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Abstract 

Background: The sensitivity and specificity of current breath biomarkers are often inadequate for 
effective cancer screening, particularly in colorectal cancer (CRC). While a few exhaled biomarkers in 
CRC exhibit high specificity, they lack the requisite sensitivity for early-stage detection, thereby limiting 
improvements in patient survival rates. 
Methods: In this study, we developed an advanced Mass Spectrometry-based volatilomics platform, 
complemented by an enhanced breath sampler. The platform integrates artificial intelligence (AI)-assisted 
algorithms to detect multiple volatile organic compounds (VOCs) biomarkers in human breath. 
Subsequently, we applied this platform to analyze 364 clinical CRC and normal exhaled samples. 
Results: The diagnostic signatures, including 2-methyl, octane, and butyric acid, generated by the 
platform effectively discriminated CRC patients from normal controls with high sensitivity (89.7%), 
specificity (86.8%), and accuracy (AUC = 0.91). Furthermore, the metastatic signature correctly identified 
over 50% of metastatic patients who tested negative for carcinoembryonic antigen (CEA). Fecal validation 
indicated that elevated breath biomarkers correlated with an inflammatory response guided by 
Bacteroides fragilis in CRC. 
Conclusion: This study introduces a sophisticated AI-aided Mass Spectrometry-based platform capable 
of identifying novel and feasible breath biomarkers for early-stage CRC detection. The promising results 
position the platform as an efficient noninvasive screening test for clinical applications, offering potential 
advancements in early detection and improved survival rates for CRC patients. 
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Introduction 
Colorectal cancer (CRC) is the third most 

prevalent cancer and the second most frequent 
cancer-related cause of death worldwide [1]. 
Projections indicate that by 2030, global CRC cases 
will witness a 60% surge, reaching over 2 million new 
cases, and leading to around 1 million fatalities [2]. 
Earlier detection of CRC could increase survival by an 
estimated 30 to 40%. Moreover, patient prognosis in 
CRC is predominantly influenced by the clinical stage 
at diagnosis, especially the presence of distant 
metastasis. Despite state-of-the-art computed 
tomography, fecal occult blood test and serum 

carcinoembryonic antigen (CEA) for patients with 
CRC, the rate of correct diagnosis is 40-65% and the 
rate of identifying metastases is 40-60% [3]. 
Meanwhile, these traditional methods are invasive, 
time-consuming, expensive and may lead to 
complications. Given these challenges, it is urgent to 
introduce a novel diagnostic tool for precise 
identification of patients with preclinical and truly 
localized disease in CRC with higher patient 
compliance and low cost. 

The breath serves as a valuable source for 
recognizing highly sensitive biomarkers as it 
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promptly reflects bodily changes [3, 4]. Moreover, 
volatile organic compounds (VOCs) composition in 
the breath is significantly simpler than that of serum 
or plasma, making the breath an optimal choice for 
analyses [5]. Both our research and prior 
investigations have identified >180 VOCs in the 
human breath [6]. Approximately 40% of these VOCs 
in the breath originate from those in plasma, and over 
100 VOCs produced in the colorectum can be detected 
in the breath of healthy subjects [7]. Thus, the breath is 
a feasible tool for identifying noninvasive biomarkers 
for CRC. However, large-scaled and effective 
application of breath biomarkers in clinical practice is 
often hampered by three challenges: (i) Lack of 
standardization in sample collection. Tedlar® and 
other polymer storage bags may lead to limited 
sensitivity due to collection of single exhaled breath 
and contamination with VOCs from bag [8, 9]. (ii) 
Deficiency of a universal breath VOCs analysis 
method. The common analytical instruments were 
limited by inter-instrument variability, temporal 
stability and poor chemical selectivity, such as 
SIFT-MS and Electronic Nose [10, 11]. (iii) 
Insufficiency of machine learning analytical methods 
to recognize reliable marker panel. Some models are 
of poor design and inadequate sample size, risking 
bias and overfitting [12]. Hence, a comprehensive 
study including standardized methodology for breath 
analysis and biomarkers screening, has still been 
unavailable until now. 

Here, we developed a prospective MS-based 
volatolomics platform combined with improved 
breath sampler for detection of CRC to directly 
address the challenges of standardization in breath 
sampling and analysis in translational clinical 
analyses. Then we utilized optimized artificial 
intelligence (AI)-based machine learning (ML) 
algorithms with vigorous feature selection to build 
diagnostic and metastatic models of 14 markers and 7 
markers, respectively. The sensitivity and specificity 
of the models were evaluated in the clinically relevant 
cohort of healthy individuals and those with CRC in 
two stages, and compared with that of CEA. At last, 
the alteration of crucial breath VOCs is correlated in 
gut microbiome. This step-by-step research generates 
greatly precise non-invasive breath VOCs markers 
and demonstrates the promising role of breathomics 
in future CRC detection. 

Results 
Study design and clinical characteristics 

Figure 1A demonstrate a breath biopsy 
technique that merges AI and TD-GC × GC-QQQ MS 
to simultaneously diagnose CRC by untargeted 

analysis of exhaled VOCs. Our technique acquires 
GC-MS signals of endogenous VOCs, then analyzes 
them using robust machine learning algorithms. 
There are two outputs: cancer detection and tumor 
stages discrimination. In the first step, the 
AI-enhanced machine learning framework 
determines each signal as normal or cancerous, 
yielding a cancer likelihood score. In the second step, 
multiple classifier models, trained on cancer stages 
using the one-vs.-one strategy, generate metastasis 
evaluations of positive predictions from the prior 
step. We highlight the distinguishing performance of 
this system using 160 samples that included 
difference stage CRC patients (Figure 1B). 

A cohort of 194 participants, comprising 93 HCs 
and 101 CRC patients (including without metastasis 
and with varying degrees of metastasis), was 
recruited between July 2023 and November 2023. 
After excluding 12 individuals, there were 182 
participants eligible for further analyses. The average 
age of the participants was 63.8 ± 16.8 years, with 56% 
being male. Both age and gender distributions 
showed balance between the HCs and CRC patients 
(P > 0.05), with the HC group being slightly younger 
(Figure 2A). Patients with CRC displayed a higher 
likelihood of having hypertension, elevated serum 
triglyceride levels, and increased insulin levels. 
Detailed baseline characteristics of these participants 
can be found in Table S1. The HCs contained some 
patients with mild intestinal polyps, which were 
analyzed by PCA and clustered heat maps with the 
completely healthy group in this study (Figure S1; 
Figure S2). It was found that there was almost no 
difference between the two groups, so we unified 
them together as HCs. 

Refined breath-VOCs profile minimizing 
confounding factors 

Breath samples were gathered concurrently with 
corresponding ambient air at the Huadong hospital 
site and analyzed by GC-MS/MS. We detected and 
extracted a total of 72 VOCs from the chromatograms. 
Averaging was applied to repeated measurements 
before subjecting the normalized peak areas to 
principal component analysis (PCA) for outlier 
identification and removal. Using partial least 
squares—discriminant analysis (PLS-DA), we 
achieved a distinct separation between breath and 
ambient air samples (R2Y = 0.90, Q2Y = 0.87, P < 0.05) 
(Figure 2B). This separation was driven by 33 VOCs, 
with a variable importance projection (VIP) score > 1. 
A complete list of the VOCs characterizing each 
sample type and their respective VIP scores can be 
found in Table S2. This separation was also confirmed 
via low correlation between breath and ambient air 
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(spearman r -0.3-0.3; Figure 2C), which exhibited our 
breath testing was independent from ambient air. 
Furthermore, Figure 2C shows the ratio of each VOC 
in human breath to ambient air. The median ratio is 
1.28, indicating that the intensity of the breath VOC 
signal is usually higher than the corresponding 
ambient VOC signal, even though they are usually of 
the same order of magnitude. 

We further examined the effects of smoking 
habits on breath VOCs derived from patients with 
CRC. The ANOVA and binary logistic analysis 
showed that eight smoking-related VOCs (benzene, 
toluene, ethylbenzene, o-xylene, p-xylene, 
acetophenone, 2-methylfuran, and decane) were 
independent risk factors for smoking habit, and 
should be excluded from subsequent analysis (Figure 
2D; Table S3; Table S4). Moreover, we explored 
drinking habits as well as BMI and gender in the same 
way as above, but found no significant risk factors 
associated with these factors. Thus, the remaining 64 
VOCs are listed in Table S5 as breath metabolites set 
after adjusting for these relevant confounders. 

The breath-VOC profile of CRC was 

demonstrated by linear discriminant analysis (LDA) 
using breath metabolites set (Figure 2E). The first two 
principal components explained 96% of the overall 
variance. The CRC samples exhibited differentiable 
signatures compared to healthy control samples, as 
evidenced by their spatial separation in the LDA 
diagram, while polyps could not be discerned from 
the other HC samples. Similarly, the volcano plots 
revealed enrichment of these VOCs in the CRC cases. 
(Figure S3). 

According to Metabolomics Standard Initiative 
level 1 criteria for metabolite identification, the most 
common chemical classes associated with CRC in this 
study included hydrocarbons (27.69%), aldehydes 
(18.46%), ketones (13.85%), acids (7.69%), sulfur 
compounds (7.69%), terpenoids (6.15%), alcohols 
(4.62%), phenols (4.62%), nitrogen compounds (3.08%) 
and aromatic compounds (1.54%) (Figure 2F). These 
volatile organic compounds exhibit multifaceted 
correlations, with short-chain fatty acids (SCFAs) 
presenting as self-associated clusters in both the 
heatmap and categorical correlation diagrams (Figure 
S4; Figure S5). 

 

 
Figure 1. One test-multi-CRC using VOCs-MS-AI. A. Overview. Human breath with endogenous VOCs is collected using improved sampler. Signals were observed by 
TD-GC-MS/MS and analyzed by AI algorithms. The system outputs predictions about cancer presence and cancer metastasis. A histogram shows actual examples of the 
representative predicted results for each cancer status. B. AI framework. In the first step, diagnostic model is constructed through the multiple AI-based classifier results. In the 
second step, signatures extracted by the previous CRC classifier are analyzed, then a metastatic marker panel is generated using three types of feature selection algorithms. 
Cartoons were created with BioRender.com. 
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Figure 2. Confounders exclusion and VOCs profile description. A. Enrollment of the cohort study and BMI and age information of study participants. B. Breath and 
ambient air present distinct VOCs profiles. Supervised analysis with PLS-DA showed a clear separation between breath and ambient air VOCs profiles (R2Y = 0.90, Q2Y = 0.87, 
P < 0.05). Ellipses show 95% confidence intervals. C. Ratio of median from breath gas samples to median of ambient air samples and also the correlation of breath gas and ambient 
air samples. VOCs in bold are those with VIP greater than 1 in PLS-DA. D. The distribution of 8 smoking-related VOCs concentration between SM and NSM groups. E. Score 
plot of linear discriminate analysis (LDA) overview of breath VOCs among the healthy controls (HCs), Benign polyposis (polyps), CRC without metastases (early stage) and CRC 
with metastases (later stage) groups. F. The major chemical classes associated with CRC in this study and their percentage of candidate VOCs. Abbreviations: BMI, body mass 
index; SM, smokers; NSM, non-smokers. 

 

Innovative AI-driven models for accurate CRC 
Diagnosis 

We performed an AI-based study relying on 
breath VOCs set derived above to diagnose CRC with 
different stages. The study consisted of three parts: (1) 
AI-assisted feature importance list generation; (2) 

model-based variable selection; (3) model derivation 
and validation (Figure 3A). Breath samples were 
randomly assigned into training and validation 
cohorts with a 4:1 proportion. 

In order to rank feature importance, we first built 
a selection frequency counter employing the 
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SVM-RFE, LASSO and Boruta algorithms (Figure 3B; 
Methods for details). The frequency counter 
summarizes the selected features for each ML method 
during bootstrap procedure (Table S6). Following 100 
iterations of the process, a feature importance list was 
generated by ranking total selection frequencies 
(Table S7). With the ranked list of breath VOCs, we 
constructed a comprehensive pipeline for variable 
selection. This process was accomplished by 
comparison of multiple baseline models, each of 
which displayed distinct adaptabilities to the original 
data structure upon the incremental input of 64 
variables in descending order. These models included 
logistic regression (RL), random forests (RF), support 
vector machine (SVM), extreme gradient boosting 

(XGB), and neural networks (NNet), with 
corresponding mean AUCs of 0.71, 0.72, 0.74, 0.69, 
and 0.86 and mean accuracy of 72%, 75%, 77%, 75%, 
and 80%, respectively (Figure 3C; Table S8). In terms 
of its best discriminant performance, NNet was 
chosen to construct diagnostic model for CRC 
detection. Subsequently, NNet extracted the 
minimum 14 features from feature importance list by 
developing an efficiency sweet spot which was 
reflected in Fig 3d. These 14 features generated a 
diagnostic marker panel for CRC, comprising 3 
short-chain fatty acids (SCFAs), 2 aldehydes, 2 
ketones, 2 hydrocarbons, and 2 sulfur-containing 
compounds (Table S9).  

 

 
Figure 3. Study flow chart, machine learning algorithms and their performance when using the two prediction models. A. The two stages workflow for 
building the diagnostic and metastatic models with breath VOCs markers. B-C. The flow chart of integrating three algorithms’ results in ranking features and integrating five 
classification algorithms in building classification models. D. The number of feature selection was determined by AUC and accuracy. E-F. The receiver operating characteristic 
(ROC) curves of Diagnostic Model and Metastatic Model that were used for predicting CRC and metastatic tumor in the training cohort (E) and the validation cohort (F). 
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By using a nested cross-validation approach, we 
finely tuned hyperparameters of NNet to fit this 
diagnostic marker panel, and finally constructed the 
Diagnostic Model. For CRC detection, the model 
achieved an AUC of 0.90, sensitivity of 89.1%, 
specificity of 89.6%, and accuracy of 91.6% in the 
training set, which consisted of 72 CRC and 74 HCs (n 
= 146) (Figure 3E). We also carried out a 10-fold 
internal cross-validation, yielding a verified AUC of 
0.87 and an accuracy rate of 86.9%. Meanwhile, in the 
validation set comprised of 18 HCs and 18 CRC (n = 
36), the Diagnostic Model attained 88.3% sensitivity, 
92.3% specificity with an AUC of 0.91 (Figure 3E). 
These results indicated this model possesses out-
standing performance for CRC detection and achieves 
great improvements compared to those models with 
only a single classifier in studies of Yang et al. [13]. 

Subsequently, we embarked on developing the 
Metastatic Model, which was designed to utilize the 
same methodology for detecting varying stages of 
CRC. After evaluating five baseline models, we 
determined that the SVM classifier yielded the most 
optimal results in terms of AUC and accuracy. 
Following the creation of the SVM feature efficiency 
curve, we were able to extract the top 7 features from 
a pool of 14 variables in the Diagnostic Model, as 
depicted in Figure 3D. These seven features 
encompassing 1 hydrocarbon, 2 aldehydes, 2 ketones, 
sulfide, allyl methyl and hexanoic acid, were defined 
as the metastatic marker panel (Table S10). Utilizing 
this panel, we optimized the hyperparameters of SVM 
and developed the final Metastatic Model. This model 
demonstrated a sensitivity of 81.1%, a specificity of 
84.0%, an accuracy of 87.2%, and an AUC of 0.87 
when distinguishing CRC patients with and without 
metastases (Figure 3F). While a better result was 
acquired for identifying NM from the metastatic 
subgroups LNM and DM, yielding an identification 
accuracy of 82.4% and 89.6%. To further examine the 
sensitivity of Metastatic Model, we evaluated the 
performance of Diagnostic Model in discerning LNM 
and DM from NM group. These paired comparisons 
generated AUCs of 0.500 and 0.638, respectively 
(Figure S6), indicating the Diagnostic Model has 
limited predictive power for metastatic stages. The 
comparative analysis of two models highlights the 
better sensitivity and reliable performance of the 
Metastatic Model with 7 features in distinguishing 
CRC with metastasis. Overall, our Diagnostic/ 
Metastatic models exhibit excellent at identifying both 
CRC and different staging types, and provide a 
powerful complement to existing CRC diagnostic 
techniques. 

We further assessed the efficiency of 14 markers 
in the diagnostic model (Figure S8) and found that 

furfural and hexanoic acid showed the most favorable 
performance with AUCs of 0.706 and 0.637 in the 
training cohort. (Figure 4B). Additionally, metastatic 
markers furfural and Octane-2-methyl were 
significantly higher in CRC patients’ breath, while 
hexanoic acid, sulfide, and allyl methyl levels 
decreased with cancer progression, reaching the 
lowest levels in DM (Figure 4A). These findings 
provide valuable insights into potential markers for 
metastasis and indicate their association with CRC 
advancement. 

Breath VOCs biomarkers complemented FIT 
and serum CEA 

For comparison, we concurrently assessed the 
fecal immunochemical test (FIT), a recognized CRC 
screening biomarker, in 145 fecal samples. These were 
methodically distributed into two datasets: the 
training set, comprising of healthy controls (HC), n = 
51, and CRC patients, n = 50; and the validation set 
with HC, n = 22, and CRC, n = 22. In the training 
cohort, FIT demonstrated a sensitivity of 62.8% 
(31/50) and an impeccable specificity of 95.8% 
(49/51). Contrarily, within the validation cohort, the 
sensitivity was recorded at 70.2% (15/22) while 
maintaining a specificity of 100% (22/22). 
Concurrently, our novel breath diagnostic marker 
panel exhibited a commendable area under the curve 
(AUC) of 0.902 with a sensitivity of 85.7% and 
specificity of 86.3% in the training set. In the 
validation set, the figures stood at 0.910, 88.7%, and 
91.6%, respectively. Notably, the diagnostic 
sensitivity proffered by the breath marker panel 
surpasses that of FIT. Analyzing both the training and 
validation cohorts, the breath marker panel 
augmented diagnostic precision for an additional 12 
patients (24.0%) and 6 patients (27.2%), respectively, 
as visualized in Figure 4C. Of those that returned 
negative results via FIT in CRC, the training set 
accurately diagnosed 63.6% (12/19), and the 
validation set achieved an impressive 87.5% (6/7) 
through the breath diagnostic marker panel. The 
combination of both FIT and the breath diagnostic 
marker panel heralds a more proficient diagnostic 
approach, manifesting a sensitivity and specificity of 
88.8% and 94.1% in the training set, with 
corresponding figures of 91.8% and 92.4% in the 
validation set. 

Shifting our focus to the metastatic dimension, 
the widely acknowledged clinical CRC metastasis 
biomarker, CEA, was carefully evaluated in 80 serum 
samples. The overarching results suggest that the 
breath metastatic model’s efficacy parallels that of 
serum CEA. When we integrated the breath VOCs 
marker panel with serum CEA, there was a significant 
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increase in predictive efficacy compared to the 
standalone use of CEA. This combination manifested 
an AUC of 0.939, with sensitivity, specificity, and 
accuracy metrics at 90.9%, 88.2%, and 93.5%, 
respectively. Adopting the established clinical CEA 
threshold of 5 ng/mL to distinguish metastatic from 
non-metastatic CRC, serum CEA unveiled a 
sensitivity of 58.1%, a specificity of 78.0%, and an 
AUC of 0.615 (Figure S7). Within the cohort 
diagnosed with metastatic CRC, CEA identified a 
total of 24 individuals (58.5%). The breath metastatic 
markers further augmented the diagnostic power by 

recognizing an additional 10 patients (24.4%). 
Subgroup analyses elucidated the metastatic model’s 
enhanced discriminatory capacities, identifying an 
extra 6 patients (27.2%) with lymph node metastasis 
(LNM) and 5 patients (26.3%) with distant metastasis 
(DM), compared to CEA’s detection of 12 individuals 
(54.5%) with LNM and 12 cases (63.2%) with DM 
(Figure 4D). Of the cohort who were CEA-negative in 
LNM or DM categorizations, 60.0% (6 out of 10) and 
71.4% (5 out of 7) were accurately identified as having 
metastases via our marker panel. 

 

 
Figure 4. Verification of the breath biomarkers using comparative analysis. A. Scatter plot for octane, 2-methyl-, hexanoic acid, furfural, sulfide allyl methyl, and 
benzaldehyde in 92 healthy controls (HCs) and 90 CRC patients, including CRC without metastases (NM; n = 46), CRC with lymph node metastasis (LNM; n = 25) and CRC with 
distant metastasis (DM; n = 19). The median values in each group are shown as black dotted lines. The differences between groups for each marker were analyzed by two-sided 
Kruskal–Walli’s test. B. The independent diagnosis efficiency of two key markers among the fifteen markers in the diagnostic model. C. ROC curve of serum CEA, metastatic 
marker panel, and the combination of the metastatic panel and CEA for the metastatic model (LNM+DM vs. NM). D. Diagnostic and metastatic predictive power of the diagnostic 
markers and metastatic markers in the individuals who were misdiagnosed by the FIT test or serum CEA. The values in parentheses indicate the number of samples corresponding 
to each percent. +, positive; −, negative; n, number of samples. E. Heatmap of the dot plot data for single breath markers as well as the diagnostic or metastatic panel with a 
specificity of 95%, and the combination of corresponding clinical biomarker indices for the diagnostic or metastatic model was considered positive when either the panel or 
FIT/CEA was positive. Red: positive using the cutoff value with a specificity of 95%. The FIT test, serum CEA, tumor location, sex, and age are indicated by color-coding. CRC 
colorectal cancer, FIT fecal immunochemical test, CEA carcinoembryonic antigen, AFP alpha fetoprotein, Neg. negative; Pos. positive; NA not available. 
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To better understand the effectiveness of breath 
VOCs in detecting CRC and determining the risk of 
metastasis, we utilized the cutoff values of each key 
VOC and classifiers of each model on both training 
and validation cohorts. When it comes to diagnosis, 
combining the marker panel with the FIT showed a 
sensitivity of 88.8% and specificity of 94.1% in the 
training set, and 91.8% and 92.4% in the validation set, 
respectively (Figure 4E- bottom). At the same time, 
when it comes to assessing metastatic risk, using the 
marker panel along with serum CEA resulted in a 
sensitivity of 90.9% and specificity of 88.2% (Figure 
4E-upper). It’s worth noting that the marker panel 
consistently outperformed individual compounds in 
terms of sensitivity. Moreover, when combined with 
FIT or serum CEA, the marker panels from both 
approaches significantly improved diagnostic 
accuracy. 

Tracing CRC breath markers to gut 
microbiota origins 

The gut microbiome and its metabolites play 
roles in both CRC development and progression. Our 
study utilized 16S rDNA sequencing techniques to 
shed light on the origins of exhaled CRC biomarkers, 
revealing potential associations with gut microbiota. 
For this purpose, we collected fecal samples from 44 
participants, including 25 CRC patients and 19 HCs. 
Initially, we enumerated the top 10 species in terms of 
abundance at the phylum levels for the two groups 
and depicted these in relative abundance bar charts 
(Figure 5A). Upon aligning sequences to assess 
bacterial diversity differences, we noted significant 
variations in the Shannon (6.03 ± 1.39 vs. 6.55 ± 0.90, P 
= 0.053) and Chao1 indexes (425.70 ± 79.63 vs. 485.81 ± 
127.98, P = 0.048) between CRC and HC groups 
(Figure 5B). Weighted and Unweighted PCoA plots 
illustrated group segregation based on the first three 
PCoAs (Figure S9). These findings imply that the 
richness and diversity of gut microbiota could be 
significantly shaped by the tumor burden, providing 
an analytical basis for exploring the metabolic 
pathways related to CRC exhaled biomarkers. 

Based on the PICRUSt2 function prediction of 
the 16S rDNA sequence, 17 functional pathways of 
significantly different were observed between CRC 
group and HCs group (Data S1; Figure S10). Notably, 
among 17 functions pathways, only five were 
upregulated in CRC (log2 (Control/CRC) < 0, P < 
0.05, FDR < 0.05), all of which are involved in energy 
utilization, cell signaling, and host interactions. Next, 
we plotted a tripartite correlation heatmap using the 
breath biomarker data [14], PICRUSt2 functional 
enrichment data and species abundance data (Figure 
5C).  

A total of 12 VOCs exhibited significant 
associations with 15 metabolic pathways and 21 
prominently enriched species (P < 0.05). This 
underscores the pivotal role of microbial activities and 
taxa in interactions with breath VOCs in influencing 
host well-being. Significantly positively correlations 
were detected between B. fragilis and those five 
upregulated pathways (Figure 5C, blue module; r > 
0.7, P < 0.01). This suggests that B. fragilis of CRC 
patients may not only enhance energy substrate 
utilization efficiency but also intensify host 
inflammatory responses and possibly promote the 
spread of cancer cells. Such insights indicate close 
attention to the impact and role of B. fragilis in CRC 
progression. 

As evidenced by Figure 5C, exhaled dimethyl 
octane and tetradecane positively correlate with B. 
fragilis (Bacteroides), while D-limonene negatively 
correlates. Dimethyl octane and tetradecane are 
common markers of oxidative stress in human, 
contrast with antioxidant D-limonene. Concurrently, 
supported by studies from Du and Bhandari, B. 
fragilis is widely associated with inflammatory 
responses that can promote cancer cell proliferation 
by triggering the IL-17 inflammatory cascade 
response [15-17]. This association elucidates a possible 
mechanism of tumor proliferation driven by B. fragilis 
that augments the production of dimethyl octane and 
tetradecane while inhibiting D-limonene (Figure 5D). 
Furthermore, Figure 5C reveals positive correlations 
between exhaled 2-nonanone and geranyl acetone and 
Akkermansia. These ketones are produced during 
lipid β-oxidation and linked to activities in liver. 
Akkermansia stimulates their production by 
enhancing hepatic and intestinal circulation of TBA, 
thereby exhibiting anti-inflammatory and anti-cancer 
effects. This observation supports the notion that 
elevated concentration of 2-nonanone and geranyl 
acetone in exhaled breath of CRC may be a 
consequence of Akkermansia’s positive regulation on 
lipolysis (Figure 5E). Significant reductions in exhaled 
butyric and valeric acids in CRC were observed, 
corresponding with decreased abundances of 
Bifidobacterium and Lactobacillus. These bacteria 
have been implicated as SCFAs-producers in several 
studies. In this way, they serve as the primary energy 
source for colorectum epithelial cells and exert a 
positive effect on gut health. This reduction in butyric 
and valeric acids is most likely due to declines in 
beneficial acid-producing bacterial abundance in gut 
(Figure 5D). Additionally, an increased exhaled allyl 
methyl sulfide concentration associating with 
up-regulation of Desulfovibrio was noted in the CRC 
group (Figure 5C). Desulfovibrio metabolizes 
thioethers into thiols via sulfur reductase, while 
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producing hydrogen sulfide. This toxic gas potentially 
damages intestinal mucosal barriers, induces 
inflammatory responses, and eventually contributes 
to the development of colorectal cancer. Therefore, the 

elevation in exhaled allyl methyl sulfide concentration 
may originate from the dominant proliferation of 
Desulfovibrio. 

 

 
Figure 5. Combined analysis of gut microbiome and breath VOCs. A. Component proportion of bacterial phylum in each group; n = 25 for the CRC group and n = 19 
for the HC group. B. The alpha diversity. C. The tripartite correlation heatmap of gut microbial species in CRC, KEGG pathways modules and breath markers. The left panel 
denotes the Spearman correlations between pathway modules and breath markers. The top panel denotes the Spearman correlations between species and breath markers. D. 
Metabolic pathways of alkane-based markers in relation to inflammatory factors and reactive oxygen species and sources of bacterial gas production for SCFAs markers. E. 
Relationship of ketone markers metabolic pathways to the hepatic and intestinal circulation. DMC Diagnostic Marker of CRC, MMC Metastatic Marker of CRC. 
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Through our investigations, production 
mechanisms of most substances in the breath marker 
panels have been identified through relevance studies 
with the gut microbiota, which related to 
inflammatory response, lipid oxidation, energy 
supply, and cellular damage. Our findings suggest 
that gut microbiota activities contribute to 
understanding the generation mechanisms of exhaled 
VOCs in CRC patients, underscoring the feasibility of 
exhaled markers in clinical diagnosis and metastasis 
prediction for CRC. 

Discussion 
This study focuses on the early diagnosis of 

colorectal cancer through an extensive investigation 
of breath markers. Utilizing TD-GC×GC-QQQ-MS 
technology, we successfully identified a total of 72 
VOCs from the breath samples of 90 colorectal cancer 
patients and 92 healthy controls. After adjusting for 
confounding factors, advanced AI methods were 
subsequently employed to construct both the CRC 
Diagnostic and Metastatic Models. These models 
revealed the presence of fourteen diagnostic markers 
and seven metastatic markers, which showcased 
superior performance compared to conventional tests 
like CEA and FIT. Moreover, through a 
comprehensive analysis involving the gut 
microbiome, we established a connection between 
these markers and inflammatory responses, lipid 
metabolism, and other significant factors. This sheds 
light on their potential not only as indicators of 
colorectal cancer dynamics but also for fostering 
advancements in clinical applications. 

The utilization of exhaled VOCs for diagnostic 
purposes in CRC faces limitations due to confounding 
factors. In order to mitigate these limitations, we 
implemented a system that utilizes TD tubes with the 
ReCIVA sampler for breath sample collection. This 
method of sampling provides clean air and is superior 
to traditional equipment such as airbags, effectively 
limiting interference from ambient air and ensuring 
accuracy of respiratory data. Monitoring pressure and 
CO2 levels during patient breathing in real-time 
proved to be essential to achieving accurate capture of 
breath samples. Our correlation analysis revealed 
minimal influence from ambient VOCs, indicating 
that our method successfully mitigates ambient VOC 
interference. These findings are consistent with Di 
Gilio’s comparative study on respiratory sampling 
techniques [18]. Previous research has shown that 
physiological and habitual factors such as age, BMI, 
smoking, and drinking may impact the distribution of 
VOCs in exhaled breath. However, our variance and 
regression analyses did not identify age, BMI, and 
drinking as significant risk factors for CRC. Smoking, 

however, was found to significantly relate to five 
BTEX compounds (benzene, toluene, ethylbenzene, 
and xylene) and 2-methylfuran in human breath. 
BTEX compounds have been previously identified as 
secondary products of cigarette combustion due to 
their positive correlation with exhaled CO levels [19]. 
2-methylfuran has also been found to be an effective 
indicator for identifying smoking participants, as 
demonstrated by Alonso et al. [20]. Consequently, we 
excluded these smoking-related VOCs from further 
investigation. These results highlight the effectiveness 
of our approach in minimizing potential confounders 
and maintaining the integrity of subsequent screening 
programs involving exhaled biomarkers. 

Subsequently, we developed an AI-based model 
to identify breath markers for CRC detection. During 
the modeling stage, we integrated the outcomes 
obtained from three AI-driven feature selection 
techniques: the RFECV algorithm utilizing recursive 
action, the Boruta algorithm employing random 
shadow generation, and the LASSO algorithm 
employing penalized shrinkage training. This synergy 
of techniques within our approach addressed issues of 
feature redundancy and selection bias that have been 
observed in previous model-based biomarker studies 
[21], which often neglected the crucial step of 
comprehensive feature selection or relied solely on a 
singular method [22]. Moreover, our comparison 
between models with and without feature ranking 
revealed a substantial disparity in performance (AUC 
0.76-0.95 vs 0.46-0.70), thereby validating the efficacy 
of our feature selection outcomes. This phenomenon 
can be attributed to the successful elimination of noise 
features utilizing the sequential inputting strategy 
(Figure S11). In the event that all features were 
incorporated into the models, there would be a 
heightened risk of overfitting and diminished 
performance, as emphasized by Wang et al. in their 
study [23, 24]. Furthermore, by utilizing a feature 
importance list, we assessed the adaptability of five 
baseline classifiers in terms of mean AUC and 
accuracy. We then selected the most optimal classifier 
among them for subsequent modeling processes. 
When compared to prior studies on biomarker 
modeling conducted by Halner et al. [25, 26], the 
classification accuracies achieved by our models 
exhibited significant enhancements. This improve-
ment can likely be attributed to our meticulous 
consideration of the compatibility between classifiers 
and data structures. Overall, our AI methodology 
assures precise biomarker identification, enhances the 
utility of models, and provides a reliable means for 
non-invasive CRC diagnosis through exhalation. 

In utilizing our AI-driven methodology, we 
identified breath markers for CRC comprising 3 
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SCFAs, 3 aldehydes, 5 hydrocarbons, and 3 
sulfur-containing compounds. We then evaluated and 
compared the performance of these breath markers 
with that of FIT or CEA, which are the primary 
globally recognized CRC-specific tests used by 
physicians and patients [27]. Our Diagnostic Model, 
based on these breath markers, enhances sensitivity 
by almost a third compared to FIT. Additionally, 
Remarkably, 24% of the FIT-negative CRC patients in 
the training cohort and 27.2% in the validation cohort 
were correctly identified through our diagnostic 
model. When evaluating tumor invasion and 
metastasis, the Metastatic Model outperforms CEA in 
accuracy, increasing it from 69.2% to 93.5% (+24.3%). 
In comparison to relying solely on CEA (≥5 ng/mL), 
incorporating CEA with the metastatic markers 
increases sensitivity from 58.1% to 90.9%, 
representing a significant improvement of 32.8% for 
all metastatic patients. These analyses reveal that our 
exhaled markers not only capture physiological 
alterations in cancer patients but also discern CRC 
with greater accuracy and efficiency. Additional 
further research is needed to investigate if our breath 
metastatic markers can serve as an early warning for 
recurrent CRC. 

We undertook an exploration of sources and 
production processes of respiratory biomarkers that 
can be utilized for CRC detection. Numerous studies 
have pointed towards the significant role of the gut 
microbiome in CRC tumorigenesis and progression, 
potentially via microbial metabolites, triggering 
pro-inflammatory responses, and affecting energy 
equilibrium within cancer cells [28]. With this 
understanding, we combined fecal bacterial 16S 
rDNA sequencing results with breath markers to 
elucidate potential associations. Consistent with our 
findings, existing literature indicates an elevation in 
the levels of alkanes and methylated alkanes in the 
exhalations of cancer-afflicted individuals [29]. The 
origins of these methylated alkanes remain a subject 
of contention; however, prevailing sentiments within 
the academic community suggest that they are 
byproducts of oxidative stress [30]. Our results 
support this perspective, revealing that the 
pro-inflammatory role of B. fragilis intensifies 
oxidative stress in vivo, culminating in heightened 
levels of dimethyl octane and tetradecane in the 
breath of CRC patients. It is noteworthy that ketones, 
closely connected to augmented fatty acid oxidation 
in various cancers [31], are expected to largely stem 
from gut microbiome dysfunction [32]. This 
observation dovetails with our discovery regarding 
Akkermansia’s facilitative role in lipolysis. 
Interestingly, a study by DeBerardinis et al. has found 
that the lipid membrane of cancerous cells exhibits a 

pronounced saturation compared to their benign 
counterparts [33]. This lipidic interplay could 
potentially explain the elevated aldehyde 
concentrations in the breath of CRC patients [34]. 
While the precise origins of benzonitrile and 
3-methylthiophene in our marker panel remain 
unclear, previous studies have attributed them to food 
or industrial sources [35, 36]. In summary, the 
variations in our acid, ketone, and hydrocarbon 
breath markers primarily result from imbalances in 
gut microbiome, while aldehydes are influenced by 
changes in the cellular microenvironment. These 
intertwining influences highlight the intricate 
relationship between the gut microbiome and CRC 
progression and warrant further exploration in future 
studies. 

Meng et al. applied HPPI-TOFMS to study the 
breath test of cancer patients, and they used a Tedlar 
gas bag to collect the patients’ breath gas [37]. The 
samples were collected one breath at a time due to the 
bag’s capacity limitation, and the entire collection 
process lasted only 60 seconds. This presents a 
significant issue, as breath markers with low 
concentrations may not reach the detection limit and 
therefore cannot be detected by the instrument. In 
addition, our improved breath sampler uses TD 
adsorbent tubes to concentrate and collect the 
subject’s breath for 15-20 minutes, with a volume of 
up to 2L. This eliminates the risk of exogenous 
pollutants and loss of VOCs during storage. 
Furthermore, the machine learning component of our 
system exclusively employs SVM algorithms to build 
the model. While this approach has limitations, we 
have determined it to be the most effective modeling 
tool for our purposes. It appears that this study did 
not have a feature screening process, but rather 
included all detected substances in the training. As a 
result, the bio-interpretability of the findings was 
poor, and they subsequently failed to identify a breath 
marker for lung cancer. In contrast, our platform 
integrates multiple machine learning algorithms to 
form a classifier evaluation pipeline that identifies the 
optimal solution for the classification algorithm based 
on experiments with a high-capacity collection of 
samples. Fourteen VOCs were identified as diagnostic 
markers for colorectal cancer. The biological origin of 
these markers was also discussed from the 
perspective of gut microbiome. Altomare et al. used a 
similar breath sampler for CRC-related study, but also 
suffered from insufficient sampling time and 
oversimplified method for screening markers [38]. 
Their results showed that ethylbenzene and 
methylbenzene were key VOCs for colorectal cancer, 
but these two substances have been identified as 
exogenous in several studies, and they were found to 
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be smoking-related confounders and were excluded 
in our study. In conclusion, our platform 
demonstrated greater rationality and superiority in 
sample collection and analysis, data cleaning, 
classification modeling, and source interpretability 
compared to similar work. 

Limitations of this study should be considered 
when explaining these results. Firstly, the restricted 
sample size of advanced CRC patients may 
compromise the precision of the Metastatic Model in 
differentiating between stage III-IV cancer 
participants. Therefore, further validation is necessary 
to ensure accuracy. Secondly, all breath samples used 
for this study were collected solely from Huadong 
Hospital, which could introduce bias due to the 
absence of multi-center external validation. Thirdly, 
we focused solely on the basic classification labels of 
CRC, without digging into the details of subtype 
categorization [39]. Additionally, the relationship 
between our breath markers and the gut microbiome 
during CRC progression remains unclear. This 
requires multiple follow-up samples from key 
patients, which we plan to implement in future 
studies. Research on breath biomarkers is still in the 
exploratory phase, and the methods used are 
relatively complex. This currently limits large-scale 
clinical applications. The ultimate goal of this research 
is to develop a simple and inexpensive portable 
device that can provide results as quickly as an 
alcohol test, thus achieving good results in disease 
screening. 

Despite these limitations, our work offers 
promising results for non-invasive CRC diagnosis. 
Our investigation identified potential associations 
between breath biomarkers and the gut microbiome, 
revealing possible metabolic mechanisms underlying 
these biomarkers. Ultimately, our findings present 
exciting innovations for reliable CRC detection and 
offer insight into potential metabolic approaches for 
treating the disease. 

Methods 

Study participants 

A total of 90 eligible CRC patients (50 males and 
40 females; median age 67 ± 17.1 years) were recruited 
from Huadong Hospital affiliated to Fudan 
University in Shanghai, from July 2023 to November 
2023. All cohorts were recruited simultaneously and 
consecutively throughout the study. CRC diagnoses 
were confirmed through histological examination of 
tissues and radiological imaging, and breath samples 
were obtained in the morning before any surgical, 
chemotherapeutic, or radiotherapeutic intervention. 

Patients who had recovered from surgery accounted 
for 6.7% of exclusions, as well as those with alternate 
pathological diagnoses such as mucinous 
adenocarcinoma, melanoma, and other non-CRC 
tumors. Following these criteria, 90 patients remained 
eligible, and were categorized based on the absence or 
presence of metastasis into three groups: 46 without 
metastasis (NM), an incorrectly cited number for 
those 25 with local node metastasis (LNM), and 19 
with distant metastasis (DM). The NM group was 
defined as early stage, while the LNM and DM groups 
were classified as advanced stage based on the 
presence of metastatic lesion in the tumor. The CRC 
staging utilized the TNM system endorsed by the 
Union for International Cancer Control (UICC). 

Simultaneously, Huadong Hospital recruited 92 
healthy controls (HCs) with a median age of 61 years 
(range: 22-83 years), including 53 males and 39 
females. Among them, 23 individuals were diagnosed 
with mild intestinal polyps, while the remaining 65 
were deemed completely healthy. These individuals 
typically underwent a comprehensive physical 
examination, including colonoscopy and gastroscopy, 
during their 2 to 3 day hospital admission. They were 
selected based on criteria including no history of 
tumors, a clean bill of health from a physical exam, 
and no respiratory diseases in their medical history. 
Table S1 presents a comparison of the demographic 
and clinical data of the 182 CRC patients and HCs. A 
schematic diagram of participant recruitment and 
sample allocation proportions for model construction 
is provided in Figure S12. All participants entered the 
study with informed consent. The research adhered to 
the principles of the Declaration of Helsinki and 
received approval from the Ethical Committee at 
Huadong Hospital (KY 2023K127). 

Breath sampling methodology 
Once obtaining informed consent from all 

patients, we strictly followed a standardized sampling 
procedure using an enhanced sampler comprised of 
breath biopsy cartridges and a porTable air supply for 
exhaled sample collection. The Method S1 provides a 
description of the parameter optimization scheme and 
detailed internal structure of the improved breath 
sampler. To minimize the interference of confounding 
factors, we performed sample collection between 7:00 
and 8:00 am after an overnight fast. Patients were also 
asked to rest in the same area for at least 20 minutes 
before sampling. For each participant, we collected 2L 
of alveolar breath gas with corresponding ambient 
samples. Target VOCs were collected in two duplicate 
multi-layer thermal desorption (TD) tubes containing 
Carbograph 5 TD and Tenax/TA (Markes 
biomonitoring tubes, Markes International Ltd, UK). 
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Pretreatment and instrumental analysis 
Following quality control measures on the 

samples, the TD tubes were analyzed using a 
comprehensive mass spectrometry-based procedure 
composed of TD-GC-MS/MS. The thermal desorption 
instrument (TD, from Marks Company, UK) first 
pre-purged the TD tubes for 10 minutes at a helium 
flow rate of 100 mL/min to remove moisture and 
oxygen from the samples. The TD tubes were then 
heated to 300 °C for 5 minutes to desorb the samples, 
and the desorbed VOCs were concentrated in an 
internal focusing cold trap at 30 °C. After purging the 
focusing cold trap with helium gas at a flow rate of 25 
mL/min for 2 minutes, it was rapidly heated to 300 °C 
and maintained for 5 minutes. During the heating 
process, VOCs were desorbed from the focusing cold 
trap and injected into an Agilent 7890A gas 
chromatograph coupled with an Agilent 7000B triple 
quadruple mass spectrometer (GC-MS/MS, Agilent 
Technologies Inc., USA) through a 180 °C transfer line 
in a non-split mode for qualitative and quantitative 
analysis of VOCs. The GC employed a J&W Scientific 
DB-624 chromatographic column (60 m, internal 
diameter 0.25 mm, film thickness 1.4 μm), with an 
injection port temperature of 250 °C. The oven was 
maintained at 40 °C for 5 minutes, then ramped at 
5 °C/min to 160 °C, followed by a 10 °C/min ramp to 
230 °C, where it was held for 21 minutes. The ion 
source and MS transfer line temperatures were set at 
230 °C and 250 °C, respectively. The MS was operated 
in full-scan mode for analyte identification, with a 
mass range (m/z) of 30–350. Quantitative analysis 
was performed in Selected Ion Monitoring (SIM) and 
Multiple Reaction Monitoring (MRM) modes. The 
chemical characteristics of each peak were confirmed 
by reference to the National Institute of Standards and 
Technology (NIST) mass spectral library (version 2.3). 
After confirming the retention time and mass 
spectrum of the target compounds in SCAN mode, 
quantitative analysis was performed in Selected Ion 
Monitoring (SIM) and Multiple Reaction Monitoring 
(MRM) modes. The Agilent MassHunter quantitative 
analysis software and the Agile2 integrator were used 
to automatically integrate compound peaks, with 
manual adjustments made as necessary. A 
combination of external standard curves and internal 
standard normalization was used to quantify 82 
VOCs. 

Potential Confounding Evaluating methods 
To gauge the impact of environmental air on 

human breath, we constructed a Partial Least Squares 
Discriminant Analysis (PLS-DA) and computed 
z-scores. The significance of PLS-DA models was 
assessed using the ‘ropls’ package. We deemed 

compounds with a variable importance in projection 
(VIP) score exceeding 1 as significant for classification 
purposes. Additionally, we analyzed PLS-DA model 
loadings to ascertain the contributions of different 
groups. The Wilcoxon rank-sum test was employed 
for univariate analyses, with the Benjamini–Hochberg 
method correcting for false discovery rates. Normal 
distribution was not characteristic of most volatile 
organic compounds (VOCs); thus, we employed the 
two-tailed Mann-Whitney U test for detecting 
significant disparities across datasets. This nonpara-
metric test ranks individual values collectively from 
both datasets and is as robust as the standard 
Student’s t-test for identifying shifts in median values, 
without the requirement for normal distribution. A 
z-score magnitude greater than 1.96 typically signifies 
a statistically meaningful difference between two 
datasets at the 5% significance level [40]. 

We handled physiological and habitual 
confounders by applying ANOVA and binary logistic 
regression to eliminate significant risk factors. Given 
the smaller sample size and non-normal data 
distribution, we compared breath VOC concentra-
tions between smokers and non-smokers using a 
one-way ANOVA for preliminary p-values, 
considering p < 0.05 significant. This aided in 
selecting potential smoking-related VOC candidates. 
Subsequently, binary logistic regression models were 
formulated to evaluate the potential of these VOCs in 
association with smoking in CRC patients. We plotted 
Receiver Operating Characteristic (ROC) curves and 
computed the areas under the curves (AUCs) to 
appraise the diagnostic accuracy of these risk factors, 
with a p-value less than 0.05 in a two-tailed test 
indicating statistical significance. 

AI-assisted discovery of candidate breath 
biomarkers 

Training and testing of the models were 
executed using R Version 4.2.1, utilizing a suite of 
packages including random Forest, e1071, glmnet, 
rpart, caret, xgboost, and cvAUC for machine learning 
tasks [41]. We developed two separate analytical 
frameworks: one aimed at distinguishing CRC 
patients from healthy individuals (the Diagnostic 
Model) using breath VOCs signatures, and another 
(the Metastatic Model) for differentiating between 
early and advanced stages of cancer in those 
diagnosed with CRC. 

Both models underwent a consistent two-stage 
construction process, initiated by an AI-driven feature 
ranking executed through three advanced machine 
learning techniques: (1) a variant of the linear support 
vector machine recursive feature elimination 
(SVM-RFE) algorithm [42], (2) Least Absolute and 
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Shrinkage and Selection Operator (LASSO) with L1 
penalty and embedded feature selection, and (3) 
Boruta package characterized by shuffling shadow 
features and binomial distribution conception. 
Subsequent procedures involved an 80:20 
train-to-validation dataset division, where breath 
VOC signatures underwent scrutiny based on 
aggregated selection counts from 100 bootstrapped 
random samples across the three evaluative methods. 
This rigorous analysis culminated in the generation of 
comprehensive feature importance hierarchies for 
each model (Figure 3B). 

We refined our methodology by employing five 
baseline models—LR, RF, SVM, NNet, and XGB. 
These models were tasked with pinpointing the least 
number of features necessary to maximize the AUC 
and accuracy. Selection of the ultimate classifier 
depended on its superior average performance 
metrics during training iterations, a process that 
enabled the isolation of vital features for accurate 
CRC diagnosis. To construct a robust model, we 
implemented 10-fold cross-validation (with a 
training-to-test data ratio of 90:10) using the most 
effective classifier identified from the initial models. 
The validation cohort was used to valid our training 
model to avoid overfitting. During the model 
construction process, 182 eligible breath samples were 
randomly assigned to the training and test sets in an 
8:2 ratio. The AUC was estimated using ROC analysis 
from the pROC package to evaluate model 
performance. An optimal probability threshold was 
derived based on the maximum Youden index of the 
model (sensitivity + specificity - 1). Samples with 
values below or above the critical value will be 
predicted as healthy controls and colorectal cancer, 
respectively. 

16s rDNA sequencing experimental procedure 
DNA extraction from fecal samples was 

performed utilizing the TianGen Magnetic Soil and 
Stool DNA Kit (TianGen, China, Catalog #: DP712). 
Various regions of the 16S rRNA/18SrRNA/ITS 
genes (e.g., 16SV4/16SV3-V4/16SV4-V5, 18SV4/ 
18SV9, ITS1/ITS2, ArcV4) were amplified using 
primers specific to each region (for instance, 16SV4: 
515F-806R, 18SV4: 528F-706R, 18SV9: 1380F-1510R) 
including barcodes for identification. The 
amplification process involved 15 µL of Phusion® 
High-Fidelity PCR Master Mix (New England 
Biolabs), 0.2 µM of each primer, and approximately 
10 ng of template DNA. The PCR protocol started 
with a 98°C denaturation step for one minute, 
followed by 30 cycles at 98°C for 10 seconds, 50°C for 
30 seconds, 72°C for 30 seconds, and a final extension 

at 72°C for five minutes. Post-amplification, PCR 
products were combined with a loading buffer 
containing SYB green and subjected to electrophoresis 
on a 2% agarose gel for verification. Equal-density 
PCR products were pooled and purified using 
TianGen’s Universal DNA Purification Kit (Catalog #: 
DP214). Sequencing libraries were prepared with the 
NEB Next® Ultra™ II FS DNA Library Prep Kit 
(Catalog #: E7430L), according to the manufacturer’s 
instructions, and assessed via Qubit, real-time PCR, 
and bioanalyzer analyses for quantification and size 
distribution. 

For sequence processing, barcodes and primer 
sequences were trimmed from the paired-end reads, 
which were then merged using FLASH (V1.2.11). 
FLASH is renowned for its speed and precision in 
overlapping paired-end reads from the same DNA 
fragments. The resulting raw tags underwent quality 
filtering with fastp (Version 0.23.1) to yield 
high-quality clean tags. These tags were then screened 
against the reference Silva database (for 16S/18S) or 
Unite Database (for ITS) using the UCHIME 
algorithm to remove chimeric sequences, leaving us 
with effective tags. Further denoising was done using 
DADA2 or the deblur tool in QIIME2 (Version 
QIIME2-202006) to obtain initial ASVs, discarding 
those with an abundance under five. Species 
annotation was executed via the QIIME2 software, 
using the Silva Database for 16S/18S and the Unite 
Database for ITS sequences. QIIME2 also facilitated 
multiple sequence alignments to examine phylo-
genetic relations and dominant species variations 
across different samples or groups. Normalization of 
ASV abundances was based on the least sequenced 
sample, and both alpha and beta diversity analyses 
proceeded from this normalized data. 

Statistics 

We performed statistical evaluations using SPSS 
version 26 (IBM, Armonk, New York, USA) along 
with RStudio (version 4.2.3, RStudio Inc., Boston, MA, 
USA). Within SPSS, we applied univariate 
non-parametric evaluations—specifically, Wilcoxon 
signed-rank, sigh, and marginal homogeneity 
tests—to discern disparities in exhaled VOC levels 
between individuals with CRC and healthy controls, 
considering a p-value below 0.05 as indicative of 
statistical significance. The relationship between 
respiratory and conventional serum biomarkers was 
explored through Spearman’s correlation. Meanwhile, 
RStudio facilitated the use of linear discriminant 
analysis (LDA) to compress and cluster the VOC 
dataset. 
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