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Abstract 

The field of theranostics is rapidly advancing, driven by the goals of enhancing patient care. Recent 
breakthroughs in artificial intelligence (AI) and its innovative theranostic applications have marked a 
critical step forward in nuclear medicine, leading to a significant paradigm shift in precision oncology. For 
instance, AI-assisted tumor characterization, including automated image interpretation, tumor 
segmentation, feature identification, and prediction of high-risk lesions, improves diagnostic processes, 
offering a precise and detailed evaluation. With a comprehensive assessment tailored to an individual’s 
unique clinical profile, AI algorithms promise to enhance patient risk classification, thereby benefiting the 
alignment of patient needs with the most appropriate treatment plans. By uncovering potential factors 
unseeable to the human eye, such as intrinsic variations in tumor radiosensitivity or molecular profile, AI 
software has the potential to revolutionize the prediction of response heterogeneity. For accurate and 
efficient dosimetry calculations, AI technology offers significant advantages by providing customized 
phantoms and streamlining complex mathematical algorithms, making personalized dosimetry feasible 
and accessible in busy clinical settings. AI tools have the potential to be leveraged to predict and mitigate 
treatment-related adverse events, allowing early interventions. Additionally, generative AI can be utilized 
to find new targets for developing novel radiopharmaceuticals and facilitate drug discovery. However, 
while there is immense potential and notable interest in the role of AI in theranostics, these technologies 
do not lack limitations and challenges. There remains still much to be explored and understood. In this 
study, we investigate the current applications of AI in theranostics and seek to broaden the horizons for 
future research and innovation. 
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Introduction 
Theranostics combines advanced imaging 

techniques with targeted therapy, offering insights 
into critical areas of precision oncology, such as 
optimized treatment regimens and efficient 
monitoring. Although early outcomes from trials and 
registries have been favorable [1-5], modern 
theranostics is still in early development. Therefore, 
many clinical nuances, including individualized dose 
determination or predictors of treatment success, 

require further exploration. 
Artificial intelligence (AI) comprises advanced 

computational algorithms designed to recognize 
patterns in intricate datasets and perform tasks by 
replicating human intelligence. Given modern 
data-processing capabilities, AI applications in other 
sophisticated fields such as radiomics, genomics, or 
transcriptomics may accelerate advancements in 
patient management by offering valuable insights into 
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the prediction of outcomes and enriching 
personalized health care, which is the ultimate goal of 
theranostics [6].  

Despite the incorporation of AI into various 
levels of healthcare already, its role in theranostics 
applications deserves further exploration. In this 
article, we review current and emerging AI 
applications on important aspects of theranostics, 
such as patient selection, tumor dosimetry, patient 
monitoring, and drug discovery to introduce novel 
viewpoints and inspire healthcare professionals 
toward future AI-driven research in this field. 

The Concept of AI 
Before we explore the applications of AI in 

theranostics, it is essential to be familiar with some 
basic terminology. AI is the broadest concept that 
encompasses all algorithms enabling machines to 
execute human-like cognitive functions, such as 
problem-solving, reasoning, and learning [7, 8]. 
Machine learning (ML), deep learning (DL), and 
neural networks (NNs) are all subsets of AI [9]. It is 
essential to highlight that employing more advance 
algorithms and more extensive data leads to more 
accurate outcomes and streamlines the execution of 
complex tasks. As such, distinctions among these 
concepts (ML, DL, ANNs) can be made based on 
nuances such as learning methods and the required 
volume of data [7].  

Machine learning, a comprehensive subset of AI, 
can learn from 'structured data,' enabling it to identify 
patterns and learn and perform specific tasks [9]. 
Structured data is well-organized and formatted, 
usually presented in numbers or letters such as dates 
or names, making it quickly processed by ML 
algorithms [7]. In contrast, unstructured data, which 
involves formats like images or texts, lacks a 
predetermined organization or format, making it 
more complex and challenging to analyze [10]. 
Although unstructured data offers a more in-depth 
understanding of context, it requires more 
sophisticated algorithms than those used for ML. 

Neural networks (NNs) are a subset of machine 
learning (ML), with multiple nodes attempting to 
simulate human neurons and their interactions [9]. 
These nodes are arranged as one input layer, one or 
more hidden layers, and one output layer [11]. While 
a single-layer neural network can generate 
preliminary predictions and/or decisions, 
incorporating additional layers and more extensive 
data enhances the quality of outcomes. Neural 
networks come in various forms, each suited to 
different types of data and purposes. Convolutional 
neural networks (CNNs), a specialized type of ANN, 
employ advanced mathematical operations to analyze 

and recognize visual data, holding immense potential 
in the field of radiology [9]. 

Deep learning represents the most evolved 
concept within AI, utilizing sophisticated computer 
programming and extensive training to decipher 
complex patterns hidden in large datasets [7]. Deep 
learning consists of multiple NNs to execute highly 
sophisticated tasks with remarkable accuracy. 
Essentially, the term 'deep' refers to multiple layers of 
NNs, enabling them to handle complex tasks more 
effectively [12]. Furthermore, unlike traditional ML, 
which processes structured data, DL extends its 
capabilities to analyze unstructured data without 
human intervention. Since unstructured data 
constitutes a larger portion of currently available data, 
DL is poised to shape the future of technology. 

AI in Theranostics 
Modern molecular imaging technology 

generates abundant imaging data. These data 
ultimately require sophisticated automated tools and 
software systems. Since the introduction of the first 
FDA-approved AI-enhanced medical device in 1995, 
AI has been incorporated into multiple facets of 
healthcare practices, and over 520 AI/ML algorithms 
have been approved, the majority falling under 
radiological and oncological applications [13]. In 
Table 1, we provide an overview of FDA-approved 
AI-based radiological software systems in clinical 
oncology. However, it is important to highlight that 
none of them are dedicated solely to theranostics. In 
this chapter, we explore key areas in which AI 
applications can significantly contribute to and 
enhance different aspects of theranostics. 

Patient Selection and Risk Stratification 
Given the unique nature of each patient, aligning 

patients with the optimal treatment options 
necessitates a thorough analysis taking into account 
both the patient's individual characteristics and the 
tumor's specifics. Artificial intelligence holds strong 
promise for this process by integrating diverse types 
of patient- and tumor-specific data, including 
multi-omics (such as genomics and proteomics) 
(Figure 1). This integration enables a deeper 
understanding of complex biological systems and 
diseases, thereby improving the process of selecting 
the most suitable treatment for each patient. 

Traditional cancer stratification mainly relies on 
the characterization of cancer, including pathological 
and radiologic features, genetic signatures, and serum 
markers [14, 15]. However, manual interpretation of 
histopathologic samples and radiologic imaging 
might be prone to interobserver variability.  
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Table 1. Overview of FDA-approved AI-based radiological software systems in clinical oncology 

Device Company Short description FDA approval number Date of approval* 
Breast cancer  
BU-CAD TaiHao Medical Inc. Detection of suspicious lesions for breast cancer K210670 2021 
Koios DS Koios Medical, Inc. Detection of suspicious lesions for breast and thyroid cancer K212616 2021 
MammoScreen 2.0 Therapixel Detection of suspicious lesions for breast cancer K211541 2021 
Lunit INSIGHT MMG Lunit Inc. Detection of suspicious lesions for breast cancer K211678 2021 
Saige-Q DeepHealth, Inc. Detection of suspicious lesions for breast cancer K203517 2021 
Visage Breast Density Visage Imaging GmbH The BI-RADS breast density classification K201411 2021 
Imagio Breast Imaging 
System 

Seno Medical Instruments, 
Inc. 

The BI-RADS breast density classification P200003 2021 

PowerLook Density 
Assessment Software V4.0 

ICAD Inc. The BI-RADS breast density classification K211506 2021 

Volpara Imaging Software Volpara Health 
Technologies Limited 

The BI-RADS breast density classification K211279 2021 

Genius AI Detection Hologic, Inc. Identification of suspicious breast lesions K201019 2020 
Genius AI Detection Hologic, Inc. Detection of suspicious lesions for breast cancer K201019 2020 
WRDensity by 
Whiterabbit.ai 

Whiterabbit.ai Inc. Software for BI-RADS breast density classification K202013 2020 

MammoScreen Therapixel Radiological software for lesions suspicious for breast cancer K192854 2020 
HealthMammo Zebra Medical Vision Ltd. Identification of suspicious breast lesions K200905 2020 
Densitas Densityai Densitas, Inc. The BI-RADS breast density category using mammography K192973 2020 
TransparaTM Screenpoint Medical B.V. Identification of suspicious breast lesions K192287 2019 
ProFound AI Software V2.1 ICAD Inc. Identification of suspicious breast lesions K191994 2019 
cmTriage CureMetrix, Inc. Identification of suspicious breast lesions K183285 2019 
TransparaTM Screenpoint Medical B.V. Identification of suspicious breast lesions K192287 2019 
Koios DS for Breast Koios Medical, Inc Identification of suspicious breast lesions K190442 2019 
PowerLook Tomo Detection 
V2 Software 

ICAD Inc. Identification of suspicious breast lesions K182373 2018 

ProFound™ AI Software 
V2.1 

iCAD, Inc The BI-RADS breast density classification using mammography K191994 2018 

DM-Density  
Densitas, Inc. 

The BI-RADS breast density classification K170540 2018 

Volpara Imaging Software Volpara Health 
Technologies Limited 

The BI-RADS breast density classification K182310 2018 

DenSeeMammo STATLIFE The BI-RADS breast density classification K173574 2018 
Prostate cancer  
ProstatID ScanMed, LLC The detection and diagnosis of prostate cancer utilizing MRI images K212783 2022 
aPROMISE EXINI Diagnostics AB Identification and quantitative analysis of suspicious regions on 

PSMA PET/CT 
K211655 2021 

QUIBIM Precision Prostate 
(qp-Prostate) 

QUIBIM S.L. Software to detect prostate cancer and prostate diseases K203582 2021 

PROView GE Medical Systems SCS The PI-RADS prostate density classification using mpMRI K193306 2020 
A View LCS Coreline Soft Co., Ltd. The PI-RADS prostate density classification using mpMRI K201710 2020 
Quantib Prostate Quantib BV The PI-RADS prostate density classification using mpMRI K202501 2020 
ClearRead CT Riverain Technologies, 

LLC 
The PI-RADS prostate density classification using mpMRI K161201 2016 

Lung cancer  
syngo.CT Lung CAD 
(Version VD20) 

Siemens Healthcare GmbH Image processing of CT scans for solid-subsolid nodules K203258 2021 

Optellum Virtual Nodule 
Clinic, Optellum Software, 
Optellum Platform 

Optellum Ltd Identify of suspected pulmonary nodules K202300 2021 

Auto Lung Nodule 
Detection 

Samsung Electronics Co., 
Ltd. 

Detection of suspected pulmonary nodules K201560 2021 

InferRead Lung CT.AI Beijing Infervision 
Technology Co., Ltd. 

Identify of suspected pulmonary nodules K192880 2020 

AVIEW LCS Coreline Soft Co., Ltd Identify of suspected pulmonary nodules K193220 2020 
Syngo.CT Lung CAD Siemens Medical 

Solutions, Inc 
Identify of suspected pulmonary nodules K193216 2020 

Arterys MICA Arterys Inc Diagnostic imaging for liver, lung cancer K182034 2018 
Brain  
NeuroQuant CorTechs Labs, Inc Interpretation of MRI brain images K170981 2017 
Quantib Brain 1.2 Quantib BV Interpretation of MRI brain images K163013 2017 
CT CoPilot ZepMed Identification and segmentation of brain structures K161322 2016 
cNeuro cMRI Combinostics Oy Identification and segmentation of brain structures K171328 2018 
Miscellaneous  
aPROMISE X EXINI Diagnostics AB Image processing, quantification and reporting of PET scans K220590 2022 
Koios DS Koios Medical, Inc. Detection of suspicious lesions for breast and thyroid cancer K212616 2021 
Saige-Dx DeepHealth, Inc. Radiological software for lesions suspicious for cancer K220105 2022 
Discovery MI Gen2 GE Medical Systems, LLC. PET/CT system for producing attenuation corrected images K211846 2021 
Ezra Plexo Software Ezra AI Inc. Software for detecting cancerous lesions in MR images K192969 2020 
QuantX Quantitative Insights, Inc. Radiological software for lesions suspicious for cancer DEN170022 2020 
Deep Learning Image 
Reconstruction 

GE Medical Systems, LLC. CT image reconstruction K183202 2019 

SubtlePET Subtle Medical, Inc. Noise reduction algorithm K182336 2018 
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Device Company Short description FDA approval number Date of approval* 
Quantitative Total 
Extensible Imaging (QTxi) 

AIQ Solutions, Inc. Create ROI contours for quantitative/statistical analysis and 
dosimetry 

K173444 2018 

Arterys Oncology Dl Arterys Inc. Asist with analysis of a suspicious lesion on CT or MRI K173542 2018 
Radiomics App V1.0 Microsoft Corp. Analysis of CT and MRI for dosimetry purposes K173420 2017 
PixelShine AlgoMedica CT noise reduction algorithm K161625 2016 

* Last FDA update on approved AI-enabled medical technologies was released on October 5, 2022. 
AI: artificial intelligence; CT: computed tomography; FDA: Food and Drug Administration; MRI: magnetic resonance imaging; mpMRI: multi-parametric MRI; ROI: region 
of interest. 

 

 
Figure 1. The use of AI to integrate multi-omics biomedical data presents a powerful method for understanding complex biological systems and diseases. Multi-omics data, 
encompassing genomics, proteomics, metabolomics, transcriptomics, radiomics, and more, offer a comprehensive perspective on the molecular mechanisms that underlie health 
and disease. AI algorithms, especially those in machine learning and deep learning, excel at analyzing and integrating these heterogeneous datasets, revealing patterns, interactions, 
and insights that might not be detectable by human eyes. This empowers researchers and clinicians to deepen their understanding of disease pathology, improve patient selection, 
aid in dosimetry and drug discovery, and develop personalized treatment strategies. Harnessing AI's power in integrating multi-omics data marks a significant leap forward for 
precision medicine and healthcare advancements. 

 
Furthermore, observers may not fully capture 

the intricate diversity of tumor characteristics due to 
the inherent limitations of human eyes. For instance, 
current guidelines for using 177Lu-PSMA-617 in 
prostate cancer recommend molecular imaging to 
evaluate tumor PSMA expression (68Ga/18F-PSMA 
PET or 99mTc-PSMA SPECT/scintigraphy) [16]. While 
a significant proportion of patients with high PSMA 
uptake show a noticeable prostate-specific antigen 
(PSA) response, 30% still do not achieve satisfactory 
PSA decline [1]. Likewise, 68Ga-DOTATATE PET/CT 

is the preferred method for assessing somatostatin 
receptor (SSTR2) expression and guiding radionuclide 
therapy (RNT) candidate selection [17]. Notably, even 
when high 68Ga-DOTATATE uptake suggests 
increased SSTR2 expression in tumor cells, RNT is not 
effective for all patients [18-20]. It is essential to 
recognize that the efficacy of RNT (Radioligand 
Therapy) is influenced by a variety of factors, not 
solely receptor expression. For instance, the radiation 
absorbed dose by the tumor which is constrained by 
organs at risk with varying tolerance levels to 



Theranostics 2024, Vol. 14, Issue 6 
 

 
https://www.thno.org 

2371 

radiation. Furthermore, as dose-effect relationships 
still remains uncovered, many tumors may remain 
underdosed. However, since the current selection 
criteria for most RNTs are based on receptor 
expression, the discrepancy in treatment response 
among those with high receptor levels highlights a 
gap in understanding the uncovered factors 
influencing treatment efficacy.  

Recently, there has been a growing interest in 
employing radiomics-based AI models to identify 
imaging biomarkers for tumor characterization 
[21-24]. Radiomics, fundamentally, is a quantitative 
method that transforms imaging data into actionable 
clinical information. Kitajima et al. demonstrated that 
the imaging biomarker, developed using AI software 
trained on pre- and post-therapy bone scan images, 
effectively distinguished the responders and the 
non-responders of 223RaCl2 therapy [25]. Papp et al. 
explored the potential of their ML models, trained 
with PET/MRI radiomic data, to differentiate 
between low and high-risk prostate lesions and 
predict biochemical recurrence in patients with 
prostate cancer [26]. They found that radiomic-trained 
supervised ML models can yield highly efficient 
noninvasive lesion characterization with 87% 
sensitivity and 94% specificity. Another study by 
Bevilacqua et al. assessed the value of radiomic 
features derived from the hybrid 68Ga-DOTANOC 
PET/CT in determining the histological grading of 
pancreatic NETs (panNETs) [27]. Their models were 

trained using imaging and histopathologic data from 
excised primary lesions or biopsies. In their study, the 
radiomic model predicted histopathologic grade with 
an 88% sensitivity and an 89% specificity for panNET. 
These studies demonstrate that AI can predict tumor 
grade and metastatic potential for certain cancers, 
such as prostate cancer and NETs [25-28]. Therefore, 
implementation of AI into clinical decision-making 
processes may yield a result in better risk stratification 
and patient selection for theranostic applications 
(Figure 2). 

To effectively leverage AI technology, it is 
required to ensure that the AI models are trained with 
a broad spectrum of data. This enhances their ability 
to generalize and apply the knowledge to unseen 
scenarios. Cysouw et al. established two ML models 
to assess their predictive capabilities on metastatic 
disease and high-risk pathological tumor features 
[28]. One model was trained with 18F-DCFPyL 
PET/CT radiomic data, while the other was trained 
with standard PET features such as SUVs, and 
volumetric data. The study demonstrated that the 
radiomic-based models outperformed the model 
trained with traditional PET parameters, particularly 
in predicting lymph node involvement and high-risk 
pathological tumor features. In this study, the 
predictive power of ML models is significantly 
enhanced by incorporating broader radiomic data 
from PET/CT compared to PET-only data, 
highlighting the importance of comprehensiveness 

 

 
Figure 2. The radiomics workflow incorporates AI-based algorithms to analyze medical imaging data. The radiomics workflow employs AI-based algorithms to extract 
numerous features from medical imaging data. These algorithms enhance both the patient and physician experience by reducing image acquisition time, aiding in noise reduction, 
and automating lesion segmentation, without compromising quality. Utilizing radiomic data, AI software transforms images into high-dimensional, mineable data, facilitating the 
identification of patterns and biomarkers not visible to the human eye. These features can then be correlated with clinical outcomes to enhance diagnostic accuracy, predict 
disease progression, and personalize treatment plans. 
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and diversity of training dataset of ML models. 
Another critical point is AI algorithms continuously 
evolve and improve over time as it processes more 
data. However, it is important to provide accurate and 
standardized imaging data to ensure consistency and 
reliability of the outcome. This will also help address 
technical issues affecting the robustness of radiomic 
features and develop biomarkers for use in diverse 
clinical settings. 

Clinical outcomes of theranostic applications can 
significantly differ among patients, even those at the 
same stage and share similar demographics [1, 10, 29]. 
Many factors may play crucial role in determining the 
response to treatment, such as tumor microenviron-
ment, tumor biology and molecular profile, metastatic 
burden, and more. Among these potential 
explanations of response variability intrinsic tumor 
radiosensitivity also emerges as a critical factor. This 
radiosensitivity may be influenced by diverse 
biological and pathological factors such as hypoxia, 
genetic mutations, and different cell cycle stages [30]. 
In 2022, Kim et al. created an DL model trained on 
genomic data from various cancer types to detect 
variations in response to radiation therapy [31]. Their 
DL model predicted in vitro radiosensitivity with an 
impressive accuracy of 98.85%. Building on this, 
Dromain et al. explored AI's role in predicting 
response variability and survival rates in 
enteropancreatic NETs [32]. They defined response 
heterogeneity as the simultaneous presence of 
responsive and non-responsive lesions within a single 
patient. Their DL model, trained on CT images of 
enteropancreatic NETs, effectively predicted 
progression-free survival after 12 weeks of treatment. 
Moreover, the heterogeneity observed between 
various metastatic lesions has been linked to tumor 
progression. In light of these results, understanding 
the response heterogeneity could offer more clinical 
insight than currently provided by RECIST (Response 
Evaluation Criteria in Solid Tumors), allowing for 
predictions of patient outcomes without solely 
depending on tumor size criteria. These predictions 
are critical, as decisions to stop or continue treatment 
at this stage have the potential to reduce the burden of 
ineffective treatment-related morbidity significantly. 

Accurate disease staging and tumor burden 
quantification are imperative for patient-specific risk 
classification and evidence-based management. 
However, the potential for variations in observer 
assessments can challenge the accuracy of staging 
[33]. Standardizing the staging process can improve 
diagnostic consistency and sharpen the precision of 
clinical judgments. Furthermore, precise tumor 
burden quantification might be a valuable tool for 
assessing an individual's risk and prospective 

prognosis. Studies have shown that parameters such 
as metabolic tumor volume (MTV), an 
imaging-derived metric, serve as predictors for 
outcomes in various types of cancer treated with RNT 
[34-36]. While manual evaluations of tumor burden 
offer crucial insights, they are labor-intensive, which 
hampers the routine use of volumetric parameters like 
MTV in clinical practice. The automated platform, 
PYLARIFY AI™ (aPROMISE), stands out as the only 
FDA-cleared ML-driven software that provides 
standardized PSMA PET reporting on PSMA PET/CT 
images [37, 38]. It employs AI to provide quantitative 
measurements and enhance consistency across 
various readers. Preliminary findings suggest that 
aPROMISE could also upstage patients initially 
evaluated by physicians [38]. FDA clearance of such 
AI-driven technologies signifies a pivotal milestone in 
theranostics, indicating the potential of AI to augment 
physician judgment and optimize overall patient 
management strategies. 

Tumor Dosimetry 
Internal radiation dosimetry quantifies the 

amount of ionizing radiation energy deposited per 
unit mass or voxel of organ/tissue [39]. By predicting 
and identifying the absorbed radiation doses by the 
target, organ-at-risk, and healthy tissues, dosimetry 
studies provide essential insights into the objective 
assessment of a treatment's safety and efficacy for 
each patient [40]. Nonetheless, internal dosimetry is 
rarely performed in nuclear medicine clinical settings, 
unlike its widespread application in radiotherapy 
clinics. This difference is primarily because of the 
complex dynamics of radionuclides within the body 
and the time-intensive processes associated with 
traditional dosimetry techniques. In a routine 
practice, the dosage of radioactivity in theranostics is 
administered either as a fixed activity dose or 
adjusted based on the patient's weight. However, it is 
important to note that the absorbed dose is influenced 
by various well-known internal and external factors, 
such as the physical half-life, type of emitted 
radiation, biological distribution and elimination 
rates, tissue weighting factors, patient and tumor 
characteristics, highlighting the importance of 
adopting personalized dosimetry approaches.  

Given that only trace amounts of radioactivity 
are used for diagnostic studies, the risks of 
radiation-induced damage to healthy tissue are often 
considered negligible [41]. However, for therapeutic 
purposes, radionuclides are also commonly 
administered in standardized dosages, like the 
administration of diagnostic purposes. Even though 
these doses are established to ensure a therapeutic 
success while minimizing toxicity risks, a 
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one-size-fit-all approach may overlook individual 
variabilities, particularly at substantially higher doses. 
In addition, despite encouraging progression-free and 
overall survival results of radionuclide therapies, 
some patients may need retreatment, which increases 
cumulative radiation exposure and likelihood of 
radiation-induced damage [42]. Therefore, adopting 
standardized approach could result in either 
undertreatment or overtreatment of the disease, or 
exceed safe radiation dose thresholds for 
organs-at-risk [43, 44]. 

One unique aspect of theranostics is its capability 
to gather pharmacokinetic data through imaging and 
apply this information to dosimetry calculations [45]. 
To acquire the imaging data, various imaging 
techniques like planar scintigraphy, SPECT/CT, or 
PET/CT can be utilized for tracking the radionuclide 
before or after therapy. The application of these 
imaging modalities at different stages—pre-therapy 
and post-therapy—yields unique insights. While 
pre-therapy imaging is pivotal for individualized 
treatment planning, post-therapy imaging provides 
critical data on the treatment's outcome, including the 
distribution and elimination of radionuclides, offering 
insights into therapy's impact on the target and 
surrounding tissues [46, 47]. However, in a busy 
clinical setting, acquiring multiple pre/post-therapy 
images at various times within a specific timeframe is 
often considered impractical for both healthcare 
providers and patients. Therefore, the demand for 
feasible dosimetry methods has increasingly grown, 
particularly following the widely availability of 
diverse radionuclide therapies [48, 49]. Among these, 
the Hänscheid and prior-information approaches 
stand out as the methods to simplify dosimetry in 
theranostics. The Hänscheid approach employs a 
single SPECT/CT scan at a specific time after each 
cycle of radionuclide therapy to calculate absorbed 
doses [50]. The prior-information approach uses 
time-activity curve models from multiple SPECT/CTs 
after the initial cycle, applying these models to 
single-time-point acquisitions in subsequent therapy 
cycles [51]. In light of the growing body of research 
supporting the effectiveness of time-efficient 
dosimetry methods [47-49, 52], the integration of AI 
technologies, specifically CNN and DL, holds 
significant promise for further optimizing and 
enhancing these processes. Training CNN and DL 
models with extensive datasets from prior dosimetry 
studies and pre/post-therapy images enables the 
identification of patterns that correlate physiological 
parameters with the kinetics of radionuclides.  

Well-established dosimetry methods like the 
Medical Internal Radiation Dose (MIRD) system 
combine biological distribution and clearance data 

and is considered ideal for organ-based dosimetry 
[53]. However, traditional MIRD methods relied on a 
simplified, non-specific model of a 70 kg adult male or 
female as a phantom for these dosimetry calculations, 
resulting in a lack of patient-specific details [54]. 
Another prime example of dosimetry techniques is 
Monte Carlo (MC) simulations [55]. Monte Carlo 
simulations provide in-depth predictions of radiation 
dose distributions within the human body, taking into 
account complex bodily structures and 
radiation-tissue dynamics [56]. Despite the 
advantages of MC simulations dosimetry, its high 
computational demands to perform complex 
equations and algorithms limit its clinical use [45]. To 
address the limitations and harness the strengths of 
traditional dosimetry techniques, an increasing 
number of studies are utilizing them to train DL 
models. Several studies have demonstrated that 
absorbed dose estimation using DL models is on par 
with or even exceeds traditional methods [52, 57-60]. 
Thus, by combining established methodologies with 
cutting-edge DL tools, manual labor and time might 
be significantly reduced while enhancing accuracy.  

AI aids in both pre- and post-treatment 
dosimetry by facilitating organ and tumor 
segmentation, reducing errors and segmentation time. 
For instance, Sharma et al. reported experts require 
approximately 30 minutes to segment a kidney [61]; in 
contrast, Nazari et al. demonstrated an AI-driven 
system segmenting both kidneys in less than 3 
seconds with high accuracy [62]. However, these 
systems are not flawless. AI tools designed for specific 
cancer types may not be universally applicable. 
Indeed, this "Clever Hans Effect"—a phenomenon 
where an AI tool excels at a particular task but 
struggles to generalize to different scenarios—is 
prevalent in AI-driven dosimetry [63, 64]. For 
example, the PET-Assisted Reporting System 
prototype uses NNs trained on lymphoma and lung 
cancer data. However, its accuracy in interpreting 
18F-FDG PET/CT scans for other tumors remains 
uncertain [64].  

Researchers have also explored various 
strategies to accelerate image acquisition time [65]. 
One approach involves reducing the number of 
projections or the time spent per projection. However, 
brief acquisition times can lead to heightened image 
noise, potentially impacting image quality and 
tumor-to-background ratio. This challenge can be 
addressed by using AI-based learnable systems, like 
image-reconstruction neural networks. For instance, 
Shao et al. developed a DL-model, called SPECTnet, 
that directly converts raw projection data into 
high-resolution, low-noise images [66]. By employing 
a novel two-step training strategy and utilizing a vast 
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dataset of 2D phantoms, the research demonstrates 
the capability of their DL-model to produce more 
clear SPECT images compared to traditional 
reconstruction methods in less than a second.  

The utilization of AI-based tools in dosimetry 
studies for theranostics holds the promise of 
significantly enhancing study accuracy and efficiency. 
However, further research is still needed to validate 
their effectiveness and integrate them into routine 
clinical practice.  

Disease Monitoring  
Numerous studies have demonstrated that 

semi-quantitative PET parameters and their variations 
throughout treatment provide valuable insights into 
disease prognosis and the effectiveness of the 
treatment [67, 68]. For instance, in prostate cancer, 
changes in tumoral volume are considered a 
biomarker for defining response to RNT [69]. By 
harnessing adaptive learning algorithms, AI holds the 
revolutionary potential to leverage traditional 
parameters to advance therapy monitoring. Various 
AI-based platforms offer e-consults to clinicians and 
patients across numerous specialties, enriching and 
refining the clinical experience. For instance, Tempus 
Labs, an AI-enabled clinical assistant, identifies 
genetic mutations in tumor tissue samples, analyzes 
electronic health records, lab values and imaging data, 
and combines all patient-specific information to create 
a comprehensive medical profile. Utilizing this 
profile, Tempus Labs provides healthcare profess-
ionals with personalized therapy recommendations in 
real-time via interactive systems to facilitate the 

decision-making process throughout the treatment 
course.  

Leveraging electronic health record data and 
variations of the lab data, AI-driven algorithms may 
contribute to optimized patient care for cancer 
patients. These algorithms assess and triage patients, 
enabling healthcare professionals to tailor follow-up 
appointments and interventions based on individual 
needs and acuity [70]. This tailored approach aims to 
ensure judicious resource management and augment 
the patient's healthcare experience, potentially 
leading to lower mortality and morbidity rates. 

As a future direction, a digital twin is a dynamic 
virtual model that mimics the behavior of a real object 
or system, enhanced by real-time data, simulation, 
and ML. While this is a relatively novel concept in 
healthcare, NASA has been using a similar concept 
since the 1960s by creating Earth-based simulations of 
spacecraft for study and simulation. In the medical 
realm, digital twins represent virtual replicas of 
patients, aiding clinicians in decision-making [71, 72]. 
The models incorporate a wide range of data, such as 
environmental variables, medical records, medical 
imaging, laboratory data, individual characteristics, 
genetic information, and prior treatment histories 
(Figure 3). Also, unlike traditional simulations or 
models, digital twins learn and update over time. This 
allows them to adapt to changing circumstances in 
real-time, just as humans do [73]. Thus, digital twins 
offer a promising approach to creating customized 
treatment plans, taking into account factors such as 
comorbidities or potential drug interactions and 
providing valuable insight into disease trajectories. 

 

 
Figure 3. The concept of “Digital Twin”. Digital twins in healthcare are virtual models that replicate an individual's health status, integrating data from a wider variety of sources 
such as medical records, imaging data, lab tests, genetic data, environmental variables, prior treatments, and multi-omics. These models enable personalized treatment planning, 
predictive analytics for disease progression, and the optimization of healthcare delivery. By simulating different medical scenarios and capturing real-time data from medical 
devices, digital twins can improve patient outcomes through tailored interventions and proactive health management. In addition, digital twins support clinical decision process 
and transform healthcare.  
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Figure 4. Radiopharmaceutical Drug Development Process. The radiopharmaceutical drug development process involves identifying target molecules and suitable lead 
compounds, followed by the design, synthesis, and validation of radioactive compounds used for diagnosing or treating diseases. Initially, a potential therapeutic or diagnostic 
agent is identified and chemically bonded to a radioactive isotope. This compound undergoes rigorous preclinical testing to assess its safety, biodistribution, and efficacy in 
biological models. Successful candidates advance to clinical trials, where their therapeutic effectiveness, dosimetry, and safety are evaluated in patients. This meticulous process 
ensures that radiopharmaceuticals are effective for their intended use and safe for patient application. After receiving FDA (US Food and Drug Administration) approval, the 
process continues with manufacturing and post-market surveillance. 

 

Drug Discovery  
While theranostics have existed for decades, 

recent advances in the field have stimulated more 
pharmaceutical companies to develop new 
radiopharmaceuticals, repurpose existing drugs, and 
broaden therapeutic applications. Unsurprisingly, the 
global radiopharmaceutical market is on an upward 
trajectory, with forecasts predicting its worth to reach 
9.53 billion US dollars by 2031 [74].  

Radiopharmaceutical development is a 
challenging endeavor, encompassing a myriad of 
facets including target identification, lead compound 
identification, radionuclide selection, vector molecule 
formulation, synthesis, evaluations, and drug 
approvals (Figure 4). These processes are tedious and 
costly, but AI-powered theranostics drug discovery 
studies promise optimization, paving the way for 
quicker development and approval of innovative 
radiopharmaceuticals. Therefore, tech behemoths like 
Google, DeepMind, Insilico Medicine, Deep 
Genomics, and Healx are also making considerable 
investments in AI-based drug discovery applications. 

The development of drugs is parallel to the 
discovery of new targets. Incorporating AI can 
effectively streamline this critical step by automation 
techniques. For example, the AI tool AlphaFold has 
been used to analyze the amino acid sequences and 
the angles of peptide bonds to predict the 3D structure 
of proteins. Recently, Ren et al. conducted a study 
demonstrating the application of AlphaFold in 
identifying potential drug targets [75]. Their initial 
findings revealed a novel CDK20 small molecule 
inhibitor that may represent a promising avenue for 

treating hepatocellular carcinoma. In January 2023, 
Absci, a generative AI drug development company, 
announced that its AI platform had successfully 
produced de novo antibodies using innovative AI 
methodology and validated them in wet lab 
experiments [76]. The unique aspect of their approach 
is that it is capable of creating antibodies without 
using training data, thereby reducing both the time 
and resources typically necessary in the drug 
discovery process. These recent innovations hold 
immense promise in the theranostic landscape, where 
targets range from antibodies to enzymes critical in 
carcinogenesis. 

After identifying a target, subsequent steps 
assess the identified molecules for their potential as 
drug candidates. In silico models, computer-based 
experimentation, and virtual screening (VS) 
techniques can expedite this assessment using AI 
algorithms. VS is a computational method that 
efficiently sifts through vast databases to identify 
compounds with a high likelihood of desired 
biological activity against a specified target while 
simultaneously eliminating potentially harmful or 
suboptimal candidates. Within the VS process, the 
composition and structure of identified compounds 
can be adjusted to optimize pharmacokinetic 
characteristics such as absorption, distribution, 
metabolism, excretion, and toxicity [77, 78].  

Once ligands have been refined, they are ready 
for biological evaluation and prediction of an optimal 
radiolabeling process. This involves selecting the most 
appropriate method to attach a radioactive isotope to 
the target molecule, ensuring both efficiency and 
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stability. In addition to its role in theoretical drug 
design, AI is also employed to generate synthesis 
pathways for hypothetical drug compounds. In 
certain cases, AI may also suggest modifications to 
these compounds that would facilitate their 
manufacturing process [79]. 

AI Limitations 
While AI has streamlined many processes in our 

daily lives, its application in healthcare still 
necessitates further considerations. Since the 
effectiveness of AI algorithms relies on the diversity 
and scope of its training data, limiting its application 
to rare conditions or under-represented minorities 
without specific data [63, 64, 80]. Also, concerns 
regarding the privacy and security of patient 
information remain paramount as AI learns from 
broad data collections, which may be subject to 
unauthorized access and misuse [80]. Another 
concern is that AI systems cannot be held accountable 
for the outcome of their applications. Accountability 
in AI systems largely depends on the transparency of 
the algorithms, the quality of training data, and the 
decisions made by developers and/or users. This 
highlights the importance of structured guidelines 
and regulations to ensure the responsible use of AI 
systems. Despite these hurdles, the integration of AI 
in healthcare is rapidly expanding every day. 
Therefore, addressing the current challenges by 
developing sophisticated, trustworthy AI algorithms 
should be a focus of interest, aiming to harness AI's 
full potential responsibly and effectively in healthcare 
settings. 

Conclusion 
AI in theranostics has the potential to 

revolutionize healthcare by providing personalized, 
data-driven insights to support clinicians and 
patients. From tumor characterization, personalized 
patient risk classification, prognostic forecasts, 
personalized dosimetry to uncovering potential 
factors unseeable to the human eye, such as intrinsic 
variations in tumor radiosensitivity or molecular 
profile, AI software has the potential to revolutionize 
the personalized medicine. However, despite these 
advances holding significant promise, adopting AI 
algorithms to the routine clinical practice raises 
several concerns, including security of data, 
accountability of outcome, and comprehensiveness 
and diversity of outcomes. Therefore further research 
and guidelines outlining the responsible use of AI are 
needed to harness the full potential of AI, while 
considering its limitations and ensuring its successful 
integration into clinical practice.  
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