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Abstract 

Background: The stem or progenitor antecedents confer developmental plasticity and unique cell 
identities to cancer cells via genetic and epigenetic programs. A comprehensive characterization and 
mapping of the cell-of-origin of breast cancer using novel technologies to unveil novel subtype-specific 
therapeutic targets is still absent. 
Methods: We integrated 195,144 high-quality cells from normal breast tissues and 406,501 high-quality 
cells from primary breast cancer samples to create a large-scale single-cell atlas of human normal and 
cancerous breasts. Potential heterogeneous origin of malignant cells was explored by contrasting cancer 
cells against reference normal epithelial cells. Multi-omics analyses and both in vitro and in vivo experiments 
were performed to screen and validate potential subtype-specific treatment targets. Novel biomarkers of 
identified immune and stromal cell subpopulations were validated by immunohistochemistry in our 
cohort. 
Results: Tumor stratification based on cancer cell-of-origin patterns correlated with clinical outcomes, 
genomic aberrations and diverse microenvironment constitutions. We found that the luminal progenitor 
(LP) subtype was robustly associated with poor prognosis, genomic instability and dysfunctional immune 
microenvironment. However, the LP subtype patients were sensitive to neoadjuvant chemotherapy 
(NAC), PARP inhibitors (PARPi) and immunotherapy. The LP subtype-specific target PLK1 was 
investigated by both in vitro and in vivo experiments. Besides, large-scale single-cell profiling of breast 
cancer inspired us to identify a range of clinically relevant immune and stromal cell subpopulations, 
including subsets of innate lymphoid cells (ILCs), macrophages and endothelial cells. 
Conclusion: The present single-cell study revealed the cellular repertoire and cell-of-origin patterns of 
breast cancer. Combining single-cell and bulk transcriptome data, we elucidated the evolution mimicry 
from normal to malignant subtypes and expounded the LP subtype with vital clinical implications. Novel 
immune and stromal cell subpopulations of breast cancer identified in our study could be potential 
therapeutic targets. Taken together, Our findings lay the foundation for the precise prognostic and 
therapeutic stratification of breast cancer. 
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Introduction 
Breast cancer is a heterogeneous disease based 

on transcriptomic profiles and genomic aberrations 
[1,2]. Intratumoral heterogeneity is a major 
contributor to disease progression, treatment 
resistance, and tumor recurrence. The heterogeneity 
of breast cancer has been witnessed in the past few 
decades. For example, the PAM50 intrinsic gene set 
classified breast tumors into five molecular subtypes 
with distinct biological features and clinical 
manifestations: luminal-A (Lum-A), luminal-B 
(Lum-B), HER2+, basal-like and normal-like [3,4]. 
Recently, the amalgamation of precise histological 
examination and molecular analyses in The Cancer 
Genome Atlas (TCGA) breast cancer dataset unveiled 
12 distinct consensus subgroups, each characterized 
by unique molecular signatures, particularly for less 
common histological types [5]. Although significant 
progress has been made regarding the intratumoral 
heterogeneity of breast cancer, subtype-specific 
therapeutic targets still remain an unmet need to 
reduce disease relapse and drug resistance. 

The tumorous properties specifically coordinate 
the traits of diverse stem or progenitor antecedents. 
The genetic and epigenetic programs of the cell 
progenitors contribute to cell-type heterogeneity by 
generating developmental plasticity or unique cell 
identities. The perturbers, including loss of tumor 
suppressors, oncogene activation and exogenous 
stimuli, may potentially reprogram the state of tumor 
cells throughout tumorigenesis and tumor 
progression. The mammary gland is a unique organ 
that undergoes embryonic and postnatal alterations in 
response to puberty and pregnancy. Recent studies 
have proposed that normal mammary epithelial cells 
mainly comprise basal/myoepithelial (BM), luminal 
progenitor (LP), and mature luminal (ML) 
subpopulations [6]. Molecular profiling has laid a 
crucial groundwork for comprehending the etiology 
of breast cancer, as the intrinsic subtypes exhibit a 
noteworthy resemblance to normal cells within the 
mammary stem cell hierarchy [7]. It has been robustly 
proved that the basal-like subtype of breast tumors 
carrying the BRCA1 mutation may originate from LP 
but not BM cells as described by hereditary patterns 
[7,8]. The molecular parallels imply that distinct 
mammary epithelial cells act as the cell-of-origin for 
malignant transformation across subtypes. 

Single-cell RNA sequencing (scRNA-seq) 
analysis of breast cancer has revealed novel insights 
into the heterogeneity among different subtypes and 
the complex cellular ecosystems comprising tumor 
cells interspersed with immune and stromal cells [1,9]. 
Our previous single-cell and spatially resolved 
analysis indicated the presence of diverse phenotypes 

within individual tumors by detecting the intrinsic 
subtyping of single malignant cells [2]. Considering 
the hybridity of bulk sequencing, gene signatures 
derived from bulk RNA-seq analyses could not 
always accurately reflect tumor intrinsic subtype and 
related phenotype. Further single-cell resolved analy-
ses on malignant cells and reference normal epithelial 
cells are essential for a deeper understanding of tumor 
cell-of-origin patterns and cellular state alterations 
during the specification of breast cancer subtype. 

In the present study, we systematically crafted 
an extensive single-cell atlas of human normal and 
cancerous breast tissues to scrutinize tumor origins. 
By contrasting breast malignant cells against reference 
normal epithelial cells at single-cell level, we 
deconvoluted bulk tumor transcriptome data and 
uncovered intense tumor cell diversity. We 
agnostically profiled malignant subtypes depending 
on lineage specification in mammary compositions, 
especially a LP subtype breast cancer linked with 
significantly inferior prognosis but sensitivity to 
neoadjuvant chemotherapy (NAC), PARP inhibitors 
(PARPi) and immunotherapy. Performing 
multi-omics analyses and both in vitro and in vivo 
experiments, we identified PLK1 as an underlying 
major player in regulating chromosomal instability 
and a potential therapeutic target within LP subtype 
breast cancer. Additionally, we constructed a 
comprehensive single-cell atlas of breast cancer, 
which enabled identification of diverse novel immune 
and stromal cell subpopulations, including an innate 
lymphoid cell 3 (ILC3) subpopulation associated with 
favorable prognosis, CKB+ macrophages related to 
unfavorable outcomes and resistance to immune 
checkpoint blockades (ICBs), and a range of 
heterogeneous endothelial cell subsets implicated in 
patient prognoses and therapy responses. 
Collectively, this comprehensive repertoire of breast 
cancer provided a consummate cellular landscape and 
insights into patient stratification based on cancer 
cell-of-origin patterns. 

Materials and methods 
Tissue specimens 

Paraffin-embedded tissue microarrays (tissue 
microarray with 219 specimens with invasive breast 
cancer, Hubei Cancer Hospital, China) were used for 
immunohistochemistry (IHC) staining. Informed 
consent was obtained from every participant, and the 
study received approval from the hospital's Ethics 
Committee. Slides were rigorously examined 
independently and blindly by two investigators. 
Low-quality images were dropped out for further 
statistical analysis. 
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Cell lines and cell culture 
SUM-149PT cells were cultured in Ham’s F12 

(Thermo Fisher, Grand Island, USA), with 10% FBS. 
MCF-7 cells were cultured in DMEM (Thermo Fisher, 
Grand Island, USA) with 10% FBS. 

Cell transfection and treatment 
All transfections for plasmids and siRNAs were 

performed using Lipofectamine 2000 (Invitrogen, 
California, USA) according to the manufacturer’s 
instructions. All chemically synthesized siRNAs were 
purchased from Ribobio (Guangzhou, China) and 
transfected at 50 nM final concentration. The siRNA 
target sequences for the human PLK1 gene are 
5’-CAACCAAAGTCGAATATGA-3’ and 5’-GCTCT 
TCAATGACTCAACA-3’. The siRNA target 
sequences for the human TPX2 gene are 5’-GTTTG 
ATTCTCGAGACAAA-3’ and 5’-GGAGAGAACUGG 
UGCAUAA-3’. The siRNA target sequences for the 
human CDK1 gene are 5’-CCATGGATCTGAA 
GAAATA-3’ and 5’-GTCAAGTGGTAGCCAT 
GAA-3’. The siRNA target sequences for the human 
AURKA gene are 5’-GGCAACCAGTGTACCTCAT-3’ 
and 5’-ATTCTTCCCAGCGCGTTCC-3’. PLK1 
inhibitor volasertib (Cat# HY-12137) were purchased 
from MCE (New Jersey, USA). 

Stable knockdown of PLK1 
The pSIH1-H1-puro shRNA vector was used to 

express PLK1 and luciferase(Luc) shRNAs. The 
shRNA target sequences were listed as follows: PLK1 
shRNA#1, 5’-CAACCAAAGTCGAATATGA-3’; PLK1 
shRNA#2, 5’-GCTCTTCAATGACTCAACA-3’; Luc 
shRNA, 5’-CUUACGCUGAGUACUUCGA-3’; SUM- 
149PT cells were infected with lentivirus. Stable 
populations were selected using 1 to 2 μg/mL 
puromycin. The knockdown effect was evaluated by 
quantitative real-time PCR (RT-qPCR). 

RT-qPCR 
Total mRNA from cells was extracted by TRIzol 

reagent (Invitrogen, 15596026, CA, USA). A reverse 
transcription assay was performed by the HiScript II 
Q RT SuperMix for qPCR (+gDNA wiper) kit 
(Vazyme, R223-01, Nan Jing, China) to obtain the 
cDNA, and then SYBR Green Select Master Mix 
(Applied Biosystems, 4472908, NY, USA) was used to 
quantify PLK1, TPX2, CDK1, AURKA and 18S mRNA 
expression on the ABI-7900HT (Applied Biosystems). 
Primers were listed as follows: (Human) PLK1: 
forward 5'-GACAAGTACGGCCTTGGGTA-3', re-
verse 5'- TGCAGGCTGTCACCATCATT-3'; TPX2: 
forward 5'- GGCCTTTCTGGTTCTCTAGTTC-3', 
reverse 5'-TTGCCTTATGCACCAGTTCTC-3'; CDK1: 
forward 5'-AGCCGGGATCTACCATACCC-3', 
reverse 5'-CAACTCCATAGGTACCTTCTCCA-3', 

AURKA: forward 5'- TGGCGGAGCGTCAAGTC-3', 
reverse 5'-CAATGGAGTGAGACCCTCTAGC-3', 18S: 
forward 5'-CTCAACACGGGAAACCTCAC-3', 
reverse 5'- CGCTCCACCAACTAAGAACG-3'. 

Sulforhodamine B assays 
Cells were spread in 96-well plates, treated with 

drugs for a certain period of time, and then fixed with 
10% trichloroacetic acid at 4 °C overnight. Afterward, 
the plates were gently washed and allowed to dry, 
followed by staining with 100 μL SRB stain (0.4% in 
1% acetic acid) for 30 minutes, and the unbound dye 
was washed with 1% acetic acid. The plates were 
allowed to dry, and the stains were dissolved by 
adding 100 μL Tris buffer (10 mM, pH 10.5). 
Absorbance was measured at a wavelength of 530 nm 
using a microplate reader (Infinite M200Pro, Tecan). 

Apoptosis analysis 
An Annexin Detection Kit (1133534, BD 

Pharmingen) was used to measure apoptosis. After 
the cells were treated with a D43 concentration 
gradient, floating and adherent cells were collected 
together and centrifuged at 500 × g for 5 minutes. The 
cells were washed with PBS and then stained with 
FITC/Annexin V and propidium iodide following the 
manufacturer's instructions. The proportion of 
apoptotic cells was determined by flow cytometry. 
The assays were repeated at least three times. 

Genomic instability analysis and cytogenetics 
Exponentially growing cultures were treated 

with colcemid (0.04 μg/ml) for 2-3 h. Cells were 
harvested, incubated in hypotonic solution (0.075 M 
KCl) and fixed in methanol-acetic acid (3:1 vol/vol), 
and stained with 4% Giemsa solution or DAPI 0.5 
mg/ml (1:250). The slides were analyzed for 
chromosomal aberrations. Images were captured and 
analyzed using a Nikon 80i Microscope and 
karyotyping software (Applied Spectral Imaging, 
Inc.).  

Animal experimentation 
We purchased 5- to 6-week-old female BALB/c 

nude mice from SLACCAS (Changsha, China). The 
animal protocol was approved by the animal ethics 
committee of Kunming Institute of Zoology, CAS. 
Nude mice were randomly distributed into three 
groups (shLuc, shPLK1 1#, shPLK1 2#). Three million 
SUM-149PT cells resuspended in Matrigel (BD 
Biosciences; 1:1 diluted with 2% FBS in PBS) were 
injected into the third pair of mammary gland fad 
pads. For the PLK1 inhibitor volasertib experiment, 
two million wild-type SUM-149PT cells were 
implanted into the mammary fat pads of the mice. 
when the tumor volume reached approximately 50 
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mm3, the nude mice were randomly assigned to the 
control and treatment groups. The control group was 
given vehicle alone, and the treatment group received 
PLK1 inhibitor volasertib (12.5 or 25 mg/kg) alone via 
gavage every four days for 20 days. The tumor 
volume was calculated as follows: tumor volume was 
calculated by the formula: (π×length×width2)/6. 

Immunohistochemistry 
Six series of tissue microarray were used to 

detect PSAT1 (Proteintech, 10501-1-AP, 1:200), ER 
(Proteintech, 21244-1-AP, 1:200), CK14 (Servicebio, 
GB11803, 1:200), CKB (Proteintech, 66714-1-IG, 1:500) 
and CA4 (Proteintech, 13931-1-AP, 1:200). 
Immunohistochemical staining was performed as 
follows: deparaffinization, antigen retrieval, blocking 
endogenous peroxidase (3% hydrogen peroxide 
solution, room temperature, out of light for 25 
minutes), serum block (3% bovine serum albumin, 
room temperature, 30 minutes), primary antibodies 
were incubated overnight at 4 °C, and horseradish 
peroxidase (HRP)-conjugated for 50 minutes at room 
temperature. Staining was visualized with DAB and 
time controlled under a microscope. Finally, nuclear 
counterstaining was performed using hematoxylin for 
approximately 3 minutes. The staining results were 
scored by two independent pathologists as follows: 
the protein expression levels of CKB and CA4 was 
described by the average number of positive 
macrophages and endothelial cells (ECs) respectively, 
from five fields at a magnification of ×400 using 
Image-Pro Plus, while the protein expression levels of 
PAST1, ER and CK14 were described by the 
percentage of high positive cells calculated by ImageJ 
software. In addition, surv_cutpoint function was 
used to determine the best cut-off values of all protein 
expression levels with respect to the survival rate. 

Single-cell RNA-Seq datasets collected in this 
study 

We obtained scRNA-seq data on normal breasts 
in 35 samples from 35 individuals and breast tumors 
in 181 samples from 134 patients diagnosed with 
breast cancer (Figure 1A; Table S1). Data from normal 
breasts including total cells or only epithelial cells 
were obtained from published datasets. To 
supplement the publicly available data studying 
tumor-infiltrating immune cells, we collected several 
additional datasets on purified immune cells. 

Analysis of scRNA-seq data 

We applied each sample separately to perform 
unsupervised clustering of the single cells using the 
read count matrix as input by Seurat package (v4.1.1) 
in R (v4.1.3). The quality control applied to cells was 

mainly based on the number of detected genes and 
proportion of mitochondrial gene count per cell. 
Firstly, cells with fewer than 200 detected genes and 
cells with over than 15% mitochondrial gene count 
were filtered. To avoid unexpected noise, genes 
detected in less than 3 cells were excluded from the 
downstream analysis. The potential contamination or 
doublet cells were removed by dropping the clusters 
or by filtering out cells with high average expression 
of the signature genes of the contaminating cell types. 
To reduce the dropout impact on downstream 
analysis, we filtered out cells harboring obviously low 
UMI count. Finally, 195,144 cells from normal breasts 
and 406,501 cells from breast cancer samples 
remained and were enrolled in downstream analysis. 
To correct the batch effects, data integration was 
performed by mutual nearest neighbor (MNN) 
method via Seurat-Wrappers package (v0.3.0). We 
next performed dimension reduction clustering and 
differential expression analysis following the 
Seurat-guided tutorial. The principal component 
analysis (PCA) and uniform manifold approximation 
and projection (UMAP) dimension reduction were 
conducted with the top 15 principal components. The 
FindAllMarker function was used to identify 
preferentially expressed genes between diverse 
clusters. The S phase score and G2M phase score were 
calculated through function CellCycleScoring, and the 
naïve, cytotoxic, exhausted and Treg signature scores 
of T cells were calculated with function 
AddModuleScore. 

Analysis of bulk RNA-seq data 
Normalized METABRIC and TCGA expression 

matrices and clinical information were obtained from 
cBioPortal website (http://www.cbioportal.org/). 
Transcriptome data and clinicopathological informa-
tion of the NAC dataset (GSE163882) and I-SPY2 
dataset (GSE194040) were obtained from Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm 
.nih.gov/geo/). 

Mapping of tumor cells in three normal 
epithelial subsets 

We firstly transformed the normal epithelial cell 
expression matrix into seven pseudobulk profiles 
according to the aforementioned minor subsets. The 
top 100 positively expressed markers of each normal 
epithelial minor subset with redundancy elimination 
were regarded as gene sets accounting for the 
heterogeneity of normal epithelial cells (Table S2). 
Subsequently, we constructed 115 pseudobulk 
profiles after re-clustering 113,254 epithelial cell from 
primary breast tumors (Figure S2B). The top 1% 
variable genes based on variance analysis of these 115 



Theranostics 2024, Vol. 14, Issue 8 
 

 
https://www.thno.org 

3108 

pseudobulk profiles were considered as gene sets 
deciphering the heterogeneity among tumor cells 
(Table S3). We noted a high overlap between these 
two gene sets and extracted their intersection which 
included 182 genes for subsequent tumor-normal 
projection (Table S4). Then we combined these seven 
normal epithelial pseudobulk profiles and 115 tumor 
pseudobulk profiles, and corrected the batch effects in 
the 182 meta-genes space. Through unsupervised 
clustering of these 122 pseudobulk profiles, we 
revealed three major groups represented by seven 
subsets of normal epithelial cells, potentially 
indicating different cell-of-origin patterns. 

Deconvolution of bulk transcriptome data 
On the basis of our integrated scRNA-seq data 

and 115 epithelial pseudobulk profiles, we initially 
devoted to selecting the marker genes to represent 
three breast epithelial subtypes based on the 
Spearman correlation coefficient shown on Figure 
S3A. Specifically, the top 150 genes correlated with 
the composition of ML subtype were defined as the 
marker genes of ML subtype. However, we observed 
it is ambiguous to identified the marker genes of LP 
and BM subtypes based on the correlation coefficient 
solely. Therefore, we calculated the distance between 
each point and some certain flag in the coordinate axis 
of Figure S3A. The D1 distance was calculated as: D1 
= x2+(y-1)2. The D2 distance was calculated as: D2 = 
(x-1)2+(y-1)2. The D3 distance was calculated as: D3 = 
(x-1)2+y2. Finally, the marker genes of LP subtype 
were defined as the union of top 150 genes of D1 and 
D2 distance. The marker genes of BM subtype were 
defined as the union of top 150 genes of D2 and D3 
distance. Next, DWLS [10] was performed to 
deconvolute predicted cell fractions from the 
METABRIC dataset based on the above identified 
lineage markers. The deconvolution analysis 
generated scores of three breast epithelial subtype in 
each tumor sample (Figure 3A). This score of three 
breast epithelial subtype could be interpreted as the 
proportion of the corresponding cancer-cell-of-origin 
patterns in a tumor sample. 

CNV estimation 
Initial CNVs for each region of individual cells 

were estimated via infercnv package (v1.10.1) [11]. 
The CNV score of each cell was calculated as the 
variance of CNVregion. 

Functional annotation of genes 
Gene Set variation Analysis (GSVA) were 

performed to investigate the pathway activities by 
GSVA package from Bioconductor [12]. The hallmark 
gene sets we investigated were downloaded from 
MSigDB. The pathways with high difference in 

activity scores were selected by LIMMA package. 
Gene Ontology (GO) analysis was performed to 
annotate given gene lists of interest using the R 
package clusterProfiler (v4.0.5). 

Calculation of LP signature score in TCGA 
cohort 

The correlation between genes and LP 
proportion in METABRIC cohort was analyzed via 
Spearman correlation analysis. The top and bottom 
100 genes were defined as the LP-positive and 
LP-negative associated markers, respectively. To 
obtain the LP signature score, we calculated the 
positive and negative signature score by GSVA based 
on the LP-positive and LP-negative associated 
markers in TCGA dataset. Then, the final LP signature 
score (denoted as the LP score) was defined as the 
difference value of LP positive and negative signature 
score. In TCGA cohort, samples with the LP score 
higher than the median were referred to as LP-high 
tumors. 

Identification of potential key factors involved 
in chromosomal instability within LP subtype 
breast cancer 

For scRNA-seq data, the CNV scores of LP group 
malignant epithelial cells were calculated by 
inferCNV algorithm as mentioned above. Genes that 
were significantly differentially expressed in the top 
25% of the highest scoring LP group cancer cells 
compared to the bottom 25% of the lowest scoring 
cells were considered as candidate genes. For bulk 
RNA-seq data, genes with copy number alterations 
(CNA) significantly correlated with the LP signature 
score in TCGA breast cancer cohort were considered 
as target genes. For Perturb-seq data developed and 
analyzed previously [13], CRISPR-based screens with 
scRNA-seq readouts identified genes inducing 
remarkable chromosomal instability as the target 
genes. The rank score was defined as the summation 
of the rankings of the 260 genes that intersected across 
the three omics data rankings. In other words, a 
higher ranking corresponds to a higher rank score. 

Definition of cancer cell states, and mutation 
and immune signatures 

A catalog log of gene modules defining 16 
recurrent cancer cell states was proposed by Barkley 
et al. [14], and provided in Table S5. The mutation 
signatures of TCGA samples were referenced by 
previous studies [15,16]. The published signature 
gene lists for naïve, cytotoxic, exhausted T cell and 
Treg, as well as DC cell activation, migration and 
tolerogenic had been previously described [17] and 
showed in Table S6 and S7. Besides, the M1-like and 
M2-like tumor-associated macrophage (TAM) 
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signatures were previously described [18] and listed 
in Table S8. 

SCENIC analysis 
The SCENIC analysis was performed by using 

the pyscenic (v0.11.2) [19] and hg19-tss-centered- 
10kb-10species databases for RcisTarget, GRNboost, 
and AUCell. The input matrix was the normalized 
expression matrix that was from Seurat. 

Survival analysis 
To model the effect of LP-derived cancer cell 

proportion on breast cancer patient survival, we 
performed multivariable Cox regression on 
METABRIC datasat. Signature scores of diverse 
identified cell subpopulations were calculated as the 
GSVA scores of the top 50 significantly expressed 
genes. Kaplan-Meier curves were plotted to show the 
survival difference using R package survival and 
survminer. We performed the survival analysis by 
focusing the ten-year survival after disease diagnosis. 
Patient stratification was based on the best cut-off 
calculated by surv_cutpoint function. Log-rank test 
statistics was conducted to assess the significance 
between two groups. 

Assessing the heterogeneity of single cell 
populations 

To compare the heterogeneity of cell 
subpopulations in our study, we used ROGUE [20], 
which was an entropy-based universal metric for 
assessing the purity of single cell population. We 
scaled the ROGUE index to between zero and one. 
One represented a completely pure subtype with no 
significant genes and zero represented the most 
heterogeneous state of a population. 

Statistical analyses 
All statistical analyses and graphs were done in 

R (v4.1.3). Wilcoxon rank sum test was performed to 
assess significance in signature score analysis and cell 
proportion differences analysis. Kaplan-Meier 
survival data were analyzed via two-sided log-rank 
test. Adjusted p-values above 0.05 were regarded as 
not significant. Benjamini-Hochberg false discovery 
rate (FDR) correction was performed at a p-value of 
0.05 for multiple comparison correction (proportions 
for subtypes of scRNA data). The p-values in the 
figures were reported using the following symbols: *P 
< 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 

Results 
Large-scale integrated cellular landscape of 
human normal and cancerous breasts 

To generate a comprehensive and single-cell 

resolved transcriptional atlas of normal and cancerous 
breast tissues, we collected and analyzed scRNA-seq 
data of 35 normal breast tissues and 181 primary 
breast cancer samples from public datasets (Figure 1A 
and Table S1) [1,21–29]. After quality control and 
data preprocessing, a total of 195,144 high-quality 
cells from normal breast tissues and 406,501 
high-quality cells from primary breast cancer samples 
were included in our analysis (Figure 1A). To 
characterize the cellular components of normal breast 
tissues, we performed unsupervised graph-based 
clustering on all cells after correcting the batch effects 
across different datasets (Figure 1B). All major cell 
types, including three epithelial subsets (BM, LP and 
ML), immune cells, endothelial cells, fibroblasts and 
pericytes, were annotated based on canonical cell 
markers and visualized by UMAP (Figure 1B-C and 
Figure S1A). For the tumor compartment, apart from 
epithelial cells, endothelial cells, fibroblasts and 
pericytes, we identified abundant immune subsets, 
including T cells, B cells, plasma cells and myeloid 
cells, with unique cellular identities (Figure 1D-E and 
Figure S1B). 

Alignment of breast cancer cells to normal 
breast epithelial cell subtypes 

Our aforementioned analyses showed three 
epithelial major clusters in normal breasts, namely the 
BM, LP, and ML subpopulations. To further decipher 
the compositions of normal breast epithelial cells, we 
reclustered 117,729 high-quality normal epithelial 
cells and identified seven minor subpopulations 
based on the expression of diverse gene signatures 
(Figure 2A and Figure S2A). Within the BM cells, we 
revealed two distinct cell subsets, one exhibiting 
remarkable expression of specific epithelial keratin 
and integrin members (KRT5 and ITGB1; basal) and 
the other with featured markers associated with 
myoepithelial cell differentiation (ACTA2, TAGLN 
and MYLK; myoepithelial). The LP cells covered a 
subset expressing markers related to lactotransferrin 
and certain members of the S100 family (LTF, S100A8 
and S100A9; LTF+ LP), while the other showed 
specific expression of markers linked to stemness and 
certain specific epithelial keratins (ALDH1A3, KRT15 
and KRT23; KRT23+ LP) [30]. Luminal-specific marker 
genes such as KRT8 and KRT18, were both expressed 
in LP and ML cells (Figure S2A). Within the ML cells, 
we identified three distinct cell clusters, featured by 
the expression of the epidermal growth factor 
(EGF)-like molecule amphiregulin (AREG; AREG+ 
ML), member of the tumor necrosis factor (TNF) 
ligand family (TNFSF10; TNFSF10+ ML), and mucin 
proteins (MUCL1; MUCL1+ ML). 
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Figure 1. Large-scale integrated cellular landscape of human normal and cancerous breasts. (A) Schematic diagram of the study design and analysis. (B) Integrated 
analysis of 195,144 cells from 35 normal breast tissues. (C) Bubble heatmap showing expression levels of selected signature genes in normal breast tissues. Dot size indicates 
fraction of expressing cells, colored based on average normalized expression levels. (D) Integrated analysis of 406,501 cells from 181 primary breast tumors. (E) Bubble heatmap 
showing expression levels of selected signature genes in breast tumors. Dot size indicates fraction of expressing cells, colored based on average normalized expression levels. 

 
Next, to explore the correlation between 

epithelial cell clusters from normal and cancerous 
breasts, we contrasted malignant cells against 
reference normal mammary epithelial cells by 
evaluating the homology of signature gene expression 
patterns. To be specific, we initially calculated a total 
of 115 pseudobulk profiles after reclustering 113,254 
epithelial cell from primary breast tumors, as well as 
seven reference pseudobulk profiles from normal 
breast tissues (Figure 2A and Figure S2B). 

Unsupervised clustering uncovered that neoplastic 
cells could be divided into three major groups (BM 
group, LP group and ML group), potentially 
indicating distinct cancer cell-of-origin patterns 
(Figure 2B). To further validate the accuracy of the 
cancer cell-of-origin patterns based on unsupervised 
clustering, we performed PCA analysis and found 
concordant grouping with the above clustering 
(Figure S2C). These three major groups harbored 
diverse canonical epithelial markers, further 
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supporting the clustering on account of cancer 
cell-of-origin patterns. For example, special markers 
linked with myoepithelial cell function (ACTA2, 
TAGLN, and MYLK) were significantly expressed in 
the BM group from both normal and malignant 
epithelial cells (Figure 2B). Furthermore, we 
investigated the association between PAM50 which 
was a 50-gene signature developed to define breast 
cancer molecular subtypes, and the clustering based 
on our proposed cancer cell-of-origin patterns (Figure 
2B). Basal-like and normal-like subtype tumors were 
exclusively found in the BM and LP groups, 
potentially as the origins of hormone-negative tumors 
(Figure 2B). In addition, all Lum-A and Lum-B 
tumors belonged to the ML group, indicating that ML 
cells were the origins of hormone-positive tumors 
(Figure 2B). Although HER2+ tumors were 
predominantly distributed in the ML group, we found 
that a small subset of HER2+ tumors was derived from 
the LP group (Figure 2B). Additionally, we could 
classify these single-cell breast cancer samples into 
diverse molecular subtypes according to the 
proportion of tumor cells with diverse origins (Figure 
S2D). 

Furthermore, we examined the internal 
heterogeneity within each group. In the BM, LP, and 
ML groups, consensus clustering revealed four, eight, 
and eight tumor cell clusters with similar gene 
expression, respectively (Figure S2E-G). Based on 
cancer cell-of-origin patterns as well as internal 
heterogeneity, the entirety was divided into 20 
subpopulations and visualized via UMAP (Figure 
2C). Using ROGUE analysis, a general metric for 
evaluating the purity of a single cell population based 
on entropy, we observed that cancer cells in LP group 
exhibited the highest heterogeneity among three 
major subgroups (Figure 2D). To understand the 
genomic alteration in these neoplastic clusters, we 
estimated single-cell copy number variants (CNVs) by 
the inferCNV algorithm, and the results showed that 
malignant cells in LP group exhibited remarkably 
high CNV levels (Figure 2E). Moreover, in order to 
determine the biological properties of these 
subpopulations, we then sought to determine the 
recurrent states of cancer cells as previously described 
(Figure 2F and Table S5) [14]. The mesenchymal, 
basal, and partial epithelial-mesenchymal transition 
(pEMT) modules were highly scored in the BM and 
LP groups but negatively expressed in the ML group 
(Figure 2F). The LP-original cancer cells had higher 
scores of the interferon, squamous, and glandular 
modules (Figure 2F). In addition, elevated levels of 
oxidative phosphorylation and ciliated modules were 
exhibited in ML group cancer cells (Figure 2F). 
Regarding the internal heterogeneity within each 

group, the LP-1, LP-2, and LP-6 subgroups showed 
elevated hypoxia scores, while LP-2, LP-4 and LP-5 
had higher cell cycle scores than the other LP tumor 
groups (Figure 2F). Furthermore, we investigated the 
functional heterogeneity in these subpopulations 
using the hallmark gene sets. As expected, expression 
of estrogen response-related genes were enriched in 
the ML subtypes (Figure 2G). In addition, the 
interferon gamma response and EMT were enriched 
in most of the BM and LP subclusters (Figure 2G). 
Apparently, the BM-1 subset showed a significant 
enrichment of the TGF-β signaling, p53 pathway and 
myogenesis. Upregulation of adipogenesis and fatty 
acid metabolism was found in the ML-8 subpopu-
lation (Figure 2G). In summary, we identified three 
molecular subtypes of breast cancer cells based on 
cancer cell-of-origin patterns and meticulously 
characterized the cancer cell state and functional 
heterogeneity within each molecular subtype. 

The molecular and clinical characteristics of 
LP subtype breast cancer 

To determine the clinical relevance of the 
established cancer cell-of-origin patterns, we first 
performed deconvolution analysis in the METABRIC 
cohort to compute the composition of three subtypes 
within each tumor (Figure S3A). The deconvoluted 
samples presented remarkable intratumoral 
heterogeneity according to the inferred proportion of 
tumor subtypes (Figure 3A) [10]. The LP subtype was 
significantly associated with an unfavorable outcome, 
and this association was independent of age, tumor 
grade, tumor size, tumor stage, tumor mutation 
burden (TMB) and cell cycle score (Figure 3B and 
Figure S3B). Regarding clinical features, we found the 
proportion of the LP cells was higher in young 
patients, and the cases with LP-dominant subtype 
were positively associated with higher tumor grade 
and lymphoid node metastasis (LNM) (Figure S3C-E). 
Moreover, the tumors in LP subtype were 
characterized as an elevated cell cycle score, 
suggesting that the LP-predominated tumors might 
exhibit rapid proliferation (Figure S3F). 

Furthermore, we generated a robust meta-gene 
expression signature of the LP subtype as a surrogate 
for their cellular abundance, denoted thereafter as the 
LP score (Table S2-S4; Materials and methods). The 
patients with a higher level of LP score showed poor 
clinical outcomes in the TCGA cohort, coherent with 
the observation in the METABRIC cohort (Figure 
S4A). Given the high CNV burden in LP-derivating 
cancer cells, we further explored the relationship 
between the LP-dominated malignancies and 
genomic alteration profiles in TCGA dataset.  
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Figure 2. Alignment of breast cancer cells to normal breast epithelial cell subtypes. (A) UMAP plot showing the major lineages of epithelial cells in normal breast 
tissues. (B) Clustering of 115 breast tumor pseudobulk profiles combined with seven reference normal mammary epithelial pseudobulk profiles showing three major lineages 
based on the expression of common signature genes. (C) UMAP plot showing 20 breast tumor subpopulations within three major lineages of breast cancer cells. (D) Boxplot 
showing cell purity for breast cancer cells within three major lineages. Kruskal-Wallis test. (E) Violin plot showing distributions of CNV scores among breast cancer cells from 
three major lineages. Kruskal-Wallis test. (F) Heatmap showing different expression patterns of 16 recurrent cancer cell gene modules among 20 breast tumor subpopulations. 
(G) Heatmap showing different expression patterns of hallmark gene sets among 20 breast tumor subpopulations. 

 
Consistent with the raised CNV burden inferred 

in single-cell analysis, tumors in LP subtype 
demonstrated higher TMB level, particularly those of 

COSMIC mutational signature SBS3 (associated with 
homologous recombination defect, HRD) and SBS13, 
but not SBS2 (both associated with APOBEC- 
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mediated deamination) (Figure 3C) [15]. HRD-related 
complex genomic alteration events (HRD score) were 
also significantly elevated in breast tumors with 
higher LP scores (LP-high) (Figure 3D), as well as 
HRD-related copy number signature (CN17) and 
chromosomal instability signatures (CX2, 3, and 5) 
(Figure S4B-C) [31,32]. UNG is specifically involved 
in the formation of SBS13-type mutations. An elevated 
level of UNG expression as well as SBS13 events 
(kataegis and omikli) was found in LP-high tumors 
(Figure S4D-E). Moreover, LP-high tumors had a 
higher incidence of whole genome duplication 
(WGD), and presented an increase of aneuploidy and 
genomic abnormity (Figure S4F-H). These findings 
echoed the entropy-based single-cell diversity 
observation by the ROGUE analysis (Figure 2D). 
Given the genomic instability of LP-high tumors, we 
further explored their therapeutic significance, 
especially regarding the clinical relevance in NAC 
and synthetic lethality like PARPi. As expected, 
increased expression levels of the p53 deficient- 
related and PARPi response-related meta-gene 
signatures were found in LP-high tumors (Figure 
S4I). Notably, LP-high patients were sensitive to NAC 
and PARPi treatment (Figure 3E-F and Figure S4J) 
[33]. Taken together, these findings suggested the LP 
subtype breast cancer exhibited higher TMB and 
genomic instability, but sensitivity to NAC and 
PARPi treatment. 

We next explored the functional and immune 
characteristics of LP subtype breast cancer in clinical 
cohorts. Gene set enrichment analysis (GSEA) showed 
that the transcriptional characteristics of the LP 
subtype were enriched in the interferon gamma 
response, inflammatory response, cytokine-cytokine 
receptor interaction, and innate immune system 
pathways (Figure 3G). In addition, richness of T-cell 
receptor (TCR) and B-cell receptor (BCR), as well as 
single nucleotide variant (SNV) and insertion-deletion 
(indel) neoantigens, was prominent in LP-high 
tumors (Figure S5A). Next, the profiles of the immune 
microenvironment in LP-high tumors were 
investigated in both the METABRIC and TCGA 
datasets (Figure S5B). The LP-high patients showed 
an increased abundance of CD8+ T cells, follicular 
helper T cells, and M1 macrophages (Figure S5B). 
However, LP-high tumors exhibited an elevated 
expression level of T cell exhaustion signature score 
and various immunosuppressive checkpoints (Figure 
3H and Figure S5C). Moreover, we demonstrated that 
the LP subtype patients were more likely to achieve 
pCR after ICB combined with NAC in the I-SPY2 
cohort (Figure 3I and Figure S5D). Overall, the LP 
subtype was associated with dysfunctional immune 
characteristics and sensitivity to immunotherapy. 

Finally, we sought to explore candidate markers 
of the LP subtype of breast cancer for clinical 
diagnosis and therapeutic decisions. Spearman 
correlation analysis at both the transcriptional and 
protein levels in TCGA dataset revealed that 
phosphoserine aminotransferase 1 (PAST1) was the 
optimal marker for the LP subtype (Figure S5E-F and 
Table S9). To determine whether a relationship exists 
between the PSAT1 status and clinical progression, 
IHC staining was applied to our breast cancer tissue 
microarrays. The results showed that PSAT1 staining 
was predominantly cytoplasmic (Figure 3J), and 
PSAT1 overexpression indicated a poor disease-free 
survival (DFS) (Figure S5G). Similarly, we selected 
ER to represent the ML subtype and CK14 to 
represent the BM subtype based on the 
subtype-specific expression profiles across diverse 
subtypes (Figure S5F, H-I). Using these biomarkers, 
the LP molecular subtype was defined as 
PSAT1high/ERlow/CK14low in our IHC cohort (Figure 
3J), and the LP group revealed inferior prognosis 
(Figure 3K). In summary, we identified the LP 
subtype breast cancer with a significant inferior 
prognosis and special molecular and clinical 
characteristics, and further screened and validated 
candidate markers for clinical practice. 

Identification of potential therapeutic targets 
in the LP subtype breast cancer 

Considering chromosomal aberration stood as a 
conspicuous hallmark characterizing the LP subtype 
of breast carcinoma, we next devoted to exploring the 
major factors involved in chromosomal instability as 
potential therapeutic targets within the LP subtype, 
spanning a panorama of diverse omics realms. 
Combining putative players derived from the 
integration of single-cell and bulk RNA-seq analyses 
within this study, alongside the genes discerned 
through a recent genome-scale Perturb-seq 
investigation (Materials and methods) [13], we 
successfully elucidated a cohort of 260 candidate 
genes, including PLK1, TPX2, CDK1 and AURKA 
(Figure 4A-B). Moreover, we computed the LP 
signature score for a range of mammary carcinoma 
cell lines using the GSVA technique. We meticulously 
identified SUM-149PT as the quintessential 
LP-subtype mammary cancer cell line, while 
designating MCF-7 as the paradigmatic control 
non-LP mammary cancer cell line (Figure 4C). To 
screen out major factors involved in chromosomal 
instability within LP subtype breast cancer, we 
initially found that the inhibition of PLK1, TPX2, 
CDK1 and AURKA exerted diverse impacts on the 
proliferation of tumor cells, as elucidated by the 
gradations observed (Figure 4D and Figure S6A-D). 
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Figure 3. The molecular and clinical characteristics of LP subtype breast cancer. (A) Stacked bar plot showing the deconvolution result of breast tumors from the 
METABRIC cohort. Colors of the bars denote three cell lineages as shown in the legend. The y axis stands for the proportion of each cell lineage in a given bulk tumor sample. 
Within the x axis, each column represents one tumor case. The annotation bar above denotes the molecular subtypes of bulk tumors that are defined by the dominant cell lineage 
within each tumor, where yellow represents the mixture of multiple cell lineages. (B) Kaplan-Meier plot showing worse clinical outcome in LP subtype patients within the 
METABRIC cohort. P value is calculated using the log-rank test. (C) Spearman correlation between LP score and diverse mutational signatures. Correlations with P < 0.05 are 
marked with an asterisk. (D) Violin plot comparing the HRD score between LP-low and LP-high breast tumors in TCGA. Unpaired two-sided Wilcoxon test. (E) Violin plot 
comparing the expression level of LP score of breast tumors with different responses to NAC treatment. Unpaired two-sided Wilcoxon test. (F) Violin plot comparing the 
expression level of LP score of breast tumors with different responses to PARP inhibitor treatment in the I-SPY2 cohort. Unpaired two-sided Wilcoxon test. (G) Bubble heatmap 
showing up-regulated pathways enriched in breast tumors with high LP proportion via GSEA. Dot size indicates the normalized enrichment score (NES), colored based on the 
adjusted P value. (H) Violin plot comparing the T cell exhausted signature score between LP-low and LP-high breast tumors in TCGA. Unpaired two-sided Wilcoxon test. (I) 
Violin plot comparing the expression level of LP score of breast cancer patients with different responses to anti-PD1 treatment. Unpaired two-sided Wilcoxon test. (J) 
Immunohistochemistry of breast tissue microarray for PSAT1, ER and CK14. (K) LP subtype of breast cancer patients with PSAT1high/ERlow/CK14low were associated with poor 
DFS. P value is calculated using the log-rank test. 
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Figure 4. Identification of potential therapeutic targets in the LP subtype breast cancer. (A) Venn diagram illustrating unique and shared genes driving chromosomal 
instability within LP subtype breast cancer identified by scRNA-seq, bulk RNA-seq and Perturb-seq data. (B) Scatter plot showing the rank scores of 260 common genes identified 
by scRNA-seq, bulk RNA-seq and Perturb-seq data. The top 10 genes are highlighted. (C) Scatter plot showing the LP scores of diverse breast cancer cell lines in CCLE. The 
SUM-149PT and MCF-7 cell lines are highlighted. (D) Levels of relative cell viability of selected candidate genes (PLK1, TPX2, CDK1 and AURKA) knockdown in the SUM-149PT and 
MCF-7 cells. (E) Levels of apoptosis rate of SUM-149PT and MCF-7 cells with PLK1 knockdown. (F) Representative images of Giemsa staining of PLK1 knockdown and control 
vector in the SUM-149PT and MCF-7 cells. (G) The picture of SUM-149PT tumors with PLK1 knockdown and control vector. (H) Tumor growth curves of mice that were 
injected with SUM-149PT cells with PLK1 knockdown and control vector. (I) Weight distributions of SUM-149PT tumors with PLK1 knockdown and control vector are shown. 
(J) The curve showing the relative cell viability of SUM-149PT and MCF-7 cells following treatment with volasertib at various doses. (K) Levels of apoptosis rate of SUM-149PT 
and MCF-7 cells following treatment with volasertib at high and low doses. (L) The picture of SUM-149PT tumors following treatment with volasertib at high and low doses and 
control vector. (M) Tumor growth curves of mice that were injected with SUM-149PT tumors following treatment with volasertib at high and low doses and control vector. (N) 
Weight distributions of SUM-149PT tumors following treatment with volasertib at high and low doses and control vector. 
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To expound further, the attenuation of PLK1 
emerged as the most efficacious intervention in 
suppressing the viability of SUM-149PT cells (Figure 
4D). Henceforth, we elected PLK1 as the pivotal factor 
for elucidating the intricacies of the LP subtype. We 
observed that the inhibition of PLK1 substantially 
enhanced the apoptotic process in SUM-149PT cells, 
without exerting a discernible impact on MCF-7 cell 
apoptosis (Figure 4E). Cytogenetic inquiry revealed 
that SUM-149PT cells, upon undergoing PLK1 
depletion, manifested an augmented frequency of 
chromosomal aberrations, encompassing phenomena 
such as chromosomal truncation and rupture (Figure 
4F). This phenomenon was not discerned within 
MCF-7 cells subjected to analogous PLK1 suppression 
(Figure 4F). Furthermore, we proceeded to evaluate 
the impact of PLK1 in murine models to investigating 
its impact on tumor growth. Remarkably, we 
discerned a deceleration in tumor expansion within 
the PLK1-inhibited SUM-149PT cells, juxtaposed with 
the control vector cells (Figure 4G-I and Figure S6E). 
In addition, we determined to investigate the 
potential impact of the PLK1 inhibitor, volasertib, on 
the proliferation dynamics of both LP and non-LP 
subtypes within the realm of breast cancer cells. 
Notably, under volasertib treatment, SUM-149PT cells 
but not MCF-7 cells demonstrated a pronounced 
suppression of cellular proliferation alongside a 
noteworthy augmentation of apoptotic induction 
(Figure 4J-K). In the context of the SUM-149PT mice 
model, we observed a comparable attenuation in 
tumor growth subsequent to the administration of 
volasertib (Figure 4L-N). Taken together, these results 
propose that PLK1 potentially functions as a 
fundamental factor involved in chromosomal 
instability within the LP subtype breast cancer, thus 
emerging as a plausible therapeutic target warranting 
exploration within the domain of LP subtype breast 
malignancies. 

Integrated analyses of lymphocytes, natural 
killer (NK) cells and innate lymphoid cells 
(ILCs) 

Given the distinct immune microenvironment in 
different molecular subtypes of breast cancer, we next 
aimed to build a high-resolution immune cell 
landscape of breast cancer by integrating scRNA-seq 
technology and bioinformatics approaches. Firstly, we 
integrated 156,289 T cells and NK/ILCs and identified 
24 clusters containing seven CD4+ T clusters, eight 
CD8+ T clusters, six cycling T clusters and three 
NK/ILCs clusters (Figure 5A, Figure S7A-B). We then 
annotated these clusters according to the expression 
of marker genes and functional signatures (Figure 
5B). All major cell types were represented and 

manifested varying proportions in different molecular 
subtypes (Figure 5C). To explore the biological 
features of these clusters, we preliminarily scored the 
naïve, cytotoxic, exhausted and regulatory T cell 
signatures among diverse subpopulations (Figure 5D 
and Table S6). For example, the FGFBP2+ effector T 
(Teff) cluster and FGFBP2+ NK cluster revealed 
markedly higher cytotoxic scores than the other 
clusters (Figure 5D). In the CD4+ T cell compartment, 
we found several classical subclusters, including 
typical CCR7+ naïve T (Tn), GZMK+ effector memory 
T (Tem), ANXA1+ central memory T (Tcm) and 
FOXP3+TNFRSF9+ regulatory T (Treg) cells. We also 
identified a LAG3+ T helper 1 (Th1) cell cluster, a 
CXCL13+ T follicular helper (Tfh) cell cluster and a 
FOXP3+TNFRSF9- Treg cell cluster (Figure 5A and 
Figure S7A). The FOXP3+TNFRSF9- Treg cell cluster 
exhibiting a lower Treg signature score was reported 
to represent a resting state and might have the 
potential to gradually transition to the activated state 
(FOXP3+TNFRSF9+ Treg) (Figure 5D) [34]. In the 
CD8+ T cell compartment, we identified eight subsets, 
including CCR7+ Tn, FGFBP2+ Teff, IL7R+ memory T 
(Tm), GZMK+ Tem, ZNF683+ tissue-resident memory 
T (Trm) and three exhausted T (Tex) cell clusters 
(Figure 5A and Figure S7B). Interestingly, these three 
Tex cell clusters occupied higher proportions in LP 
subtype tumors (Figure 5C), further validating the 
immunoinactivated microenvironment in LP subtype 
tumors. Furthermore, to determine the proliferative 
ability of T cells, we calculated the proliferation score 
based on cell cycle genes to denote G1/S or G2/M 
phases (Figure S7C-D). In cycling T cells, we 
identified both G1/S and G2/M phase clusters of 
CD8+ T cells, CD4+ T cells, and Treg cells based on 
marker expression (Figure S7D-E). Intriguingly, we 
found that cycling CD8+ and CD4+ T cells highly 
expressed T cell exhaustion-related genes (Figure 
S7F). These data provide us a comprehensive insight 
into the tumor-infiltrating T cell landscape in breast 
cancer and their abundance variation among diverse 
subtypes. 

To gain insight into the composition of 
NK/ILCs, we reconstructed the clustering of 
NK/ILCs and identified three main subsets, including 
two NK cell clusters and a novel ILC3 cluster (Figure 
5E). FGFBP2+ NK cells significantly expressed 
cytotoxic and effector markers, such as FGFBP2, 
FCGR3A and PRF1, and revealed enrichments of 
cytolysis and phagocytosis pathways (Figure 5F-G). 
Additionally, the KLRC1+ NK cell subpopulation 
displayed markers covering KLRC1, XCL1 and XCL2 
and exhibited enrichments of T cell activation and 
differentiation pathways (Figure 5D, F-G).  
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Figure 5. Integrated analyses of lymphocytes, NK cells and ILCs. (A) UMAP plot showing diverse subsets of T cells and ILCs. (B) Bubble heatmap showing expression 
levels of selected signature genes in T cells and ILCs. Dot size indicates fraction of expressing cells, colored based on average normalized expression levels. (C) Bar chart showing 
the relative proportion of major T/ILC cell types in different molecular subtypes. (D) Violin plot showing representative naïve, cytotoxic, exhausted and Treg signatures in diverse 
T/ILC subsets. Dashed red line denotes the median module score. (E) UMAP plot showing three main subsets of NK/ILC cells. (F) Violin plot showing expression levels of selected 
signature genes in NK/ILC cells. (G) GO enrichment analysis using the top 50 significantly expressed genes of each NK/ILC subset. (H) Kaplan-Meier plot showing better clinical 
outcome in breast cancer patients with higher composition of ILC3_IL7R subset within the METABRIC cohort. P value is calculated using the log-rank test. 

 
Furthermore, we identified an ILC3 cluster 

characterized by the expression of IL7R, LTB 
(lymphotoxin) and KIT, but negative for KLRG1 
(Figure 5F) [35]. This unusual ILC3 cluster exhibited 
an enrichment of the leukocyte proliferation pathway 
(Figure 5G). To examine the activity of transcription 
factors (TFs) among NK/ILCs, we performed 

pySCENIC to build gene regulatory networks and 
distinguished different groups of TFs (Figure S7G). 
The activities of a series of regulons including KLF2, 
TBX21, IKZF1 and XBP1 were found to be elevated in 
FGFBP2+ NK cells, while CEBPB, CEBPD and ELF1 
were highly active in KLRC1+ NK cells (Figure S7G). 
We also uncovered several regulons incorporating 
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ZNF37A, CEBPG, and FOS underlying the IL7R+ ILC3 
cluster. Our findings implied that this ILC3 cluster 
maintained specific transcriptomic properties, which 
might diversify their functions. Finally, we 
investigated the prognostic value of this novel IL7R+ 
ILC3 cluster and found that a high composition of the 
IL7R+ ILC3 cluster was strongly linked to longer 
relapse-free survival (RFS) (Figure 5H), suggesting 
that this novel ILC3 cluster might serve as a robust 
prognostic biomarker in breast cancer. 

Furthermore, we distinguished six distinct B cell 
clusters, comprising IgM+ naïve B (Bn), IgM- Bn, IgM+ 
memory B (Bm), IgM- Bm, ISG15+ Bm, and MKI67+ 
cycling B clusters with differentially expressed gene 
signatures (Figure S8A-B). For example, IgM+ Bn cells 
featured positive expression of IGHM (IgM) and 
TCL1A, a molecule whose expression is restricted to 
early B cells (Figure S8B) [36]. The ISG15+ Bm cluster 
occupied a higher proportion in LP subtype tumors, 
while the MKI67+ cycling B cluster was mainly found 
in mixed tumors (Figure S8C). Additionally, plasma 
cells formed an isolated cluster and revealed 
significant heterogeneity (Figure S8D). Differentially 
expressed immunoglobin-encoding genes, such as 
IGHM, IGHG1, IGKC and IGLC2, might primarily 
drive the heterogeneity of plasma cells (Figure S8E). 

Myeloid cell heterogeneity in breast cancer 
To further determine the heterogeneity of 

myeloid cells in the breast tumor microenvironment 
(TME), we analyzed scRNA-seq data on 52,955 
myeloid cells that were unsupervised graph-based 
clustered into 19 minor subsets based on canonical 
cell markers (Figure 6A-B) [18]. The major lineages 
included mast cells, dendritic cells (DCs), monocytes, 
macrophages and cycling myeloid cells (Figure 6A). 
Mast cells were characterized by specific high 
expression of TPSAB1, TPSB2, and KIT and were 
abundant in ML subtype samples (Figure 6B-C). DCs 
were classified into multiple subtypes based on the 
expression of classical cell markers, including 
conventional type 1 and 2 DCs (cDC1s, cDC2s), 
migratory DCs (mDCs), plasmacytoid DCs (pDCs), 
and noncanonical DCs (nc-DCs) (Figure 6A-B and 
Figure S9A-B). The CD1A+ cDC2 cluster was sparsely 
present in ML subtype samples and specifically 
expressed Langerhans cell markers such as CD1A and 
CD207 (langerin), revealing that this cluster 
represented langerin+ DCs (Figure 6C and Figure 
S9B) [37]. We verified strikingly activation and 
migration signature scores in LAMP3+ mDCs, in 
agreement with the previous study (Figure S9C) [18]. 
LAMP3+ mDCs had the highest tolerogenic signature 
score, suggesting a vital role in regulating adaptive 
responses against peripheral antigens (Figure S9C 

and Table S7) [38]. We then identified a unique 
nc-DC subpopulation expressing markers of both 
cDCs and pDCs, which might be intermediate 
between canonical pDCs and cDCs (Figure S9A). This 
subset was defined by several markers, including 
AXL and SIGLEC6, consistent with previous research 
in human blood (Figure S9B) [39]. Further differential 
analyses were conducted to explore the differentially 
expressed genes between this nc-DC subset and cDCs 
as well as pDCs (Figure S9D-E). We revealed that 
nc-DCs had upregulation of human leukocyte antigen 
(HLA) genes (HLA-DPB1 and HLA-DQB1) (Figure 
S9E), indicating higher antigen-presenting capacity. 
Likewise, nc-DCs highly expressed several pDC 
markers, such as TCF4 (Figure S9D), which is 
involved in pDC development through a BRD 
protein-dependent feedback loop [40]. 

Further clustering of monocytes characterized by 
FCN1, S100A8, and S100A9 enable to generate three 
subpopulations, covering classical CD14+CD16- as 
well as the nonclassical CD14+CD16+ and CD14-CD16+ 
subgroups (Figure 6B, Figure S10A-B). Subsequently, 
macrophages formed seven subpopulations with 
varying levels of “classically activated” M1-like and 
“alternatively activated” M2-like macrophage 
signature scores (Figure 6D, Figure S10C and Table 
S8). Among these macrophage subclusters, two TAM 
subsets, SPP1+ TAM and C1QC+ TAM, had been 
reported to exhibit dichotomous functional pheno-
types of TAMs (Figure 6D) [41]. Furthermore, we 
found a C1QC+CLEC10A+ TAM subset that might be 
DC-like TAMs with overexpression of HLA genes 
(HLA-DQA2 and HLA-DQB1), CLEC10A and CD1E as 
well as the higher TAM signature score than those for 
classical DCs (Figure 6B, D and Figure S10D). In 
addition, we identified a tissue-resident 
C1QC+FOLR2+ TAM subset, which was reported to 
reside in a perivascular niche in the tumor stroma and 
interacted with tumor-infiltrating CD8+ T cells, 
correlating with a superior prognosis [42]. We then 
found a lipid-associated macrophage (LAM) sub-
population that contributed to an immunosup-
pressive TME according to our previous study [43]. 
Notably, a novel macrophage subpopulation enriched 
in ML subtype samples was featured by elevating 
expression of creatine kinase brain isoform (CKB) 
(Figure 6C-E and Figure S10E). CKB is a member of 
the creatine kinase enzyme family that can reversibly 
transfer a high-energy phosphate group between ATP 
and creatine, generating phosphocreatine and ADP 
[44]. Pathway enrichment analysis using GSVA 
indicated enrichments of oxidative phosphorylation 
and extracellular matrix (ECM) receptor interaction in 
this CKB+ macrophage subset (Figure 6F).  
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Figure 6. Myeloid cell heterogeneity in breast cancer. (A) UMAP plot showing diverse subsets of myeloid cells. (B) Bubble heatmap showing expression levels of selected 
signature genes in myeloid cells. Dot size indicates fraction of expressing cells, colored based on average normalized expression levels. (C) Bar chart showing the relative 
proportion of major myeloid cell types in different molecular subtypes. (D) UMAP plot showing seven main subsets of macrophages. (E) Violin plot showing expression levels of 
selected signature genes in macrophages. (F) Bar plot showing different pathways enriched in CKB+ macrophages scored per cell by GSVA. t values are calculated with limma 
regression. (G) Immunohistochemistry of breast tissue microarray for CKB. (H) Kaplan-Meier plot showing worse clinical outcome in breast cancer patients with higher 
expression of CKB within our IHC cohort. P value is calculated using the log-rank test. (I) Kaplan-Meier plot showing worse clinical outcome in patients receiving anti-PD1 
treatment with higher composition of CKB+ macrophage subset in the IMvigor210 dataset. P value is calculated using the log-rank test. 
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Next, we investigated the sophisticated regula-
tory network of TFs regulating each macrophage 
subpopulation via pySCENIC (Figure S10F). For 
example, the LAM subpopulation upregulated the 
positive regulators MITF and PPARG but 
downregulated the ATF4 regulon (Figure S10F). The 
results revealed that ELF3, SP6, and ZFY had 
markedly increasing levels in the regulatory network 
of CKB+ macrophages and might represent the master 
TFs driving their differentiation (Figure S10F). 
Ultimately, we revealed that higher composition of 
CKB+ macrophages and higher expression of CKB 
were both linked with a survival disadvantage in the 
METABRIC cohort (Figure S10G-H). In similar, our 
IHC results further validated that the increase of 
CKB+ cells indicated inferior DFS (Figure 6G-H). The 
composition of CKB+ macrophages was positively 
correlated with immunotherapy resistance and poor 
outcome in patients receiving ICB treatment (Figure 
6I and Figure S10I). Taken together, these data 
illustrate the tumor-infiltrating myeloid cell landscape 
in breast cancer, and show that the identified novel 
CKB+ macrophage subpopulation may have 
important value in predicting the prognosis and 
immunotherapy response in breast cancer.  

The stromal compartment in normal and 
cancerous breasts comprises diverse cell types 

To investigate the heterogeneity of the stromal 
compartment, including ECs, fibroblasts, and 
pericytes (also named perivascular-like (PVL) cells), 
we integrated stromal cells from normal and 
cancerous breasts and corrected the batch effects. 
First, we analyzed 33,529 (18,096 from breast cancers, 
15,433 from normal breasts) ECs and identified 
distinct lymphatic vessels and blood vessels of diverse 
vascular beds (arteries, capillaries, and veins) (Figure 
7A). We annotated four main endothelial 
compartments in both normal and cancerous breasts 
based on the conserved markers (Figure 7B) [45]. 
Surprisingly, ECs from normal and cancerous breasts 
failed to uniformly mix together, revealing obvious 
biological differences among them. We observed a 
series of differentially expressed markers in the 
congeneric endothelial compartment between normal 
and cancerous breasts. For example, both PDPN and 
CCL21 were found to overexpress in lymphatic ECs 
from normal and malignant breasts (Figure 7B). 
Additionally, AKR1C1 was only discovered in 
lymphatic ECs from normal breast tissues, while 
LYVE1 distinctively expressed in lymphatic ECs from 
malignancies (Figure 7B). To characterize the 
functions among diverse endothelial compartments, 
we applied GSVA in hallmark gene sets (Figure 
S11A). Compared with ECs in the normal breasts, the 

tumor-derived compartments exhibited activation of 
adipogenesis, angiogenesis and fatty acid metabolism, 
but downregulation of the reactive oxygen species 
pathway and mTORC1 signaling (Figure S11A). 
Specifically, multiple pathways including apoptosis, 
the p53 pathway, and TGF-β signaling, were enriched 
in the vein compartment of tumors (Figure S11A). 

In order to further elucidate the heterogeneity of 
ECs in breast cancer, we first conducted ROGUE 
analysis. The results determined that capillary ECs 
exhibited the highest heterogeneity among the four 
EC subpopulations (Figure S11B). Then, the capillary 
ECs were further re-clustered into five subsets (Figure 
7C). A subpopulation of capillary ECs expressed both 
capillary (RGCC and KDR) and arterial (GJA4) 
markers, named arterial capillary ECs (Figure S11C). 
Analogously, we identified venous capillary ECs 
cluster in the presence of both capillary (RGCC and 
KDR) and venous (ACKR1) markers (Figure S11C). In 
addition, a CA4+ capillary ECs significantly expressed 
markers related to uptake and metabolism of fatty 
acids and glycerol, including FABP4, FABP5 and 
CD36 (Figure 7D and Figure S12A). An angiogenic 
capillary EC with higher expression of angiogenic 
genes (PGF) was also defined (Figure 7D). We 
observed variations in the proportions of these 
capillary EC subtypes, and a markedly decreased 
proportion of CA4+ capillary ECs was found in ML 
subtype samples (Figure 7E). Using GSVA, we 
assessed the enriched signaling pathways of these two 
special subsets. Expectedly, the CA4+ capillary ECs 
showed enrichment of the peroxisome proliferator- 
activated receptor (PPAR) signaling pathway, which 
is associated with fatty acid sensing and lipid 
metabolism regulation (Figure S12B) [46], whereas 
the angiogenic capillary ECs exhibited richness in the 
WNT/β-catenin signaling pathway involved in 
modulating cell stemness (Figure S12C) [47]. Next, we 
examined the regulatory network underlying each 
capillary EC subset via pySCENIC, and identified 
specific TF regulons for each capillary EC subset 
(Figure S12D). The CA4+ capillary ECs showed 
increased activities in regulators PPARG and NR1H3 
(Figure S12D), which play significant roles in lipid 
homeostasis and lipophagy [48]. Specifically, the 
KLF6 regulon, which is crucial in vascular 
development, remodeling and response to injury [49], 
was highly activated in the angiogenic capillary 
cluster (Figure S12D). Furthermore, these two specific 
capillary ECs subtypes have important clinical 
implications. The CA4+ capillary EC signature was 
correlated with superior survival in the METABRIC 
cohort (Figure 7F). Additionally, we performed IHC 
analyses to determine the association between the 
patient survival and the abundance of CA4+ capillary 
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ECs in our cohort, and observed a similar result 
(Figure 7G-H). By contrast, the survival of patients 
showing higher abundance of angiogenic capillary 
ECs was significantly shorter (Figure S12E). Besides, 
patients who were sensitive to trebananib, an 
angiogenesis inhibitor, exhibited elevated angiogenic 
capillary EC signature scores (Figure 7I). In addition, 
we found that the composition of angiogenic capillary 
ECs was reduced in patients sensitive to ICB 
treatment in bladder cancer, and was associated with 
a poor prognosis (Figure 7J-K). Overall, these 
analyses established a cellular landscape of ECs, and 
might help elucidate the heterogeneity, function and 
clinical implication of EC subpopulations in breast 
cancer. Further investigation is needed to reveal how 
these special capillary EC clusters influence patient 
survival and treatment efficacy. 

For fibroblasts, by integrating 48,749 fibroblasts 
from normal breasts and 40,529 cancer-associated 
fibroblasts (CAFs), we identified nine major cell types 
(Figure S13A). Fibroblasts from normal breasts 
exhibited low expression of myofibroblast-like CAF 
(mCAF) markers such as ACTA2 and MMP11, and 
myogenesis pathway activity deficiency (Figure 
S13B-C). Unexpectedly, we described two subpopu-
lations from normal breasts showing weak expression 
of DCN and LUM, two classical markers of fibroblasts 
(Figure S13B). However, they revealed significantly 
elevated levels of mesenteric estrogen-dependent 
adipogenesis gene (MEDAG) (Figure S13B) which 
contributes to preadipocyte differentiation and lipid 
accumulation [50], and adipocyte adhesion molecule 
(CLMP) which is critical in adipocyte differentiation 
and maturation (Figure S13B) [51]. Thus, we named 
them adipocyte-associated stromal cells (AASCs). One 
of AASCs was marked by abundance of glycolysis- 
associated markers (ENO1 and PGK1) and an 
enrichment of hypoxia and glycolysis pathways, 
might representing a stressed state (Figure S13B-C). 
Moreover, CAFs were clustered into five clusters. 
Among them, a special mCAF cluster with hypoxia 
features had the highest frequency in BM subtype 
(Figure S13D-E). The results also revealed that the 
hypoxia mCAF signature was related to shorter 
survival (Figure S13F), demonstrating that this 
hypoxia mCAF subset might act as a potential 
predictor for breast cancer patient prognosis. 

Finally, 10,278 pericytes from normal breast 
tissues and 10,489 pericytes from breast cancer tissues 
were integrated and clustered into two states 
compatible with an immature and a differentiated 
phenotype (Figure S14A). Immature pericytes 
(imPVLs) exhibited elevated expression of genes 
associated with stem cells and adhesion molecules 
(PDGFRB, CD44, and RGS5) (Figure S14B). By 

comparison, differentiated pericytes (dPVLs) revealed 
enriched contractile-related genes (ACTA2 and 
TAGLN) (Figure S14B). Although imPVL and dPVL 
cells were both identified in normal breasts and breast 
cancers, they were equipped with the substantial 
difference. For example, MYH11 was only found in 
dPVL cells from malignancies but not normal breasts 
(Figure S14B). Functionally, imPVL cells significantly 
expressed genes involved in cell adhesion and ECM 
receptor interaction pathways (Figure S14C). By 
contrast, dPVL cells exhibited a mCAF-like signature, 
including enrichments of vascular smooth muscle 
contraction and myogenesis pathways (Figure S14C). 
The differences in pericytes between normal and 
cancerous breasts may underscore the potential role 
of pericytes in reshaping the TME during 
tumorigenesis. 

Discussion 
The present analysis of comparable normal and 

cancerous breasts from 216 samples provided a 
large-scale integrated scRNA-seq profile of breast 
cancer. Through contrasting malignant cells against 
reference normal mammary epithelial cell 
populations, we further unveiled diverse novel 
molecular subtypes of breast cancer, indicating 
distinct cell-of-origin patterns. Notably, we identified 
the LP subtype of breast cancer, which demonstrated 
a remarkably inferior prognosis. We also screened out 
and validated PLK1 as a pivotal factor involved in 
chromosomal instability within LP subtype breast 
cancer. Our findings suggested that PLK1 could serve 
as a potential therapeutic target for LP subtype breast 
cancer. In addition, we described the stromal and 
immune cell subset abundances in these subtypes and 
identified novel subpopulations of ILCs, macrophages 
and endothelial cells associated with tumor 
progression. Ultimately, the associations between 
tumors with specific clusters and prognosis were 
investigated in large-scale bulk transcriptome dataset 
and validated in our cohort by IHC staining. We 
unraveled tumor heterogeneity from an evolutive 
perspective and defined distinct molecular subtypes 
coupled with the intrinsic capacity of tumors. 

Initially, we identified three major epithelial cell 
subpopulations, including the BM, LP and ML 
subsets. A recent research generated a multi- 
dimensional atlas of normal breast tissues and 
organoids by scRNA-seq and mass cytometry, 
identified diverse mammary epithelial cell 
subpopulations similar to those in our study, albeit 
with different names [52]. Furthermore, through 
evaluating the homology of signature gene expression 
patterns between normal and malignant epithelial 
cells, we presented different neoplastic subclusters. 
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Figure 7. The endothelial cellular landscape in normal and cancerous breast tissues. (A) UMAP plot showing diverse subsets of ECs from normal and cancerous 
breast tissues. (B) Violin plot showing expression levels of selected signature genes in ECs from normal and cancerous breast tissues. (C) UMAP plot showing diverse subsets of 
breast cancer ECs. (D) Violin plot showing expression levels of selected signature genes in breast cancer ECs. (E) Bar chart showing the relative proportion of major breast cancer 
EC types in different molecular subtypes. (F) Kaplan-Meier plot showing better clinical outcome in breast cancer patients with higher composition of CA4+ capillary subset within 
the METABRIC cohort. P value is calculated using the log-rank test. (G) Immunohistochemistry of breast tissue microarray for CA4. (H) Kaplan-Meier plot showing worse clinical 
outcome in breast cancer patients with higher expression of CA4 within our IHC cohort. P value is calculated using the log-rank test. (I) Violin plot comparing the expression level 
of angiogenic capillary cell marker genes in breast cancer patients with different responses to antiangiogenic treatment in the I-SPY2 cohort. Unpaired two-sided Wilcoxon test. 
(J) Violin plot comparing the expression composition of angiogenic capillary subset in breast cancer patients with different responses to anti-PD1 treatment. Unpaired two-sided 
Wilcoxon test. (K) Kaplan-Meier plot showing worse clinical outcome in patients receiving anti-PD1 treatment with higher composition of angiogenic capillary subset in the 
IMvigor210 dataset. P value is calculated using the log-rank test. 

 
Using deconvolution, the large transcriptome 

cohort of breast cancer was classified into different 
malignant subtypes based on cancer cell-of-origin 
patterns. Among them, the LP-derived tumors mainly 

comprise basal-like and normal-like types defined in 
PAM50 [53]. Similarly, previous studies have 
demonstrated that BRCA1-mutant basal-like breast 
tumors stem from LP cells but not basal 
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stem/progenitor cells [7,8,54]. Recently, Joyce et al. 
identified an aberrant ERBB3lo LP subpopulation in 
BRCA2 mutation breast cancer, and they found 
ERBB3lo progenitors could give rise to both ER+ and 
ER− cells, potentially acting as the cellular origins for 
both ER-positive and triple-negative cancers [55]. 
Hence, distinct LP subpopulations could serve as 
cell-of-origin of different breast cancer subtypes, and 
this direction need further elaborate exploration. 
Compared with other subtypes, LP-dominated 
patients displayed an inferior prognosis but were 
sensitive to NAC, PARPi and ICB. The correlation 
between LP-originated cancer cells and genomic 
alteration profiles was investigated in detail. The 
intrinsic features of the LP subtype showed high TMB 
and HRD scores. The LP-high samples also exhibited 
high levels of aneuploidy and chromosomal 
instability, while the extrinsic features exhibited the 
immunosuppresive TME. Subsequently, many 
immune checkpoints, including PDCD1, HAVCR2, 
LAG3 and TIGIT, highly expressed in LP subtype 
cases, potentially explaining the immunosuppressive 
microenvironment and high sensitivity to 
immunotherapy in the LP subtype breast cancer. 
Finally, conventional biomarkers such as ERα, PR, 
HER2 and Ki67, fail to distinguish BM type and LP 
type in clinical practice. Our analysis proposed a 
novel predictor PAST1 that was the optimal 
biomarker for LP subtype. Therefore, the diagnostic 
criteria containing these characteristic biomarkers in 
breast cancer should be extensively performed in the 
future.  

Through conducting multi-omics analyses 
including scRNA-seq, bulk RNA-seq and Perturb-seq 
analyses and both in vivo and in vitro experiments, our 
data revealed that PLK1 acted as a major player 
involved with chromosomal instability within LP 
subtype breast cancer. Within the domain of LP 
subtype breast cancers, PLK1 could function as a 
potential treatment target warranting further 
exploration. A recent research reported a molecular 
subtype-dependent prognostic role of PLK1 in breast 
cancer [56]. High PLK1 protein expression was 
remarkably related to a superior prognosis in the 
whole breast cancer cohort as well as the luminal 
subtype, but linked with a poor outcome in the 
triple-negative breast cancer (TNBC) subtype. Our 
data found the anti-cancer manifestation upon 
inhibiting PLK1 in the LP-like cell line and mice 
tumor model. Regarding the role of PKL1 during 
treatments, a previous study showed that PLK1 
inhibition could overcome therapeutic resistance to 
bromo- and extraterminal domains (BET) inhibitors in 
TNBC [57]. Besides, in hormone receptor-positive/ 
HER2-negative metastatic breast cancer, high PLK1 

mRNA level was found in patients refractory to 
palbociclib combined with endocrine therapy, 
indicating PLK1 might be important in the setting of 
resistance to cyclin-dependent kinase 4/6 (CDK4/6) 
inhibitors [58]. Thus, the role of PLK1 in breast cancer 
is distinct within each subtype. Further exploration 
should focus on the molecular mechinism of 
PLK1-involved chromosome instability within the LP 
subtype breast cancer. 

Interestingly, we described a specific population 
of IL7R+ ILC3 cluster. This cluster is endowed with 
cytotoxic and naïve traits and upregulates 
chemokines (XCL1 and XCL2) and lymphotoxins 
(LTB). XCL1 and XCL2 recruit cDC1 into the tumor 
microenvironment to improve tumor immune control 
[59]. In addition, LTB enables increased T cell effector 
functions and resistance to exhaustion via combina-
tion with its receptor LTBR [60]. These studies are 
consistent with our results, in which IL7R+ ILC3 
cluster functions as a pivotal driver to stimulate 
leukocyte proliferation, chemotaxis and activation. 
Some key TFs, such as ZNF37A, CEBPG and FOS, 
prominently expressed in IL7R+ ILC3 and may be 
involved in their differentiation and activation. 
Clinically, higher infiltration of IL7R+ ILC3 
subpopulation is associated with prolonged survival 
and can be an effective predictor. 

Unraveling the diversity of myeloid cells, we 
identified CKB+ macrophages that exist in breast 
cancer tissues and predict a poor prognosis. This 
subpopulation specifically expressed metabolic 
enzymes and transporters (CKB, SLC9B2, NDUFS8) 
and osteoclast markers (CTSK, ACP5, MMP9, 
SIGLEC15). CKB is an enzyme involved in 
high-energy phosphoryl transfer between ATP and 
various phosphogens, such as creatine phosphate [61]. 
Notably, CKB+ macrophages showed metabolic 
activation, including oxidative phosphorylation, lipid 
metabolism and glycosaminoglycan biosynthesis. 
However, the origin and development of CKB+ 
macrophages remain unknown. ELF3 is an ETS family 
transcription factor that mediates macrophage 
differentiation [62], secretion of inflammatory 
cytokines in macrophages [63,64], and macrophage 
proliferation [65]. Thus, ELF3 may contribute to CKB+ 
macrophage development. Finally, CKB is a 
biomarker for novel macrophage subpopulation in 
breast cancer. Therefore, the biological function and 
immunotherapy potency of CKB+ macrophages in 
various cancer types should be elaborated in 
subsequent studies. 

By applying clustering approaches, we 
constructed a blueprint of EC heterogeneity. Briefly, 
EC types were characterized by functional differences 
and specific markers within the TME. For example, 
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the subtype of ECs named angiogenic capillaries 
predicted poor survival, while patients enriched in 
CA4+ ECs had favorable survival. Regarding thera-
peutic regimens, cases in abundance of angiogenic 
capillaries were sensitive to antiangiogenic therapy 
but resistant to ICB treatment. This finding suggests 
that angiogenic capillaries should be viewed as a 
predictor of antiangiogenic remedies. Considering the 
heterogeneity of ECs, they mediate metabolic 
homeostasis and inflammation depending on diverse 
subtypes [66]. Consistently, CA4+ ECs in the TME 
showed abundance in fatty acid metabolism and 
oxidation potentially by upregulation of PPARγ [25]. 
During pySCENIC analysis, CA4+ EC subpulation 
was enriched in STAT1 and STAT2, which are 
involved in interferon and chemokine signaling. This 
finding suggests that this EC subpopulation can 
recruit lymphocytes and initiate tumor immune 
control. Therefore, the versatility of ECs must be 
considered to refine our understanding of health and 
malignant diseases. 

However, this study has several limitations. 
First, considering droplet encapsulation and tissue 
dissociation, certain cell types including granulocytes 
and adipocytes could not be acquired. Second, the 
number of cases per clinical subtype was limited. 
Estimating subtype-specific features will require 
recruitment of a large, prospective cohort of patients 
and integration with transcriptional, epigenomic, and 
clinical readouts. 

Conclusion 
In conclusion, the presented single-cell atlas 

elucidates the cellular repertoire and the cell-of-origin 
of breast cancer. Our work combining single-cell and 
bulk RNA-seq data has revealed the evolution 
mimicry from normal to malignant subtypes and 
expounded the LP subtype with important clinical 
implications. Altogether, our data expand the under-
standing of the complex breast cancer ecosystem and 
highlight insights into developing novel subtype- 
specific therapeutic targets for anticancer therapy. 
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