGy/MBq (range: 
0.05-0.18 mGy/MBq), respectively. The estimated 
whole body radiation dose was 0.03 mGy/MBq 
(range: 0.02-0.04 mGy/MBq). 
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Figure 1. A: The schematic workflow of 64Cu-GD2 application, PET/MRI and imaging timepoints is shown. B: A significantly higher coefficient of variation (CoV) as a measure 
of poorer image quality (p < 0.05) was assessed in the four patients after injection of 2-3 MBq per kg/BW 64Cu-GD2 compared to the seven patients after injection of 4-5 MBq 
per kg/BW 64Cu-GD2 (left). A tendency towards lower CoV and thus improved image quality was found on day 1 compared to day 2 in six patients, which were examined at two 
timepoints (right). All Data are presented as the mean ± standard error and considered significant at p < 0.05. Partially created with BioRender.com. 

 

Table 2. Estimated radiation absorbed dose in mGy/MBq (as 
calculated by OLINDA® software)  

Site Mean Maximum Minimum n 
Kidney 0.09 0.16 0.04 6 
Liver 0.15 0.21 0.04 6 
Lung 0.07 0.1 0.04 6 
Spleen 0.11 0.18 0.05 6 
Tumor 0.19 0.46 0.07 4 
Whole Body 0.03 0.04 0.02 6 

 

64Cu-GD2 expression in various tumor types 
All 5 patients with detectable neuroblastoma 

lesions showed 64Cu-GD2 uptake in several but not all 
metastases. 2 of these patients presented with a high 
64Cu-GD2 uptake (ID1, ID10), but 3 others had only a 
low to moderate tumor uptake (ID 4, ID7, ID9) (Figure 

3A). In addition, GD2-positive tumor burden seemed 
to have an impact on physiological tracer distribution, 
as demonstrated in patient ID1, presenting with 
disseminated disease (Figure 4), but also quite low 
64Cu-GD2 uptake in the liver and low bloodpool 
activity already on day 1, possibly indicating a tumor 
sink effect. The multiple bone metastases showed 
particularly high tumor uptake up to SUVmax/ 
SUVmean 30.2/20.1, but only moderate 64Cu-GD2 
uptake in the dura metastases. 

Interestingly, this particular patient, was 
previously considered to be GD2 negative based on 
histological evaluation of a dura metastasis (Figure 5). 
The decision for PET was made due to progressive 
disease 8 months later and lack of further therapeutic 
options, demonstrating intense GD2 expression in the 
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disseminated bone metastases thus providing a 
treatment target.  

3 of 4 sarcoma patients with detectable tumor 
showed increased 64Cu-GD2 uptake in at least one 
tumor lesion (Figure 3A). In 2 of these patients, a 
heterogenous GD2 expression was detected with 
Likert 1 to 3 and 0 to 3. In particular, one of them (ID6) 
showed an intense uptake in bone lesions, but no 
uptake in the multiple lung and lymph node 
metastases of more than 3 cm transaxial diameter 
(Figure 6). In the remaining patient (ID3) multiple 
lung metastases showed no 64Cu-GD2 uptake. They 

were histologically confirmed as lacking GD2 
expression after PET/MRI. 

Summing up, 64Cu-GD2 uptake was shown to be 
very heterogenous in 5 of 8 patients (Figure 3).  

Furthermore, we compared different MRI 
derived parameters of GD2 positive and negative 
lesions. There was no statistically significant 
difference in lesion size. Additionally, there was no 
statistically significant difference in apparent 
diffusion coefficient (ADC) values between GD2 
positive and negative lung or bone metastases (Figure 
S2). 

 

 
Figure 2. Patient based analysis of 64Cu-GD2 biodistribution assessed by semiquantitative measurements (SUVmean) in PET in all patients on day 1 (n = 11) (A) and in patients with 
two scans (n = 6) on day 1 and day 2 (B). A: Average 64Cu-GD2 uptake in various organs and GD2 positive tumor lesions is presented, revealing high tumor to background ratios 
in relevant areas such as bone marrow, lung and muscle. B: Decreasing 64Cu-GD2 uptake is found on day 2 in both organs and tumors. 
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Figure 3. GD2 expression in tumor lesions as measured by 64Cu-GD2 PET/MRI in 9 patients with detectable disease. A: The visual rating of individual lesion uptake against 
background using a 4-point Likert scale is presented. B: Semiquantitative assessment of 64Cu-GD2 uptake in detectable tumor lesions (up to 10 lesions per organ) measured as 
SUVmean is shown. The colored representation of the column indicates the respective median value. 

 

Further therapy and imaging around 64Cu-GD2 
PET/MRI 

Treatment options were discussed by an 
interdisciplinary pediatric tumor board. Considering 
largely high GD2 expression in PET/MRI, decision 
was made for dinutuximab beta therapy in 5 patients 
(Table 3). In the other 4 cases, chemotherapy was 
chosen for 3 patients (ID3: gemcitabine/docetaxel; 

ID6: irinotecan/temozolomide; ID9: melphalan/ 
ceritinib) while one patient received 131I-MIBG 
therapy. Progression free survival (PFS) was 
determined by CT, MRI or death. Various imaging 
modalities have been performed on these patients at 
different stages of their disease (Table S2). There was a 
trend towards longer PFS for patients receiving 
GD2-targeted treatment. 
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Table 3. Oncological treatment performed after 64Cu-GD2 
PET/MRI and subsequent image-based progression free survival. 
For both patients without detectable tumor (ID 2 and 11) 
follow-up period is given. IT = immunotherapy with dinutuximab 
beta; MIBG = 131I-MIBG therapy 

Patient ID Oncological treatment performed 
after 64Cu-GD2 PET/MRI 

Progression free survival 
(months) 

1 IT 3 
2 watch and wait  9 
3 Gemcetabine/Docetaxel 2 
4 IT 30 
5 IT 4 
6 Irinotecan/Temozolomide 2 
7 MIBG 4 
8 IT 3 
9 Melphalan/Ceritinib 1 
10 IT 4 
11 watch and wait 6 

 

Discussion 
A non-invasive marker for the holistic 

assessment of GD2 expression and GD2 antibody 

tissue penetration in-vivo is highly desirable, as GD2 
is considered a promising primary target for cancer 
immunotherapy [5]. Because it’s not only 
overexpressed in pediatric tumors such as 
neuroblastoma, as osteosarcoma or Ewing’s sarcoma, 
but also in various other tumor such as small cell lung 
cancer, breast, glioma and soft tissue sarcoma as well 
as melanoma [30], a theranostic approach based on 
GD2 would offer a wide range of clinical applications.  

This study revealed that PET imaging with 
64Cu-GD2 enables a non-invasive visualization and 
quantification of GD2 expression in-vivo in different 
pediatric cancer entities such as neuroblastoma, 
osteosarcoma, and Ewing’s sarcoma. Moreover, 
64Cu-GD2 PET/MRI was able to reveal inter- and 
intraindividual heterogeneity and was associated 
with only low radiation burden, allowing its use in 
children for both treatment stratification and 
treatment response.  

 

 
Figure 4. 64Cu-GD2-PET/MRI of a 20 year old female patient (ID1) with disseminated metastatic neuroblastoma and intense GD2 expression of bone lesions. Maximum intensity 
projection of PET images on day 1 (A), coronal (upper row) and transaxial (lower row) representation of fused PET/MRI (B, D) and MRI (coronal T2 STIR and transaxial T2 
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HASTE sequence) (C, E) are shown. The transaxial images correspond to the area of the colored box in the coronal fused images. Multiple 64Cu-GD2 positive bone metastases 
are depicted in the skull, spine, arms and legs with a very high SUVmax up to 30.2 (A). 64Cu-GD2 positive metastases are demonstrated in both proximal femora (white arrows; 
B, C). 64Cu-GD2 positive bone metastases with no clear signal in MRI (red arrows; D, E) are shown, revealing the complimentary role of 64Cu-GD2 PET for tumor detection. 

 
Figure 5. Representative micrographs of a dura metastasis specimen from patient ID1. HE staining (A) shows tumor cells of a poorly differentiated neuroblastoma with strong 
immunohistochemical positivity for synaptophysin (white arrow in B) and chromogranin A (red arrow in C), while being negative for GD2 (D). Scale bar = 20 µm.  

 
Figure 6. 64Cu-GD2 PET/MRI of a 18 year old male patient with metastasized osteosarcoma (ID6). Maximum intensity projection of PET images on day 1 (A), transaxial 
representation of fused PET/MRI (B, D) as well as MRI (T2 HASTE sequence) (C, E) are shown. A 64Cu-GD2 positive bone metastasis (white arrow) was found in the left femur 
with a SUVmax of 8.5 (B, C). A lung metastasis (red arrow) demonstrates no significant uptake (D, E). 

 
In 8 of 9 patients with evidence of tumor lesions 

identified in multiparametric MRI, at least one lesion 
showed increased 64Cu-GD2 uptake in PET. 4 of those 
8 patients had a high 64Cu-GD2 uptake as defined by a 
Likert scale of 3 (2 neuroblastoma and 2 osteo-
sarcoma), while 4 presented with moderate 64Cu-GD2 
uptake (3 neuroblastoma, and 1 Ewing’s sarcoma) and 
one patient suffering from osteosarcoma was 
considered as GD2 negative. 

In our present analysis 64Cu-GD2 PET showed a 
high tumor to background ratio in the bone marrow, 
the skeletal bone, and lymph nodes which are known 
to be the most common metastatic sites in neuro-
blastoma [31, 32]. Furthermore, tumor to background 
ratio in areas, which are typically affected by 
metastases in osteosarcoma and Ewing’s sarcoma like 
muscle, bone and lung, were also high [33, 34]. 
However, relatively high tracer uptake in the liver 
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and spleen, as well as slow clearance of the tracer 
from the blood pool, may limit the assessment of GD2 
expression in hepatic or splenic lesions.  

As the injected activity of 2-3 MBq per kg/BW 
used for the first four PET/MRI scans were associated 
with only moderate image quality, we decided to 
increase the activity to 4-5 MBq per kg/BW, which 
resulted in a significant improvement. Both, the 
higher count rate for PET-scanning as well as the 
increased amount of radiolabeled antibody might 
have contributed, as the concentration remained 
unchanged. The total amount of CH14.18/CHO 
antibody administered in this study was approxi-
mately 0.08 to 0.47 mg which accounts for less than 
5% of that given in clinical treatment with 
dinutuximab beta. Still, one patient reported dizziness 
during 64Cu-GD2 infusion. As the event disappeared 
by reducing the infusion flow rate, it is to be 
considered as an antibody-induced reaction. 
However, no severe adverse reactions were reported 
following 64Cu-GD2 application in this study. 

Recently, we reported our experience with the 
radiolabeled antibody [131I]-GD2-ch14.18 [35], using 
the beta- and gamma-emitting radionuclide 131I for 
Single-Photon-Emission-Computed-Tomography / 
X-ray-Computed-Tomography (SPECT/CT) imaging. 
Although [131I]-GD2-ch14.18 was considered to be an 
interesting approach for radioimmune therapy, the 
resulting image quality in SPECT/CT was clearly 
poorer than that currently achieved with 64Cu-GD2 
PET and did not allow for (semi-) quantitative 
assessment of GD2 expression in tumor lesions. 
Moreover, whole body radiation exposure could be 
significantly reduced with 64Cu-GD2 (0.03 mGy/ 
MBq) as compared to [131I]-GD2-ch14.18 (0.41 
mGy/MBq). This also applies for all organ doses such 
as liver (0.15 mGy/MBq; 0.57 mGy/MBq), kidney 
(0.09 mGy/MBq; 0.57 mGy/MBq), spleen (0.15 
mGy/MBq; 1.15 mGy/MBq) and lung (0.07 
mGy/MBq; 0.88 mGy/MBq). 

Due to the slow clearance of immunoconjugates 
from the blood, immunoimaging with antibodies 
generally calls for radionuclides with rather long 
half-lives such as the radiometals 64Cu (half-life of 12.7 
h ) or 89Zr (half-life of 78.4 h) meaning PET imaging 
still comes with non-negligible radiation exposure [36, 
37]. However, the radiation dose was found to be 
significantly lower (approximately by a factor of 8 to 
9) for 64Cu labeled tracers as compared to 89Zr [38-40]. 
Remarkably, 64Cu-GD2 PET image quality on day 1 
after injection was high despite the slow blood 
clearance of 64Cu-GD2, arguing for the use of this 
radioisotope instead of 89Zr, which otherwise would 
be required for even longer residence time of the 

tracer in blood at the cost of limited image quality in 
earlier images. Using new generation long-axial- 
field-of-view PET scanners with dramatically 
improved imaging quality because of higher spatial 
resolution and increased sensitivity has the potential 
to reduce the injected tracer activity [41]. Thus, these 
new scanners will allow to decrease radiation 
exposure in immunoimaging, which is especially 
desirable in pediatric patients. 

Presently GD2 is mainly used as immunotherapy 
target in neuroblastoma [5, 18], but other potentially 
GD2-positive tumors such osteosarcoma and Ewing’s 
sarcoma are also under investigation [16, 42]. Current 
inconsistency in GD2 immunohistochemistry staining 
is a serious issue that has also been recognized by the 
children’s oncology group [43].  

Therefore, in order to obtain an adequate 
therapy stratification but also to avoid potentially 
harmful and ineffective treatment, pre-therapeutic 
visualization of the GD2 status may be helpful. As a 
first proof of concept, we reported the correlation of 
high GD2 expression in histology with 64Cu-GD2 
uptake in one patient with osteosarcoma [26].  

For operable tumors, performing an initial 
64Cu-GD2 scan initially could be an option to 
determine the expression status. If imaging results 
indicate GD2 positivity, targeted surgery could be 
performed using dinutuximab beta labeled with a 
fluorescence dye [44, 45]. In the current patient cohort, 
we found that GD2 expression in neuroblastoma was 
heterogenous both inter- and intraindividually. This 
was illustrated by a patient whose dura metastasis 
was initially confirmed to be histologically 
GD2-negative, while PET performed few months later 
showed intense GD2-targeting in disseminated bone 
metastasis. This case illustrates the risk of sampling 
bias in metastatic tumor disease.  

Taken into consideration that the primary 
therapy of all patients with high risk neuroblastoma 
comprises dinutuximab (US) or dinutuximab beta 
(Europe) [46], and current trials encourage to treat 
patients with relapsed neuroblastoma again with 
GD2-targeting antibodies [47, 48], our finding of GD2 
negative lesions in 3 patients with GD2 positive 
neuroblastoma is worrisome. It challenges the current 
clinical practice, and strongly requires further 
investigation. Of note, all neuroblastoma patients in 
our cohort were patient with relapsed neuroblastoma 
that were pretreated with dinutuximab beta. 
Therefore, the effect of a sampling bias due to the 
pretreatment with dinutuximab beta remains elusive, 
as well as the effect of tumor evolution during initial 
dinutuximab treatment. Future 64Cu-GD2 imaging 
studies need to address the heterogeneity of GD2 
expression in primary neuroblastoma and need to 
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correlate the presence of GD2 negative lesions with 
outcome both in primary as well as relapsed 
neuroblastomas treated with dinutuximab or 
dinutuximab beta.  

In addition, we showed relevant GD2 tracer 
uptake in cases of Ewing’s sarcoma and osteosarcoma, 
indicating potential for GD2 directed 
immunotherapy. On the other hand, several lesions 
showed only a weak 64Cu-GD2 uptake. Additionally, 
a restriction of 64Cu-GD2 access might have played a 
role, potentially caused by tissue characteristics such 
as interstitial pressure or necrosis [49-52]. Therefore, 
further investigation involving multiple imaging 
centers is needed to confirm the value of this 
approach. Our data suggest that the introduction of 
non-invasive GD2 imaging with PET can be 
considered a useful diagnostic tool for selecting 
personalized therapy in cancers that can express GD2. 
This theranostic approach has the potential to provide 
additional clues to GD2 expression and tissue 
penetration of GD2-targeting antibodies.  

Limitations 
Limitations of the current study include its 

retrospective design and the heterogenous and small 
patient cohort. Furthermore, in most cases, 
immunohistochemical confirmation was not available 
for ethical reasons, as this would have required fresh 
tissue samples, which can only be obtained by 
surgical intervention. 

Conclusion 
64Cu-GD2 PET is a very promising new imaging 

method for non-invasive visualization and 
quantification of GD2 expression in different types of 
cancer, especially neuroblastoma, Ewing’s sarcoma 
and osteosarcoma. In our cohort of heavily pretreated 
patients, 64Cu-GD2 PET influenced therapy 
stratification. As dinutuximab beta is an already 
approved drug targeting GD2 and anti-GD2-CART 
therapies were reported to be effective, 64Cu-GD2 
could open up a new area of image-guided therapy 
and thus, pave the way to GD2 theranostics.  

Supplementary Material  
Supplementary figures and tables. 
https://www.thno.org/v14p1212s1.pdf  
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