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Abstract 

Background: Cancer-associated fibroblasts (CAFs) are the key components of the immune barrier in 
liver cancer. Therefore, gaining a deeper understanding of the heterogeneity and intercellular 
communication of CAFs holds utmost importance in boosting immunotherapy effectiveness and 
improving clinical outcomes. 
Methods: A comprehensive analysis by combing single-cell, bulk, and spatial transcriptome profiling with 
multiplexed immunofluorescence was conducted to unravel the complexities of CAFs in liver cancer. 
Results: Through an integrated approach involving 235 liver cancer scRNA-seq samples encompassing 
over 1.2 million cells, we found that CAFs were particularly increased in hepatocellular carcinoma (HCC) 
and intrahepatic cholangiocarcinoma (ICC). FAP+ fibroblasts were identified as the dominant subtype of 
CAFs, and which were mainly involved in extracellular matrix organization and angiogenesis. These CAFs 
were enriched in the tumor boundary of HCC, but diffusely scattered within ICC. The DAB2+ and SPP1+ 
tumor-associated macrophages (TAMs) reinforce the function of FAP+ CAFs through signals such as 
TGF-β, PDGF, and ADM. Notably, the interaction between DAB2+ TAMs and FAP+ CAFs promoted the 
formation of immune barrier and correlated with poorer patient survival, non-response to 
immunotherapy in HCC. High FAP and DAB2 immunohistochemical scores predicted shorter survival 
and higher serum AFP concentration in a local clinical cohort of 90 HCC patients. Furthermore, this 
communication pattern might be applicable to other solid malignancies as well.  
Conclusions: The interaction between DAB2+ TAMs and FAP+ CAFs appears crucial in shaping the 
immune barrier. Strategies aimed at disrupting this communication or inhibiting the functions of FAP+ 
CAFs could potentially enhance immunotherapy effectiveness and improve clinical outcomes. 
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Introduction 
Liver cancer ranks as the third leading cause of 

cancer-related deaths and the sixth most prevalent 
tumor type globally [1]. Hepatocellular carcinoma 
(HCC) is the most common liver cancer, followed by 
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intrahepatic cholangiocarcinoma (ICC), which 
together account for more than 95% of the cases [2]. In 
2020, the U.S. Food and Drug Administration (FDA) 
approved the combination of atezolizumab 
(anti-PD-L1) and bevacizumab (anti-VEGF) as a 
first-line treatment for advanced HCC, which 
demonstrated superior efficacy to sorafenib in the 
phase III IMBRAVE-150 study (NCTO3434379) [3]. 
However, despite these remarkable breakthroughs, 
immunotherapy proves effective only for 20-30% of 
patients [4]. The path to improved immunotherapy 
response is largely limited by the heterogeneity of the 
liver cancer microenvironment.  

In recent years, there has been a surge of interest 
in stromal cells, largely driven by advancements in 
single-cell RNA sequencing (scRNA-seq) and spatial 
transcriptome (ST) technology. Fibroblasts, the most 
prevalent stromal cell type present in the tumor 
microenvironment (TME), play a crucial role in 
regulating the infiltration and function of anti-tumor 
immune cells via emerging as key players in TME 
remodeling [5]. Furthermore, they promote tumor cell 
growth, metastasis, and drug resistance through 
various pathways. Tumor-promoting fibroblasts, 
known as cancer-associated fibroblasts (CAFs), 
provide a fertile environment for cancer cells, akin to 
"soil" for cancer "seeds". Tumors are often likened to 
"unhealable wounds", and CAFs respond to this 
perceived tissue damage by attempting to repair it, 
leading to their significant accumulation [6].  

Multiple markers for CAFs have been identified, 
such as αSMA, FAP, periostin (POSTN), PDGFRα/β, 
and FSP-1 [7]. Interestingly, cell clusters identified by 
these markers exhibit different expression profiles, 
indicating a high degree of heterogeneity among 
CAFs within the TME. ScRNA-seq and multiplex 
imaging techniques have been employed to delineate 
various CAF subtypes across a range of cancers. 
Chhabra et al. have categorized CAFs into four main 
groups: inflammatory CAF (iCAF), myofibroblastic 
CAF (myCAF), antigen-presenting CAF (apCAF), and 
vascular CAF (vCAF) [8]. Conversely, Zhu et al. 
identified five major CAFs based on gene expression 
and function from scRNA-seq in HCC [9], while 
Zhang et al. recognized four major CAFs in ICC [10]. 
The heterogeneity of CAFs persists across different 
tumor contexts, necessitating a high-resolution, 
comprehensive assessment of CAF subtypes in larger 
cohorts, particularly focusing on their function and 
intercellular interactions. 

An Achilles’ heel of current chemotherapy and 
immunotherapy approaches is that most current 
therapies target the rapidly proliferating tumor 
"seeds," yet largely ignore the contribution of 
fibroblasts or the fertilizing tumor "soil". The 

extracellular matrix (ECM) generated by CAFs 
undergoes active remodeling and degradation, 
promotes tumor progression, which is largely 
mediated by tumor associated macrophages (TAMs) 
and matrix metalloproteinases [11]. The balance 
between ECM production and degradation not only 
affects cell migration and immune cell infiltration but 
also regulates cell signaling processes. ECM receptors 
(e.g., CD44, integrins, and discoidin domain 
receptors) and ECM ligands (e.g., cleaved forms of 
collagen) play a crucial role in this remodeling during 
tumorigenesis [12, 13]. The secretion of increased and 
reorganized ECM proteins by CAFs leads to enhanced 
fibrillar collagen deposition, which results in ECM 
stiffening, further promoting tumor cell proliferation 
and invasion [14]. CAFs and TAMs have been shown 
to have extensive cellular interactions in various 
tumors, including liver cancer. They are closely 
associated with ECM remodeling, promote the 
formation of pro-tumor connective tissue, inhibit 
lymphocyte infiltration, and correlate with patients' 
non-response to immunotherapy [15-17]. However, 
the heterogeneous subtypes of CAFs and TAMs in 
liver cancer remain poorly characterized, and further 
research is needed to determine the communication 
and functional impact between these 
tumor-infiltrating cells. 

Here, we unveil the heterogeneity and 
interactions of CAFs and TAMs across different liver 
cancer subtypes, highlighting the intricacy of 
studying cellular interactions and distribution 
patterns within distinct spatial regions to comprehend 
the TME. This understanding is crucial for elucidating 
the reasons behind immunotherapy resistance and 
enhancing the clinical outcomes for patients. 

Methods 
Data retrieval and preprocessing 

A single-cell RNA sequencing (scRNA-seq) 
discovery cohort comprising 156 samples and 
corresponding clinical data from 120 liver cancer 
patients was provided by Xue et al. [18] (Table S1). 
This included 14 adjacent liver (AL), 82 hepatocellular 
carcinoma (HCC), 31 intrahepatic cholangiocarcinoma 
(ICC), 9 combined hepatocellular and 
cholangiocarcinoma (CHC), 10 secondary liver cancer 
(SLC), and 10 peripheral blood (PB) samples. The 
unprocessed FASTQ data for these samples 
(BioProject ID: PRJCA007744) is stored at the China 
National Center for Bioinformation (CNCB) 
(https://www.cncb.ac.cn/). Furthermore, we 
obtained scRNA-seq data of 79 liver cancer samples as 
a validation cohort from Gene Expression Omnibus 
(GEO) (GSE151530, GSE125449) and CNCB 
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(PRJCA002164) [19-21]. The datasets included 7 AL 
samples, 48 HCC samples and 24 ICC samples. The 
single-cell FASTQ data were filtered and aligned 
using CellRanger (v.3.0.1, 10 × Genomics) with the 
human reference genome GRCh38. Adjacent-tumor, 
tumor, and tumor leading edge spatial transcriptome 
(ST) sequencing data of 12 cases of HCC and one case 
of ICC were obtained from the study of Wu et al. [22]. 
The ST data of the three HCC cases that contained 
information on the response to immunotherapy were 
obtained from the study of Liu et al. [15]. The authors 
obtained bulk RNA-seq or microarray data for 1518 
cases of HCC and ICC from seven independent 
cohorts of cancerous and paracancerous samples. 
These included the TCGA-LIHC/TCGA-CHOL (n = 
469), GSE14520 (n = 488), GSE40873 (n = 49), 
GSE76427 (n = 167), GSE116174 (n = 64), GSE54236 (n 
= 161), and GSE89749 (n = 120). Furthermore, 
RNA-seq data from 298 tumor samples from the 
IMvigor210 project that received atezolizumab 
immunotherapy were incorporated into this study 
[23]. The normalized pan-cancer bulk RNA-seq data 
and patient clinical data were obtained from 
UCSC-Xena (https://xenabrowser.net/datapages/) 
(PANCAN cohort) and included 39 cancer types and 
11,060 samples. Pan-cancer scRNA-seq data were 
mainly derived from the study of Luo et al. 
(GSE210347) [24], which included 10 solid tumor 
types and 226 samples. Due to the lack of HCC 
samples, the 79 samples from the validation cohort 
were integrated for analysis, and corrections for 
different batches of cohorts were performed using the 
R package harmony. Pan-cancer ST sequencing data 
were obtained from GEO, European Genome- 
phenome Archive (EGA), Genome Sequence Archive 
(GSA), Mendeley Data, and 10x, including skin 
cutaneous melanoma (SKCM, GSM5420750), breast 
cancer(BRCA, Human Breast Cancer: Visium Fresh 
Frozen, Whole Transcriptome from 10x), lung 
adenocarcinoma (LUAD, GSM5420751), renal cell 
carcinoma (RCC, GSM5924036), medulloblastoma 
(MB, EGAS00001006124), pancreatic ductal 
adenocarcinoma (PDAC, GSM6505134), squamous 
cell carcinoma (SCC, V10F24_015_A1, doi.org/ 
10.17632/2bh5fchcv6.1), ependymoma (EPN, 
GSM5844724), colorectal cancer (CRC, P6, 
HRA000979), head and neck squamous cell carcinoma 
(HNSC, GSM5494476), ovarian cancer (OV, Human 
Ovarian Cancer, 11 mm Capture Area from 10x), 
prostate adenocarcinoma (PRAD, EGAS00001006124), 
gastrointestinal stromal tumor (GIST, GSM6177607). 
Finally, we integrated renal cell carcinoma (RCC) 
(SCP1288, Single Cell Portal, R = 2, NR = 3, UT = 3, NE 
= 1) [25], non-small cell lung cancer (NSCLC) 
(GSE207422, R = 9, NR = 6) [26], basal cell carcinoma 

(BCC) (GSE123813, R = 6, NR = 4) [27] of the 
scRNA-seq immunotherapy cohort, corrected for 
different batches of cohorts using R package 
harmony. 

Single-cell data analysis 
ScRNA-seq data were initially filtered by the R 

package Seurat to retain cells that met the following 
criteria: (1) the number of detected genes was above 
500 and below 6000; (2) the number of UMI count per 
cell lower than 30,000; and (3) the percentage of 
mitochondrial genes lower than 50%. Subsequently, 
the data underwent normalization and scaling, with 
the top 2000 highly variable genes (HVGs) calculated 
by the FindVariableFeatures function. HVGs were 
employed for principal component analysis (PCA), 
with 50 principal components selected for subsequent 
cell clustering. Furthermore, the R package harmony 
was utilized to remove batch effects between cohorts 
in the validation set. In order to reflect the true level of 
cellular heterogeneity, a batch correction was not 
applied to the discovery set, which originated from 
the same cohort. Cell subclusters were acquired using 
the FindNeighbors and FindClusters functions, with 
resolution set to 1 for all main celltypes and 0.3 for 
fibroblasts and macrophages. Finally, cell 
visualization was performed using uniform manifold 
approximation and projection (UMAP). The cell 
annotations were primarily based on previous studies 
[18, 24]. 

Cell preference analysis 
To ascertain the infiltration intensity of different 

cell types in disparate samples, we delineated cellular 
preferences through the application of the odds ratios 
(OR) algorithm, as detailed by Zheng et al. [28]. In this 
context, an OR value exceeding 1.5 signified a cell's 
significant enrichment in the designated class of 
samples, whereas an OR value below 0.5 indicated a 
cell's significant depletion (BH-corrected P < 1e-10). 

Functional analysis of cell subclusters 
In order to gain insight into the functional 

characterization of different cell subclusters, the 
highly expressed genes of cell subclusters (adj. P < 
0.05, log2FC > 0.5) were initially obtained by the 
FindAllMarkers function in Seurat. This was followed 
by a functional enrichment analysis based on the GO 
database, which was conducted using the R package 
clusterProfiler [29]. The entries with FDR < 0.05 were 
considered to be significantly enriched. Furthermore, 
the UCell scores of 50 key cancer hallmark gene sets 
from MSigDB (https://www.gsea-msigdb.org/ 
gsea/msigdb/) and specific cell-related pathways in 
different cell subclusters or sample types were 
evaluated using the R package irGSEA [30]. To further 
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explore the association of cell subclusters with 
metabolic pathways, the relative enrichment of 
different metabolic pathways in different cell 
subclusters was assessed using the R package 
scMetabolism [31]. 

Survival analysis 
To assess the association between fibroblast 

subcluster and patient survival, we employed the 
relative proportions of fibroblast subclusters as a 
variable in conjunction with survival data from the 
single-cell discovery cohort (Table S2). A total of 120 
patients with liver cancer were included, of which 2 
patients were excluded because they did not have 
corresponding overall survival information, and 118 
patients were finally included, including 7 patients 
with CHC, 79 patients with HCC, 25 patients with 
ICC, and 7 patients with SLC. When performing the 
calculation of cell proportions for individual patients, 
since multiple tissue samples may be taken from a 
single patient, we only included the corresponding 
cancer tissues, and if duplicate samples existed, the 
average of the cell proportions was taken as the 
proportion of a particular type of cell for that patient. 
We then performed univariate Cox risk analyses 
using the R package survival. Kaplan-Meier (KM) 
curves were also utilized for survival analysis of 
selected cell subclusters, with a Log-rank and Cox 
p-value of less than 0.05 indicating a statistically 
significant association between the cell subclusters 
and patient survival. Concurrently, we endeavored to 
identify cells associated with survival by integrating 
TCGA bulk RNA-seq and corresponding survival 
data, linking gene expression and cell expression in 
bulk via the R package Scissor [32], integrating 
phenotypes into a network regularized sparse 
regression model, and identifying Scissor+ cells that 
were hypothesized to be associated with poorer 
survival of patients. The identified Scissor+ cells were 
considered to be associated with worse patient 
survival. To assess the association of cells with patient 
survival in other bulk cohorts, cell type-specific genes 
(mu = 1) were initially screened using the R package 
COSG [33]. The top 30 ranked genes were then 
utilized for ssGSEA cell scoring of the bulk samples. 
This was followed by the calculation of optimal 
grouping cutoff values and survival analysis for each 
cohort, conducted using the R package survminer. 

Inference of cell differentiation trajectories 
In order to gain insight into the potential cellular 

differentiation pathways, this study employed the R 
packages Monocle2 and velocyto.R to perform the 
corresponding cell trajectory analysis. In particular, 
RNA velocity analysis was conducted based on loom 

files generated by transforming bam data from the 
single-cell validation cohort PRJCA002164. This 
analysis distinguished between spliced and unspliced 
transcripts in order to assess changes in expression 
dynamics. RNA velocity values for genes in each cell 
were calculated using the R package velocyto.R. RNA 
velocity vectors were embedded in the UMAP 
low-dimensional space. 

Spatial transcriptome (ST) analysis 
The R package stCancer was employed to 

perform pre-quality control (QC), clustering, and gene 
expression analysis on the downloaded ST data. To 
assess the spatial distribution of the cell subclusters 
identified from the single-cell cohort, the ST and 
scRNA-seq expression matrices were first merged and 
co-dimensioned using the R package CellTrek [34]. 
This was followed by the generation of a sparse graph 
using a random forest model, and then constructed a 
spot-cell similarity matrix for the single cells, added 
spatial coordinate information. The co-localization 
patterns among different cell subpopulations were 
summarized using the scoloc function, and the 
strength of cell co-expression was assessed by 
Kullback-Leibler divergence (KLD). A higher KLD 
value indicates a stronger co-localization of cell 
subclusters. It is important to note that the mapping of 
single cells to space in HCC and ICC was performed 
separately, as their tumor environments are distinct. 
Additionally, we conducted deconvolution analysis 
using the R package CARD [35] to identify large 
subclusters of cells that co-localize spatially and 
perform distributional correlation analysis. In order to 
distinguish the malignant region (Mal), boundary 
(Bdy), and non-malignant region (nMal), we 
employed the R package Cottrazm [36] for region 
identification and evaluated the cell enrichment 
scores of different regions based on the previously 
reported deconvolution approach [37]. Furthermore, 
we conducted a Wilcoxon test to compare the cell 
enrichment of different spatial regions. 

Immunofluorescence (IF) staining 
Seven formalin-fixed paraffin-embedded (FFPE) 

tissue samples from two HCC and one ICC patients 
were collected from Zhongnan Hospital of Wuhan 
University, including two tumor tissues, tow 
paracancer tissues and three tumor boundary tissues. 
The study protocol was approved by the Research 
Ethics Committees of Zhongnan Hospital of Wuhan 
University. For multiplex IF staining, FFPE tissue 
sections were cut at a thickness of 5 mm, followed by 
dewaxing in three changes of xylene for 15 min and 
100% ethanol for 5 min, 85% alcohol for 5 min, 75% 
alcohol for 5 min, and washed by distilled water. 
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Antigen was retrieved at 98 °C for 10 min in 10 mM 
citrate buffer pH 6. The sections were placed in a 3% 
hydrogen peroxide solution and incubated for 25 
minutes at room temperature in the dark to allow 
endogenous peroxidase to be sealed. Subsequently, 
the slides were placed in phosphate-buffered saline 
(PBS, pH 7.4) on a decolorizing shaker and washed by 
shaking three times for five minutes each time. 
Subsequently, 10% goat serum was added and 
incubated for 30 minutes at room temperature. Slides 
were next stained with DAB2 (1:200; Proteintech Cat# 
10109-2-AP, RRID:AB_2089700) , CD68 (1:1000, 
Abcam Cat# ab955, RRID:AB_307338), SPP1 (1:200; 
PB0589, BOSTER) or FAP (1:200, Bioss Cat# bs-5758R, 
RRID:AB_11072621) antibodies and incubated flat in a 
wet box at 4°C overnight. The slides were then 
incubated with secondary antibodies (1:400 for each; 
HRP-anti-rabbit IgG, SeraCare KPL Cat# 5220-0336, 
RRID:AB_2857917; or HRP-anti-mouse IgG, SeraCare 
KPL Cat# 5220-0341 (also 074-1806), 
RRID:AB_2891080) for 50 min at room temperature. 
Following each staining cycle, the TSA reagent 
(Baiqiandu; Tyramine-CY3, 1:500, B30001; 
Tyramine-488, 1:200, B30002; Tyramine-CY5, 1:2000, 
B30003; Tyramine-594, 1:500, B30004) was added, 
incubated at room temperature for 20 minutes, and 
the slides were subjected to 1× citric acid repair 
solution. This was then repaired in a microwave oven 
on high for 6 minutes, cooled down to room 
temperature, and incubated dropwise with 10% goat 
serum for 10 minutes at room temperature. The 
samples were counterstained for nuclei with DAPI for 
10 min and mounted in mounting medium. 
Multispectral images were scanned with SQS40R. 

Bulk deconvolution analysis 
To assess the infiltration correlation of different 

cell subclusters in bulk RNA-seq and microarray data, 
the cell abundance in each sample was first estimated 
using CIBERSORTx [38]. This was done in two stages. 
Firstly, since the amount of single-cell data was more 
than 1 million, we randomly sampled each cell type, 
retained 1,000 cells for each cell type, and derived a 
single-cell count expression matrix to create the 
signature matrix. Secondly, the constructed signature 
matrix and the bulk-based mixture file were utilized 
for CIBERSORTx analysis, with quantile 
normalization disabled during the processing of 
RNA-seq data. The permutations for significance 
analysis were set to 100. Following the calculation of 
the cell infiltration abundance for each sample, the 
strength of the association between different cells was 
evaluated using Spearman correlation analysis. A 
correlation was considered significant if the p-value 
was less than 0.05 and the absolute value of the 

correlation coefficient was greater than 0.2. 

Cell communication analysis 
The R package nichenetr [39] was employed to 

infer potential communication between macrophages 
and fibroblasts. To gain further insight into the 
functional impact of macrophages on FAP + 
fibroblasts in different tumor types (HCC and ICC) 
and to identify ligands and receptors for 
communication, we defined FAP + CAF as the 
receiver, other subtypes of macrophages as the 
sender, the reference condition set as ICC, and the 
condition set as HCC. Subsequently, the top 30 
ligands, receptors and their target genes, ranked 
according to aupr_corrected, were used for heat map 
visualization. Next, the association of each ligand or 
receptor genes with the risk of patients were 
evaluated using univariate Cox analysis based on the 
TCGA-LIHC cohort. Functional enrichment analysis 
was conducted on all target genes or selected genes 
via the g:Profiler tool [40] with background databases 
comprising GO, KEGG, Reactome, and 
WikiPathways. The method g:SCS was selected for 
p-value correction, and pathways with a corrected 
p-value of less than 0.05 were considered significantly 
enriched. To assess the overall impact of FAP + 
fibroblasts on downstream cells, the R package 
CellChat [41] was utilized to analyze the overall 
outgoing signals and regulatory pathways of FAP + 
fibroblasts. Furthermore, we identified ligand- 
receptor communication between FAP + fibroblasts 
and endothelial and tumor cells by CellphoneDB [42] 
in ICC, which suggests their direct communicative 
role in the ICC environment. 

Quantifying communication between TAM 
and FAP + CAF 

The top 30 ligand-receptor pairs obtained 
through NicheNet analysis, sorted by aupr_corrected, 
were used for cellular communication quantification. 
Since a ligand may correspond to multiple receptors, a 
total of 90 ligand and receptor genes were obtained. 
The ssGSEA score, designated LRscore, was 
calculated by first performing ssGSEA based on 90 
genes in distinct bulk cohorts, followed by the 
determination of optimal group cutoff values and 
survival analysis for each cohort via the R packages 
survminer and survival.  

Potential drug prediction 
The 50% inhibitory concentration (IC50) of 198 

targeted drugs in TCGA-LIHC patients was initially 
estimated using the R package oncoPredict [43] based 
on GDSC. Drugs associated with LRscore were 
identified by Spearman's correlation analysis, and 
those with P > 0.05 were filtered out. Furthermore, we 
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predicted drugs that block the communication 
between TAM and FAP +CAF using the R package 
sc2MeNetDrug [44]. After obtaining the up-regulated 
genes for each cell cluster in the cell-cell 
communication section, we applied GSEA and drug 
hierarchy matrices to identify potential drugs. Drug 
clustering was performed based on the SMILES 
information of the drug chemical structure, with 
drugs with high similarity clustered together and 
potentially playing similar roles. 

Immunohistochemistry staining 
Tissue microarrays (Shanghai Outdo Biotech, 

Shanghai, China) consisting of 90 HCC boundary, 10 
ICC tumors, 8 HCC tumors, and 8 matched adjacent 
normal tissues. Firstly, an endogenous peroxidase 
blocker was added dropwise to the tissue 
microarrays, incubated at room temperature for 10 
minutes, and washed with double-distilled water to 
inactivate endogenous peroxidase. Subsequently, 
antigen repair was performed by placing the 
microarrays into EDTA antigen repair solution, 
heating on high for 8 minutes in a microwave oven, 
cooling naturally for 8 minutes, then heating on high 
for 8 minutes, and cooling to room temperature. The 
5% BSA blocking solution was added, incubated at 
37°C for 30 minutes, and the excess liquid was shaken 
off. The diluted primary antibody, either FAP (1:50, 
BM5121, Boster) or DAB2 (1:50, Proteintech Cat# 
10109-2-AP, RRID:AB_2089700), was added and 
incubated at 4°C overnight. Following removal, the 
cells were rewarmed at 37°C for 30 minutes and 
washed with PBS (pH 7.2-7.6) for 5 minutes three 
times. The HRP-anti-rabbit IgG (SV002, Boster) was 
added, incubated at 37°C for 30 minutes, and washed 
with PBS (pH 7.2-7.6) for 5 minutes three times. The 
reaction time was controlled by adding drops of DAB 
working solution and observing under the 
microscope. Major hematoxylin was added and 
incubated at room temperature for one minute, after 
which the slices were washed with PBS (pH 7.2-7.6). 
Finally, the slices were sealed with neutral gum and 
scanned with SQS40R to obtain images. 

Immunotherapy correlation analysis 
In order to evaluate the effect of FAP + CAF and 

DAB2 + TAM on the immunotherapy response of 
tumor patients, we first predicted the immune 
response grouping of TCGA-LIHC samples by the 
TIDE algorithm. We then grouped the samples based 
on the CIBERSORTx-imputed proportions of FAP + 

CAF and DAB2 + TAM cells, and observed the 
proportions of grouped samples in the immune 
therapy responsive and non-responsive groups. 
Finally, inter-group clustering consistency was 

calculated using the SubMap [45] algorithm. 
Furthermore, we conducted ssGSEA on samples for 
FAP + CAF and DAB2 + TAM based on the Imvigor210 
immunotherapy cohort, and employed the Wilcoxon 
test to assess the statistical significance between 
responding and non-responding groups. The FAP 
+CAF-related genes included VCAN, FAP, COL8A1, 
THBS2, NTM, POSTN, INHBA, ISLR, COL5A1, 
COL6A3, MMP2, LTBP2, and LOXL1. DAB2 

+TAM-related genes included MAF, A2M, DAB2, 
GPR34, CD209, GYPC, FOLR2, SLC40A1, and IGF1. 
Finally, scRNA-seq data derived from three 
independent cohorts containing information on 
response to immunotherapy were integrated to 
analyze the relative proportions of FAP + CAF and 
DAB2 + TAM in different response groups. 

Statistical analysis 
Statistical analyses and visualization were 

conducted using R (v. 4.3.0) and Sangerbox 
(http://sangerbox.com/login.html). The differences 
between the two groups were compared using the 
Wilcoxon test, and the paired samples were assessed 
for significance using the paired Student's t-test, 
unless otherwise specified. Survival analysis was 
conducted using the Kaplan-Meier method, and 
statistical significance was assessed using the 
Log-rank test. The median value or the best cut-off 
value was used as the cut-off point. The P < 0.05 was 
considered to be statistically significant. Correlation 
analyses were conducted using the Spearman 
method, given that the data were non-normally 
distributed. Further statistical details can be found in 
the figure legends. 

Results 
Increased fibroblasts and macrophages in HCC 
and ICC 

To elucidate the cellular composition across 
various liver cancer types and sample sources, we 
included 156 scRNA-seq samples as a discovery 
cohort from the study of Xue et al [18]. The discovery 
cohort encompassed 14 adjacent liver (AL), 82 HCC, 
31 ICC, 9 combined hepatocellular- 
cholangiocarcinoma (CHC), 10 secondary liver cancer 
(SLC), and 10 peripheral blood (PB) samples. After 
standard cell filtering and processing, a total of 
1,034,073 cells were obtained, of which 83,154 were 
from AL, 606,191 from HCC, 174,853 from ICC, 46,210 
from CHC, 59,077 from SLC, and 64,588 from PB. 
After further clustering and visualization, we 
obtained a total of 15 major cell types (Figure 1A, 
Figure S1A & S1B): B cell (n = 36,685) marked by 
CD79A, MS4A1, and IGHM; CD4+ T (n = 196,129) 
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marked by CD3D and CD4; CD8+ T (n = 206,952) 
marked by CD3D and CD8A; dendritic cell (DC, n = 
17,369) marked by CD1C, CLEC9A and LAMP3; 
endothelial cell (EC, n = 82,342) marked by CDH5 and 
VWF; fibroblast (Fb, n = 48,286) marked by ACTA2 
and COL1A2; γδT (gdT, n = 13,760) marked by CD3D, 
TRGC2 and TRDC; mast cell (n = 2,459) marked by 
TPSAB1 and MS4A2; monocyte (Mo, n = 19,755) 
marked by FCN1, CD14, and FCGR3A, derived from 
PB; mono-like macrophage (MonoMph, n = 20,191) 
marked by FCN1 and C1QB, derived from tissue; 
mono-like DC (MonoDC, n = 1223) marked by FCN1 
and CD1C; macrophage (Mph, n = 129,766) marked by 
C1QC, C1QB, and CD68; neutrophil (Neu, n = 59,099) 
marked by FCGR3B and CSF3R; natural killer cell 
(NK, n = 59,099) marked by KLRF1 and NKG7; tumor 
cell (n = 191,282) marked by EPCAM, ALB, and 
APOA2. The sample distribution revealed that tumor 
cells exhibited the highest heterogeneity, aligning 
with previous study [46] (Figure S1B). Subsequently, 
we conducted a comparative analysis of the 
infiltration of major cell types across different sample 
types. Our findings revealed that the cell preference 
and proportion of fibroblasts and macrophages were 
generally elevated in all liver cancer types compared 
with AL (Figure 1B, Figure S1C). Specifically, 
fibroblasts were most highly enriched in the two main 
liver cancer types, HCC and ICC (Figure 1B). 
Significant increases in fibroblasts and macrophages 
were observed in both HCC and ICC compared to AL 
(BH-corrected P < 0.05) (Figure 1C, Figure S1G). 
These findings indicate that fibroblasts and 
macrophages may play a pivotal role in shaping the 
pro-tumor microenvironment in liver cancer, 
particularly in HCC and ICC. 

FAP + fibroblasts are the dominant 
tumor-associated fibroblasts (CAFs) 

To gain further insight into the pivotal role of 
fibroblasts in shaping the microenvironment of liver 
cancer, we referenced previously reported fibroblast 
subtype-specific markers and categorized them into 
eight clusters (Fb_01_ADIRF, Fb_02_APOC1, 
Fb_03_FAP, Fb_04_HLA-DRB1, Fb_05_PLVAP, 
Fb_06_TOP2A, Fb_07_CFD, Fb_08_GPM6B) [24] 
(Figure 1D, Figure S1D & S1E, Table S3). In 
comparison to AL, Fb_03_FAP was observed to be 
elevated in all liver cancer types, representing about 
50% of all fibroblasts (Figure 1E, Figure S1F). 
Interestingly, Fb_02_APOC1 was predominantly 
enriched in HCC, possibly due to the unique 
metabolic milieu in HCC. In contrast, 
Fb_04_HLA-DRB1 was highest in the AL, expressing 
typical hepatic stellate cell markers (LRAT, HGF, and 
RELN) [47, 48] (Figure 1E, Figure S1E).  

To elucidate the functions of these distinct 
subtypes of fibroblasts, we conducted a functional 
enrichment analysis based on the highly expressed 
genes of each cell subcluster (Figure 1F, Figure S2A). 
Fb_01 was predominantly enriched in pathways 
related to the muscle system and muscle contraction 
(Figure 1F), expressed high levels of ACTA2, ADIRF, 
and MYH11, similar to smooth muscle cells (SMCs) or 
myofibroblasts [24, 49]. Fb_02 was found to be 
enriched in lipid-related pathways, with high 
expression of apolipoprotein genes APOC1 and 
APOC3. This is similar to the lipid processing CAFs 
(lpCAFs) [9], with the highest overall metabolic scores 
and demonstrated higher fatty acid degradation, 
beta-alanine metabolism, valine, and other fatty acid 
or amino acid metabolism-related entry scores (Figure 
S2B). Fb_03 belongs to matrix-associated fibroblasts 
[49], which was found to be significantly enriched in 
extracellular matrix organization and collagen fibril 
organization, with high expression of fibroblast 
activation protein-related gene FAP, extracellular 
matrix-related marker VCAN, and COL1A1. These 
cells are significantly characterized by hypoxia 
pathway activation and D-glutamine and 
D-glutamate metabolism activation (Figure S2B & 
S2C). Additionally, Fb_07 exhibits a comparable 
expression profile to Fb_03, yet is enriched in 
complement-related pathways and exhibits high 
expression of the complement-related gene CFD, 
which may belong to a subclass of FAP + CAF. Fb_04 
is involved in antigen processing and presentation, 
with high expression of the MHC class II molecule 
HLA-DRB1 and the chemokine CXCL12. It is classified 
as a classical apCAF [9]. PLVAP, a classical 
endothelial cell-associated marker, is highly 
expressed in Fb_05, enriched in the endothelium 
development, and endothelial cell differentiation 
pathways, suggesting its potential endothelial cell 
origin through endothelial-mesenchymal transition, 
categorized as CAFEndMT in the study of Luo et al. [24]. 
Fb_06 was characterized by high proliferation and 
belonged to cycling CAF. Additionally, Fb_08 was 
enriched to nerve-related pathway with high 
expression of S100B and GPM6B, which belonged to 
fibroblast-like peripheral nerve cells, which was also 
found in Luo et al.'s study, but this type of cells was 
mainly enriched in colorectal cancer and suggests the 
impact of perineural invasion on patient risk [24].  

We further evaluated the infiltration differences 
of fibroblast subtypes in HCC and ICC. Our findings 
revealed that FAP + CAFs were significantly increased 
in both HCC and ICC compared to AL (BH-adjusted P 
< 0.05) (Figure 1G). Notably, the infiltration of FAP+ 
CAFs was higher in ICC compared to HCC 
(BH-adjusted P < 0.05) (Figure S1H).  
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Figure 1. Identification of key cancer-associated fibroblasts. (A) UMAP shows the cellular clustering of major cell types in the discovery cohort and the corresponding 
cell numbers. (B) Heatmap showing the cell preference of different major cell types in peripheral blood (PB), adjacent liver (AL), intrahepatic cholangiocarcinoma (ICC), 
hepatocellular carcinoma (HCC), combined hepatocellular and cholangiocarcinoma (CHC), and secondary liver cancer (SLC). (C) Volcano plot showing the difference in the 
proportion of major cell types in HCC (n = 82) versus AL (n = 14). (D) UMAP shows the distribution of fibroblast subtypes in the discovery cohort. (E) Stacking plot shows the 
percentage of fibroblast subtypes in the five tissue types. (F) Dot plot shows top5 highly expressed genes for each fibroblast subtypes. (G) Volcano plot comparing the relative 
abundance of HCC/ICC versus AL fibroblast subtypes. (H) Heatmap showing the Ucell enrichment scores of key biological entries of fibroblasts in different subtypes. (I) UMAP 
shows the identification of fibroblasts from an integrated validated single-cell cohort (left); box plot shows the significantly higher relative abundance of fibroblast in AL, HCC and 
ICC (median); stacking plot shows the progressively higher proportion of FAP + CAF in HCC and ICC compared to AL (right). (J) Immunohistochemically stained pathology 
sections and box plot showed progressively higher FAP expression and average optical density (AOD) in AL (n = 8), HCC (n = 8) and ICC (n = 10) samples. 
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Key characteristics of FAP+ CAFs included 
highly activated angiogenesis, collagen fibril 
organization, and collagen biosynthetic processes 
(Figure 1H). A comparison of FAP+ CAFs across 
sample types showed that glycolysis and 
angiogenesis were most enriched in ICC, while the 
collagen-activated signaling pathway was activated in 
both HCC and ICC (Figure S1I). These results 
indicate that FAP + CAFs may have partial functional 
preferences in different types of liver cancer.  

To further validate the stable increase of FAP+ 
CAFs in the tumor microenvironment, we integrated 
a single-cell validation cohort comprising 79 samples 
[19, 50], and which demonstrated a gradual increase 
in the proportion of FAP + CAFs from AL, HCC, to 
ICC (Figure 1I). After deconvolution single cells into 
the bulk cohort (TCGA-LIHC/CHOL) as well as in 
tumor-AL paired scRNA-seq samples, a significant 
increase of FAP + CAFs ratio in liver cancer samples 
was observed (Wilcoxon test, P < 0.01; paired t-test, P 
< 0.05) (Figure S1J). Immunohistochemical images 
also confirmed elevated FAP expression in HCC and 
ICC samples (Figure 1J). Collectively, the augmented 
abundance of FAP + CAFs emerges as a widespread 
phenomenon in tumors, despite potential functional 
diversity across various liver cancer subtypes. 

Increased FAP + CAFs suggests tumor 
progression 

Tumor cells often alter the surrounding 
microenvironment, frequently accompanied by 
changes in cellular ratios. The association between cell 
proportion and patient risk was initially evaluated in 
the discovery single-cell cohort. We found that 
Fb_03_FAP (HR = 1.7, Cox P = 0.00049) and 
Fb_08_GPM6B (HR = 1.4, Cox P = 0.00063) were 
significantly associated with worse overall survival 
(OS) of patients (Figure 2A). However, Fb_08 was 
excluded from further analysis due to its low cell 
count (n = 88). Upon clinical indicator assessment, 
high infiltration of FAP + CAFs was associated with 
worse OS (Log-rank P < 0.05), lymph node metastasis 
(Wilcoxon test P < 0.01), distal metastasis (Wilcoxon 
test P < 0.0001), and high stage (Wilcoxon test P < 
0.0001) in liver cancer patients, but there was no 
significant correlation with viral infection (Figure 2B).  

 To integrate and analyze bulk RNA-seq data 
with single-cell data, we used the Scissor algorithm 
developed by Sun et al. to study the association of cells 
with patient survival [32, 51]. Based on TCGA bulk 
RNA-seq and survival data, we identified Scissor+ 
cells from fibroblasts that were associated with 
shorter OS (Figure 2C), the finding that was further 
validated in single-cell discovery cohort (Figure 2D). 
By assessing the proportion of cells in different 

sample types, Scissor+ cells were higher in ICC 
compared to HCC samples (Figure 2E). It is 
noteworthy that FAP + CAFs constitute a significant 
component of Scissor+ cells, specifically accounting 
for a remarkable 72% in the cell subtype proportion 
analysis (Figure 2F). Like FAP + CAFs, the Scissor+ 
cells also exhibited high expression of genes related to 
blood vessel development (SEPRINE1, VEGFA, 
CXCL8, THBS1), and which were more inclined to be 
highly expressed in ICC (Figure S3A & S3B). 
Furthermore, in five independent bulk RNA-seq 
cohorts, a high FAP + CAF signature score was found 
to predict worse OS of patients (Figure 2G). These 
results indicate that FAP + CAF significantly affects 
the clinical outcome of patients and is strongly 
associated with tumor metastasis and higher 
aggressiveness. 

To explore the origin of FAP+ CAFs, we 
conducted a pseudotime trajectory analysis to model 
fibroblast differentiation. We hypothesized that 
AL-enriched fibroblasts were used as the starting 
point of differentiation, and Fb_03 and Fb_02 were 
found in the end of the two differentiation trajectories 
(Figure 2H). Fb_02 is primarily derived from SMCs or 
myofibroblasts (Fb_01), whereas Fb_03 potentially 
derived from hepatic stellate cells (HSCs) (Fb_04) 
based on its downstream position in Fb_04 
differentiation and similar gene expression profiles 
(Figure 2H & 1G). Activation of HSCs is thought to 
have an important role in the development of HCC 
and is closely related to the differentiation of 
matrix-associated CAFs [52]. 

Different spatial distribution of FAP + CAFs in 
HCC and ICC 

The spatial distribution of cells within TME is 
often closely related to their functional attributes. To 
gain a deeper understanding of how FAP+ CAFs 
contribute to cancer progression, we conducted a ST 
RNA-seq analysis to map the spatial patterns of FAP + 
CAFs. First, the proportion of different fibroblast 
subtypes in the HCC samples was evaluated, and FAP 
+ CAF subtype exhibited the highest cell percentage 
compared to other subtypes (HCC1_T: 30.05%, 
HCC2_T: 28.61%, HCC3_T: 20.54%, HCC4_T: 25.38%) 
(Figure 3A). Furthermore, FAP expression was 
observed to be higher in tumor samples compared to 
AL (Figure 3B), which was consistent with the IHC 
results (Figure 1N), and further supported by IF 
analysis (Figure S4). Next, by evaluating the 
distribution of fibroblasts in tumor border samples, 
we found that FAP + CAFs were more likely to be 
enriched at the tumor border in HCC samples while 
diffusely scattered in ICC (Figure 3C-3F). 
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Figure 2. Association of FAP + CAF with clinical features and differentiation origins. (A) Forest plot showing the proportion of FAP + CAF in the single-cell discovery 
cohort was significantly associated with patient survival by Cox analysis. (B) KM curve shows that the high ratio of FAP + CAF group based on the best cutoff grouping had shorter 
overall survival; barplot shows that the FAP + CAF proportion was significantly higher in different liver cancer samples compared to adjacent liver (AL); boxplot shows the 
differences in FAP + CAF proportion among different clinical characteristic groups. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. (C) UMAP shows prognostic-associated 
cells and their tissue-type origins identified by the Scissor algorithm. (D) KM curves show poorer survival of patients with a high proportion of Scissor+ cells in the single-cell 
discovery cohort. (E) Bar plot showing the proportion of Scissor+ cells in different tissue types. (F) Pie plot showing the percentage of different fibroblast subtypes in 
Scissor-related cells. (G) KM curves showing the high FAP + CAF score group usually predicted worse overall survival in the five liver cancer bulk transcriptome cohorts. (H) 
Fibroblast differentiation trajectories showing the distribution of cell type, sample type, Scissor type and state. 
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Figure 3. Spatial distribution of FAP + CAF. (A) Bar plot shows the proportion of fibroblast subtypes that were deconvoluted by CellTrek onto hepatocellular carcinoma 
(HCC) spatial transcriptome sections. (B) Spatial feature plot showing the expression of FAP in tumor and paracancerous samples from four HCC patients. (C and D) Distribution 
of fibroblast subtypes in HCC and intrahepatic cholangiocarcinoma (ICC) border slides based on CellTrek deconvolution. The pie charts show the relative proportion of each 
cell subtype in the border region. (E and F) Spatial feature plot showing the expression of selected genes in HCC and ICC border samples. 

 
 To identify cell types closely linked to 

fibroblasts, we analyzed five bulk RNA-seq datasets 
(n = 1303). Through deconvolution, we estimated the 
proportions of main cell types in each sample and 
found a strongest correlation between macrophages 
and fibroblasts across multiple datasets (TCGA, R = 
0.49, P < 2.2e-16; GSE54236, R = 0.24, P = 0.0023; 
GSE76427, R = 0.27, P = 0.00044; GSE14520, R = 0.24, P 
= 4e-07; GSE116174, R = 0.34, P = 0.0058) (Figure S5A). 
Furthermore, spatial correlation and co-localization 
analysis using ST data revealed a strong association 

and spatial proximity between macrophages and 
fibroblasts (Figure S5B & 5C). Overall, FAP + CAFs 
are enriched in tumor samples, particularly at HCC 
borders, and exhibit significant interaction potential 
with macrophages. 

Spatial co-localization between FAP + CAFs and 
TAMs 

To identify the major macrophage subtypes that 
communicate with FAP+ CAFs, we performed 
subtype annotation of macrophages and identified a 
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total of eight major cell subtypes. These included 
classical CD14 and nonclassical CD16-expressing 
monocytes in blood [53] and six tissue macrophage 
subtypes (Figure 4A, Table S4). The macrophage 
clusters exhibit a greater proclivity for specific sample 
types and a tendency to exhibit bias, which may be 
related to the high heterogeneity of macrophages [46, 
54] (Figure S6A). Subsequently, we conducted an 
investigation into the enrichment preference and 
infiltration proportions of cellular subtypes in 
different sample types. Our findings revealed that 
mononuclear-like macrophages (MonoMph, FCN1+) 
and hepatic Kupffer-like macrophages (Mph_02_ 
MARCO, MARCO+) [55] were predominant in AL, 
with Mph_02_MARCO being the most abundant 
(Figure S6B). Macrophages marked by high CXCL9 
expression (Mph_01_CXCL9) are often associated 
with a more favorable prognosis in tumor patients 
[56]. These macrophages are more enriched in CHC 
(Figure S6B). Conversely, SPP1+ macrophages 
(Mph_04_SPP1), reported with pro-tumorigenic roles, 
showed a stronger preference for enrichment in CHC, 
ICC, and SLC samples (Figure S6B). Notably, 
Mph_03_DAB2 were specifically enriched in HCC. 
RNA velocity analysis indicated that Mph_03_DAB2 
was more likely to be differentiated from resident 
Kupffer-like cells, while Mph_04_SPP1 was likely to 
originate from blood-infiltrating MonoMph or 
resident Kupffer-like cells (Figure S6C).  

A further functional comparison revealed that 
Mph_01_CXCL9 scored highest in M1 phenotype, 
whereas Mph_03_DAB2 and Mph_04_SPP1 leaned 
toward the M2 phenotype (Figure S6D). Compared 
with Mph_04_SPP1, Mph_03_DAB2 exhibiting higher 
levels of FOLR2, SLC40A1, and IGF1, which are genes 
specifically expressed by some reported TAMs that 
known to play a role in promoting tumor progression 
[57-59] (Figure S6E). By utilizing cell-specific marker 
scores and survival analysis, we found that patients 
with high Mph_03_DAB2 or Mph_04_SPP1 scores had 
shorter overall survival (OS) (Figure S6F). 
Interestingly, although both tumor-promoting TAMs 
were increased in tumor compared to the AL samples, 
Mph_03_DAB2 was higher in HCC, but 
Mph_04_SPP1 was higher in ICC, as we verified in 
single-cell cohorts, bulk cohorts, and IF staining 
(Figure 4B, Figure S6G & S6H). 

FAP+ CAFs and different types of macrophages 
were mapped onto spatial tissue images by CellTrek's 
ST and scRNA-seq co-embedding and random forest 
model prediction. The highest spatial co-localization 
ability of Fb_03_FAP and Mph_03_DAB2 was 
observed in HCC samples, while in ICC samples, 
Fb_03_FAP had the highest spatial co-localization 
with Mph_04_SPP1 (Figure 4C). In terms of cell ratio, 

Mph_03_DAB2 exhibited the highest proportion in 
HCC slides, while Mph_04_SPP1 in ICC slides (Figure 
4D). This finding was consistent with the results of 
scRNA-seq (Figure 4B). Further spatial cellular 
annotation revealed that FAP + CAFs and TAMs were 
co-localized in the HCC border and scattered in ICC 
tissue, and the co-localized spot always enriched on 
the ECM-related terms (Figure 4E, Figure S7A-S7C). 
This observation aligns with the findings of IF 
experiments (Figure 4F). The results indicate that FAP 
+ CAF may contribute to immune cell exclusion [60, 
61] as T/B cells were often absent from the tumor core 
(Figure 4E, Figure S8). In conclusion, our findings 
indicate that DAB2 + and SPP1 + macrophages are the 
dominant TAMs in liver cancer. Notably, DAB2 + 
TAMs enriched in HCC, exhibiting significant spatial 
co-localization with FAP + CAF in tumor border and 
may participate in shaping the TME. 

TAMs enhance FAP + CAFs function through 
cell communication 

The significant association and spatial 
co-localization characteristics of FAP + CAFs with 
TAM prompted us to further explore their potential 
cellular communication patterns. First, we used FAP+ 
CAFs as a receiver to investigate the functional 
regulation affected by TAM (Figure 5A). Most of the 
ligand and receptor genes are usually associated with 
worse patient survival, implying that the interaction 
between TAMs and FAP+ CAFs might be 
tumor-promoting (Figure S9A). Concurrently, we 
found that target genes in FAP + CAF were mainly 
involved in blood vessel development, extracellular 
matrix, collagen-containing extracellular matrix, and 
cellular response to growth factor stimulus (Figure 
5B). Among the ligands from TAM, TGFB1, which has 
the highest regulatory activity on the target genes of 
FAP + CAF, has been reported to be a key driver gene 
for fibroblast activation and is widely expressed in 
macrophages (Figure 5A). Additionally, some 
macrophage subtype-specific genes were identified 
that may play an important role in the function 
regulation of CAF, such as ADM is highly expressed 
in Mph_SPP1, and its target genes are involved in 
pathways related to hypoxia, angiogenesis and 
vascular-associated smooth muscle cell proliferation 
regulation (Figure 5A & 5B). The ADM has been 
reported to promote the proliferation of fibroblasts 
and reduce their apoptosis rate [62]. Meanwhile, 
PDGFB was found to be highly expressed in 
Mph_DAB2, and its target genes were mainly 
enriched in the terms of cell differentiation, external 
encapsulating structure, and extracellular matrix 
(Figure 5A & 5B). We examined the expression of the 
corresponding receptors for PDGFB, of which 
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PDGFRB, LRP1 and PDGFRA were all highly 
expressed in FAP + CAFs. Further spatial expression 
analysis showed that PDGFB was highly spatially 
proximal to the expression of these receptors and 

enriched at the HCC boundary (Figure 5C & 5D, 
Figure S9B). These results suggest that TAM could 
potentially shape a tumor-promoting TME by 
interacting with FAP + CAFs.  

 

 
Figure 4. Spatial co-localization of TAM with FAP + CAF. (A) UMAP shows the distribution of monocyte/macrophage subtypes. (B) Bar plot shows the relative 
proportions of macrophage subtypes in HCC and ICC samples (left); paired dot plot shows the relative proportions of DAB2 + / SPP1 + TAMs in tumor and adjacent liver paired 
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samples (right). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. (C) Distribution of DAB2 + TAMs and FAP + CAF in HCC boundary slides, and SPP1 + TAM and FAP + CAF 
in ICC boundary slides based on CellTrek deconvolution (left); heatmap shows the Kullback-Leibler (KL) divergence of FAP + CAF with different macrophage subtypes in ST slides, 
with the higher KL divergence representing the greater degree of co-localization of the two cell types (right). (D) Pie plots showing the relative proportions of different 
macrophage subtypes in the ST slides. (E) Unbiased clustering of ST spots and definition of cell types of each cluster (left); dot plot showing the expression of select marker genes 
of each cluster (right). (F) Multi-plex immunofluorescence images showing the aggregation of FAP + CAF with DAB2 + TAM at the tumor border in HCC and FAP + CAF with SPP1 
+ TAM at the tumor border and core in ICC. The scale bar is 200 μm and 100 μm. 

 
Figure 5. Cellular communication between TAM and FAP + CAF. (A) The combined heatmap shows the results after NicheNet analysis of TAM and FAP + CAF. The first 
part of the combined figure shows the Pearson coefficient of the macrophage ligand, and the high coefficient suggests that the ligand has a high ability to regulate the FAP + CAF 
target genes, the second part shows the expression of the ligand in different subtypes of macrophage, and the third part shows the comparison of the expression of the ligand in 
HCC and ICC, and the fourth part shows the regulated potential of the target genes. (B) Bar plot shows GO biology terms enriched for all targeted genes, PDGFB target genes, 
and ADM target genes. (C) Dot plot showing the expression of PDGFB receptors LRP1, PDGFRB and PDGFRA in fibroblasts. (D) Spatial dot plot showing the spatial expression of 
PDGFB in DAB2 + TAM and PDGFRB in FAP + CAF. (E) KM curves showing the association of quantified ligand-receptor score (LRscore) with patient OS in five independent bulk 
RNA-seq cohorts. 

 
Furthermore, we also examined the signaling of 

FAP+ CAFs to other cells (Figure S9C). In HCC, FAP+ 
CAFs sent high weight of signaling to macrophages, 
while sent more signals to tumor cells and endothelial 
cells in ICC, which is similar to previous study [63]. 
CellChat signaling pathway analysis revealed that 
COLAGEN, MIF, CXCL and VEGF signals were 
significantly enriched in the outgoing signals of FAP + 

CAFs (Figure S9D). Next, we examined the effects of 
FAP+ CAFs on macrophages in HCC, and some 
ligands associated with cell migration and 
macrophage differentiation were identified, such as 
BMP4 and CSF1 (Figure S9E & S9F), which may play 
key roles in macrophage recruitment and pro-M2 
polarization [64, 65]. Specifically, ligand-receptor 
interactions between FAP+ CAFs and tumor cells and 



Theranostics 2024, Vol. 14, Issue 12 
 

 
https://www.thno.org 

4836 

endothelial cells in ICC were investigated. Growth 
factors were highlighted due to their significant 
enrichment and role as key molecules in CAF 
regulation of tumor/endothelial cells (Figure 5B) [66]. 
We found VEGFB presented high communication 
weight and ICC expression specificity, which were 
associated with shorter OS in ICC patients (Figure 
S10A-S10C). Moreover, a significant positive 
correlation was observed between VEGFB and 
receptors RAMP1 and CALCRL of the SPP1+ TAMs 
ligand ADM (Figure S10D). SPP1+ TAMs may 
promote FAP + CAFs proliferation through 
ADM-(CALCRL/RAMP1), and FAP + CAFs may 
modulate endothelial and tumor cell function and 
growth by VEGFB (Figure S10E & S10F) [67]. In 
summary, FAP+ CAFs play a pivotal role in the TME, 
contributing to tumor barrier formation, angiogenesis, 
and direct tumor cell regulation, albeit with possible 
preferences for specific cancer subtypes. TAMs are 
implicated in enhancing the downstream functions of 
FAP+ CAFs through cellular communication. 

Cell communication quantification and drug 
screening 

Cellular communication largely influences 
patient prognosis and anti-tumor immunity [68]. 
Utilizing the ssGSEA method, we quantified the 
signal strength from TAM to FAP+ CAFs, termed the 
LRscore, to investigate its association with patient 
prognosis in a bulk RNA-seq cohort. Across five 
independent liver cancer cohorts, a higher LRscore 
consistently predicted a shorter OS for patients 
(Figure 5E). These findings suggest that disrupting 
the cellular interaction between TAM and FAP+ CAFs 
could potentially serve as a valuable clinical adjuvant 
strategy. To explore potential targeted drugs that 
might benefit patients with a high LRscore, we first 
calculated Spearman's correlation between predicted 
IC50 values of drugs included in the Genomics of 
Drug Sensitivity in Cancer (GDSC) database and the 
LRscore using the previously reported method based 
on ridge regression models [43]. Among the predicted 
drugs, Syk inhibitors such as Entospletinib (R = -0.44, 
P = 4.87E-19) and PRT062607 (R = -0.31, P = 1.91E-09), 
as well as Dasatinib (R = -0.39, P = 7.84E-15) and the 
PI3K inhibitor AMG-319 (R = -0.28, P = 6.11E-08), 
appeared to be more effective in patients with a high 
LRscore. However, sorafenib, a first-line drug for 
HCC, showed a positive correlation (R = 0.41, P = 
2.73E-16), suggesting it may not be as efficacious in 
high LRscore patients. Furthermore, we searched for 
small molecule drugs that are not commonly used in 
clinical settings but could potentially block this 
communication. Utilizing the open-source 
computational tool sc2MeNetDrug [44], we identified 

small molecule drugs like curcumin, amiloride, and 
propentofylline as potential cell-communication 
blocking agents. Curcumin, known for its 
anti-inflammatory, antioxidant, and antitumor 
properties, has been reported to be beneficial in the 
treatment of various cancers [69]. Amiloride, a 
clinically used Na+/H+ antagonist, inhibits 
macropinocytosis and enhances the sensitivity of 
HCC cells to sorafenib-induced iron enrichment [70]. 
These findings offer promising avenues for further 
exploration in targeting cellular communication to 
improve patient outcomes. 

Pan-cancer and clinical evaluation of FAP+ 
CAFs and DAB2+ TAMs  

The findings indicate that DAB2+ / SPP1+ TAMs 
are the dominant TAMs in liver cancer, and SPP1+ 
TAMs have been reported to be involved in the 
pro-tumor microenvironment in several studies [15, 
56, 71-73]. We questioned whether DAB2+ TAMs also 
have a non-negligible role, at least in HCC, where 
DAB2+ TAMs abundantly infiltrated and has the 
highest spatial co-localization with FAP+ CAFs 
(Figure S6B and Figure 4D). The interaction between 
FAP+ CAFs and DAB2+ TAMs may be important for 
the formation of the capsule at the tumor border. To 
assess the potential significance of FAP+ CAFs and 
DAB2+ TAMs in pan-cancer, it was first necessary to 
clarify the infiltration abundance of these two cell 
types in different tumor samples. By analyzing 
scRNA-seq data from 11 organs, we observed a 
progressive increase in the proportions of FAP + CAFs 
and DAB2 + TAMs in normal (n = 25), adjacent (n = 
60), and tumor (n = 220) samples (Figure 6A & 6B, 
Figure S12A & S12B). Due to the absence of survival 
data in the single-cell datasets, we explored the 
impact of these cell types on the survival of 
pan-cancer patients using TCGA bulk RNA-seq data. 
We first evaluated the association of FAP and DAB2 
gene expression with the FAP+ CAF and DAB2+ TAM 
ratios calculated by deconvolution in TCGA-LIHC. 
High FAP and DAB2 group had the highest FAP+ CAF 
and DAB2+ TAM ratios, suggesting that the FAP and 
DAB2 gene expression can be used for subgroup 
assessment (Figure S12C). Subsequently, based on 
gene expression and Cox risk analysis, we found that 
FAP expression was significantly up-regulated in the 
majority (73%) of cancers (Wilcoxon test, P < 0.05), 
and DAB2 expression was significantly up-regulated 
in nearly half of cancers (41%), that high expression of 
both genes usually predicted poorer OS of the patients 
(Figure 6C & 6D, Figure S12D-S12F). This suggests 
that the expression of FAP and DAB2 genes is 
valuable in indicating the prognosis of tumor patients. 
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Figure 6. Pan-cancer analysis of FAP + CAF and DAB2 + TAM. (A and B) Stacking plot showing the proportion of FAP + CAF and DAB2 + TAM in different sample types. (C) 
Gene expression analysis of FAP and DAB2 shows their expression of tumor and normal samples in different cancers, the association between gene expression and patient survival, 
and the correlation between FAP and DAB2 expression. (D) Circular plots showing the proportion of cancer types with different FAP and DAB2 gene expression patterns, UP 
indicates the proportion of cancer types in which the gene is significantly up-regulated in cancer, DOWN indicates the proportion of cancer types in which the gene is significantly 
down-regulated in cancer, and NS indicates the proportion of cancer types in which there is no significant difference in the expression of the gene in cancer and paracancer. (E) 
Spatial feature plot showing the expression of selected genes in HCC immunotherapy ST slides. (F) Spatial feature plot showing the expression of selected genes in skin cutaneous 
melanoma (SKCM) and breast invasive carcinoma (BRCA) ST slides. (G) Stacking plot shows the proportion of TCGA-LIHC samples in TIDE-predicted 
immunotherapy-responsive (R) and non-responsive (NR) samples based on the FAP and DAB2 expression groupings; quad plot shows the significance assessment of the 
consistency of the four grouping clusters based on the submap method. (H) Box plot comparing the difference between FAP + CAF and DAB2 + TAM scores in the response and 
non-response groups in the immunotherapy cohort Imvigor210. (I) Stacking plot showing the proportion of FAP + CAF and DAB2 + TAM in the response and non-response groups 
in our integrated pan-cancer immunotherapy scRNA-seq cohort. 
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Figure 7. Immunohistochemical evaluation of FAP and DAB2. (A) Immunohistochemical staining image shows FAP + CAF and DAB2 + TAM around the tumor core. (B) 
KM curves show the high FAP or DAB2 average optical density (AOD) group with shorter OS. (C) KM curves show the high FAP and DAB2 AOD group had shortest overall 
survival. (D) Heatmap showing the distribution of clinical indicators in the sample sorted by FAP AOD. 

 
The interaction of TAMs and CAFs in tumor 

immune barrier (TIB) is associated with the efficacy of 
immunotherapy by limiting immune infiltration 
(Figure S8). We therefore investigated the spatial 
distribution of FAP+ CAFs and DAB2+ TAMs in 
relation to immunotherapy response. In HCC ST 
slides from immunotherapy-non-responsive patients, 
FAP and DAB2 were found to be concentrated at the 
tumor border, creating a barrier that effectively 
blocked the infiltration of T/B cells. However, in 
responsive patients, no such enrichment was 
observed, facilitating efficient T/B cell infiltration 
(Figure 6E). This trend was also noticeable in various 
other tumor types (Figure 6F, Figure S13). 
Significantly, high levels of FAP+ CAFs and DAB2+ 

TAMs were correlated with non-responsiveness to 
immunotherapy in patients from TCGA, Imvigor210, 
and integrated single-cell immunotherapy cohorts 
(Figure 6G-6I). This suggests that the interaction 
between FAP+ CAFs and DAB2+ TAMs could 
potentially serve as immunotherapy response 
predictors. 

 Finally, to evaluate the clinical significance of 
FAP and DAB2, we further included 90 HCC tumor 
boundary samples for IHC staining, in which FAP + 

CAFs and DAB2 + TAMs enriched around the tumor 
core (Figure 7A). By grouping the patients based on 
the average optical density (AOD, calculated as 
integrated optical density divided by area) of FAP or 
DAB2 staining, we found that patients with elevated 
levels of FAP (Log-rank P < 0.0001) or DAB2 
(Log-rank P = 0.001) exhibited a reduced OS. Notably, 
combining both markers (Log-rank P < 0.0001) 
provided an enhanced discriminatory performance 
(Figure 7B & 7C). Additionally, the staining intensity 
of FAP and DAB2 also exhibited a significant positive 
correlation with tumor size and patient serum AFP 
concentration (Spearman correlation analysis, P < 
0.0001), suggesting their potential as indicators of 
tumor progression in clinical practice (Figure 7D).  

Discussion 
A growing body of data indicates the potential of 

immune checkpoint inhibitors in the treatment of liver 
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cancer, especially the single-agent anti-PD-1 immune 
checkpoint inhibitors have shown promising efficacy 
in early trials [74, 75]. However, majority of patients 
failing to respond to immunotherapy [76, 77], and the 
mechanisms underlying the failure to respond remain 
poorly understood. Tumor heterogeneity, which 
directly impacts therapeutic targets and shapes the 
TME by defining transcriptomic and phenotypic 
profiles, is a significant contributor to immuno-
therapy inefficacy [78]. The growth of solid tumors 
heavily relies on a remodeled “stroma” comprising 
CAFs and ECM, which play pivotal roles in shaping 
the immunosuppressive TME, tumorigenesis, 
progression, metastasis, and treatment resistance [79]. 
Previous CAF-based single-cell transcriptomic studies 
in liver cancer have focused on cell type identification, 
origin, and function, often limited by sample size and 
fibroblast detection [9, 10, 63, 80-83]. It is an urgent 
need to use scRNA-seq in larger cohorts to study 
CAFs and their communication with tumor- 
associated cells. In this study, through multiple 
cohorts and integrated analysis of scRNA-seq, ST, 
bulk RNA-seq, and other bioinformatic technologies, 
we systematically resolved cellular infiltrative 
alterations in different liver cancer subtypes. Key 
FAP+ CAFs were identified, along with extensive 
communication with DAB2+ and SPP1+ TAMs. 
Notably, the communication between FAP+ CAFs and 
DAB2+ TAMs appear critical in shaping the immune 
exclusion microenvironment and immunotherapy 
tolerance in HCC. 

Fibroblast heterogeneity endows them with 
diverse roles in the TME, and single-cell technologies 
have enabled more precise resolution of this cell 
population. Several scRNA-seq studies have 
identified different pan-cancerous CAF subtypes [24, 
49, 84, 85], highlighting the importance of 
matrix-associated CAFs in tumor promotion, 
characterized by high expression of COL1A1, FAP, 
and POSTN. These studies are of great significance in 
resolving the heterogeneity of CAFs and promoting 
the development of CAF-targeted drugs. In this study, 
we first identified highest enrichment of fibroblasts in 
HCC and ICC across multiple liver cancer types. By 
further subtyping, we identified eight CAF 
subclusters, FAP+ CAFs, similar to the previously- 
reported matrix-associated CAFs, significantly 
enriched in all liver cancer types, were involved in 
ECM remodeling and angiogenesis, exhibiting 
functional heterogeneity across different tumor 
subtypes. FAP, also known as fibroblast activation 
protein, is a 97 kDa type II transmembrane serine 
protease. FAP expression is typically low or 
undetectable in normal tissues, but is overexpressed 
in 90% of cancers. To date, FAP has been reported to 

affect tumor growth through multiple mechanisms, 
including promotion of proliferation, invasion, 
angiogenesis, epithelial-mesenchymal transition, stem 
cell promotion, immunosuppression, and drug 
resistance [86, 87]. Several laboratories around the 
world have identified a specific subset of FAP+ CAF in 
solid tumors. Importantly, FAP+ CAF subpopulation 
accumulates in cancers with poor prognosis and has 
been shown to be involved in metastatic spread and 
cancer immunosuppression [88]. Additionally, we 
found that hypoxia and D-glutamate metabolism 
were significant features of FAP + CAFs. In fact, 
hypoxia induces collagen expression and secretion 
[89-91], and glutamine plays an important role in the 
promotion of ECM synthesis in fibroblasts by TGF-β 
[92]. Clinical correlation analysis revealed that high 
infiltration of FAP+ CAFs correlated with tumor 
progression and reduced OS.  

In recent years, much attention has been paid to 
tumor boundary, which may help to partially explain 
the mechanisms of tumor invasive progression and 
immunotherapy resistance [93, 94]. Serving as the 
predominant CAF subclusters, FAP+ CAFs were 
found to be enriched at the tumor border in HCC but 
diffusely distributed in ICC, which may be related to 
the formation of a tumor capsule. Visual and 
pathological examination showed the presence of a 
capsule around the tumor in 10%-76% of patients with 
HCC, whereas rarely present in patients with ICC 
[93]. The presence of this fibrous capsule forms a 
natural physical barrier that prevents immune cells 
from migrating to the core of the tumor, leading to 
immune exclusion [22]. Actually, we observed that 
T/B cells were mostly excluded from the border, as 
described in previous studies [15]. Currently, targeted 
therapeutic options for FAP have been partially 
reported, including CAR-T therapies, DNA vaccines, 
antibody targeting FAP, and prodrugs, and a few 
clinical phase I studies have emphasized their 
translational potential [95]. In recent years, CAR-T 
therapy have great potential as an emerging 
immunotherapy strategy. Wang et al. developed a 
second-generation retroviral CAR targeting mouse 
FAP, and the FAP-CAR-T cells were tested in vivo in 
three different established models, and tumor growth 
was reduced by 35-50% after treatment [96]. The 
antitumor effects were observed in fully 
immunoreactive mice but not in immunodeficient 
mice, suggesting that the depletion of FAP+ cells 
reduce tumor growth in an immune-dependent 
manner. The combination of FAP-CAR-T cell therapy 
with immune checkpoint inhibitors may represent an 
intensive treatment strategy. 

Pseudotime trajectory analysis indicated a 
potential origin of FAP+ CAFs from HSCs. We found a 
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high similarity in gene expression between FAP+ 
CAFs and Fb_04 (similar to HSCs), for example, they 
both highly express THBS2 (Figure 1F), which has 
been reported to be highly expressed in activated 
HSCs involved in pro-fibrotic processes in the liver 
[97], which is reminiscent of the myHSC reported by 
Aveline et al. [52]. Limiting the activation of HSCs in 
the TME may help reduce FAP+ CAFs production and 
enhance FAP-targeted therapeutic effects [98]. FAP+ 

CAFs had the strongest spatial co-localization with 
DAB2+ TAMs in HCC, and DAB2+ TAMs had the 
highest proportion among all macrophages at the 
tumor border slides. DAB2, also known as Disabled-2, 
is a clathrin and cargo binding endocytic adaptor 
protein recognized for its diverse roles in signaling 
pathways involved in cell differentiation, 
proliferation, migration, tumor suppression, and 
other fundamental cellular homeostatic mechanisms 
[99]. Since DAB2 is actively downregulated in a 
variety of tumor cell lines, it is considered a tumor 
suppressor [100]. However, recent studies have found 
that DAB2+ macrophages may promote tumor 
development. DAB2 is believed to play a role as a 
regulatory molecule in the process of macrophage 
phenotypic switching. It is observed to be 
up-regulated in M2 macrophages and down- 
regulated in M1 macrophages. High levels of DAB2 
expression have been shown to hinder macrophage 
M1 polarization by inhibiting NF-κB-dependent gene 
expression [101]. DAB2+ TAMs were also found to 
localize to the tumor-invasive front and participate in 
integrin recycling, ECM remodeling, and directed 
migration [102]. Although Liu et al. identified SPP1+ 

TAMs as the dominant macrophage type in the HCC 
immune barrier construct [15], SPP1+ TAMs were 
predominantly enriched in ICC, in contrast, DAB2+ 
TAMs in HCC with higher infiltration (Figure 4E). 
Their dominance needs to be revisited, especially in a 
different tumor context. Our findings indicate that 
DAB2+ TAMs are predominantly derived from 
hepatic Kupffer-like cells, whereas SPP1+ TAMs are 
more likely to originate from monocyte-like 
macrophages, suggesting that they may possess 
disparate functions. Although they may both promote 
ECM remodeling through TGF-β signaling, PDGFB 
and ADM were found to exercise different exclusive 
functions as specific ligands for DAB2+ TAMs and 
SPP1+ TAMs, respectively. It has been shown that 
PDGFB directly affects ECM remodeling, with 
reduced ECM deposition and TGF-β signaling in 
tumors from mice with a platelet-specific deletion of 
PDGFB [103]. Whereas ADM regulates ECM mainly 
by controlling fibroblast proliferation and apoptosis, 
it is important to note that the main function of ADM 
is to regulate angiogenesis and not ECM [62, 104]. 

Therefore, reducing the infiltration of DAB2+ TAMs or 
SPP1+ TAMs at the tumor border and blocking their 
cellular communication with FAP+ CAFs may be 
another way to enhance anti-tumor immunity.  

Several Syk and PI3K inhibitors were identified 
by our research as having the potential to block the 
communication between TAMs and FAP+ CAFs. It has 
been reported that CAFs increase contractile force and 
matrix production through the activation of the Syk 
signaling pathway. We hypothesized that the 
communication between TAMs and FAP+ CAFs may 
involve Syk signaling-mediated ECM remodeling 
[105]. Additionally, there is evidence that PI3K/AKT1 
signaling is involved in the activation of CAF and the 
differentiation of other cells to CAF, and the PI3K 
inhibitor have been shown to effectively reduce CAF 
activation [106]. However, it is important to note that 
there is a lack of studies analyzing the effects of these 
inhibitors on tumor immune barrier formation and 
immunotherapy. 

Conclusions 
In conclusion, our study has uncovered distinct 

fibroblast profiles across various types of liver cancer. 
Specifically, we have identified FAP+ CAFs as a 
conserved cancer-associated fibroblast subtype that is 
significantly associated with patient survival, albeit 
with functional and spatial distribution heterogeneity 
within different forms of liver cancer. TAMs play an 
important role in reinforcing the function of FAP+ 

CAFs, particularly through the interplay between 
DAB2 + TAMs and FAP + CAFs, which contributes 
significantly to the establishment of an immune 
barrier. The exploration and development of targeted 
therapeutic approaches aimed at DAB2 + TAMs, FAP + 
CAFs, or the molecules mediating their 
communication hold significant promise for 
enhancing the efficacy of immunotherapy and 
ultimately improving patient outcomes. 
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