1 Oxytocin modulates inhibitory balance in the prelimbic cortex to

2 support social memory consolidation during REM sleep

- 3 [†]Yanchao Liu et al. Email: yanchao_liu@whu,edu.cn
- 4 [‡]Corresponding author. Email: zqp005098@whu.edu.cn (Q.-P.Z.);
- 5 gaoyangbest@whu.edu.cn (Y.G.); xuhaibo@whu.edu.cn (H.-B.X.)
- 6

7

8 Figure S1. OXT receptor antagonists did not affect NREM sleep and wake.

- 9 (A and B) Bilateral antagonism of OXT receptors in PrL did not affect wake (A) and
- 10 NREM sleep (B) in mice. n = 8, ns, p > 0.05, as determined by unpaired t-test. Data are
- 11 expressed as mean \pm SEM.
- 12

13

Figure S2. Population activity of PVN^{OXT} neurons affected OXT release in PrL,
wake and NREM sleep.

(A to D) Schematic of optogenetics virus injection, photostimulation and fluorescence 17 recordings. Peri-event plots illustrate the averaged fluorescence z scores of mcherry 18 group (n = 4) and ChR2 group (n = 4) in response to photostimulation of PVN^{OXT} 19 neurons (473 nm laser, a train of ten 10-ms light pulses at 10 HZ, 1s on and 50 s off for 20 20 min, blue vertical bars). The curves and shaded regions indicate the mean \pm SEM. 21 22 (E) Comparison of peak OXT biosensor fluorescence signal during wake, NREM sleep, and REM sleep in mCherry and tettoxlc group. n=18, three sessions per mouse from 6 23 24 mice; ns, p > 0.05; ***p < 0.001, as determined by unpaired t-test. (F to H) OXT biosensor fluorescence signal transformation aligned to sleep-wake state 25

transitions. Comparison of AUC over 10 s during wake, NREM, and REM sleep. *p <

27 0.05; **p < 0.01, as determined by paired t-test.

14

28 (I and J) Duration and bouts of NREM Sleep and wake over a 4-hour in two groups of

mice. ns, p > 0.05; ***p < 0.001, as determined by unpaired t-test. 29

30

31

sleep/wake phase did not affect NREM sleep and wake. 33

- mCherry-REM group, n = 7 mice; eNpHR-REM group, n = 10 mice; eNpHR-NREM 34
- and eNpHR-Wake groups, n = 8 mice each; ns, p > 0.05, as determined by unpaired t-35
- 36 test. Data are expressed as mean \pm SEM.

37

A. Representative photomicrograph OXT sensor in PrL (left, green), CamkII 39 immunolabeling (middle, red) and merged image (right). n = 2 mice. Scale bar = 200 40 41 μm.

B. Fluorescence images of OXT sensor in PrL (left, green), immunostaining of GAD67 42

- 43 (middle, red) and merged image (right). n = 2 mice. Scale bar = 200 μ m.
- 44 **C.** Representative image of OXT sensor in PrL (left, green), PV immunolabeling 45 (middle, red) and merged image (right). n = 2 mice. Scale bar = 200 μ m.

- Figure S5. Higher Ca²⁺ activity in pyramidal neurons was observed during REM
 sleep after local OXT receptor antagonism treatment in PrL.
- (A) Diagram illustrating virus injection, cannula placement, setup for fiber photometry
 and EMG/EEG recording in mice.
- 51 (B) Timeline showing administration of L-368, 899 (OXT receptor antagonist) or saline. 52 (C and D) Comparison of fluorescence strength (C), fluorescence power (D) of PYR 53 neurons Ca²⁺ signal before and after application of L-368, 899 or saline during REM 54 sleep. n=18, three sessions per mouse from 6 mice; *p < 0.05; ***p < 0.001, as 55 determined by paired and unpaired t-test.

57 Figure S6. Chronic SD impaired social memory in mice.

58 (A) Protocol for chronic SD.

(B) Upper, two-choice social memory test. E, empty; M, mice; N, novel mice; F, familiar mice. Lower, representative heatmaps of distribution of time in two-choice task. (C and D) Social preference index was assessed by two-choice social novelty test in training (C) and testing (D) phase, respectively. n = 6 mice; ns, p > 0.05; **p < 0.01,

as determined by unpaired t-test. 63


```
REM sleep in chronic SD mice.
66
```

(A) Diagram illustrating virus injection, setup for fiber photometry and EMG-EEG 67 recording in mice. 68

(B) Schematic of Fiber photometry and EMG-EEG recording. 69

(C and D) Comparison of fluorescence strength (C), fluorescence power (D) of PYR 70 71 neurons Ca^{2+} signal during REM sleep between Ctrl and SD group. n = 18, three sessions per mouse from 6 mice; ***p < 0.001, as determined by unpaired t-test. 72

73

74

Figure S8. OXT fluorescence in PrL increased after the activation of PVNOXT 75

neurons in SD mice. 76

(A and B) Schematic of optogenetics virus injection, photostimulation and fluorescence 77

- 78 recordings in SD mice.
- (C) OXT fluorescence in PrL increased after the activation of PVN^{OXT} neurons in SD 79
- compared with mCherry (n = 4, 473 nm laser, a train of ten 10-ms light pulses at 10 Hz, 80
- 1 s-on and 50 s-off for 20 min, blue vertical bars). The curves and shaded regions 81
- indicate the mean \pm SEM. 82

84 Figure S9. Optogenetic activation of PVN^{OXT}-PrL pathway during REM sleep did

85 **not affect sleep and wake duration in SD mice.**

Photoactivation of the PVN^{OXT}-PrL pathway during REM sleep could affect sleep-wake with a slightly higher number of REM and NREM occurrences. n = 8 mice in mCherry group; n = 11 mice in ChR2 group; ns, p > 0.05; *p < 0.05; *p < 0.01, as determined by unpaired t-test.

91

92 Figure S10. Intranasal OXT restored reduced SST release in PrL in SD mice.

93 (A) Individual transitions with color-coded fluorescence intensity from sleep to wake94 in three groups.

95 **(B)** Mean \pm SEM activity profiles of GRAB_{SST \leftrightarrow PYR} biosensor in PrL during the 96 transition from sleep to wake. (black = ctrl, red = SD_saline, blue = SD_OXT).

97 (C) AUC comparisons of GRAB_{SST2.0↔PYR} biosensor activity in PrL during wake. Ctrl,

98 n = 28 trials from 5 mice; SD_saline, n = 18 trials from 4 mice; SD_OXT, n = 27 trials

99 from 4 mice; p < 0.05, p < 0.01, as determined by One-way ANOVA.

100

102 Figure S11. The specificity and efficiency of the OXT-promoter-driven virus

- 103 construct.
- 104 (A) Overlap between GCaMP6m and immunostaining of OXT in the PVN.
- 105 Representative photomicrographs of PVN^{OXT} neurons from a mouse microinjected with
- 106 rAAV-OXT-Cre and AAV-DIO-hSyn-GCaMP6m at the PVN. The GCaMP6m (green)
- 107 and OXT immunolabeling (red) indicate GCaMP6m and OXT-expressing neurons,
- 108 respectively, and the yellow image depicts merged neurons. Scale bar = $200 \ \mu m$.
- 109 **(B)** Percentage of Gcamp6m (green)/OXT double-positive cells versus Gcamp6m
- 110 positive cells (left) or versus OXT-positive cells (right). n = 3 mice.
- 111

KEY RESOURCES TABLE

REAGENT or	SOURCE	IDENTIFIER			
RESOURCE					
Antibodies					
Alexa Fluor 546 donkey	Servicebio	GB21303			
anti-rabbit					
Alexa Fluor 546 donkey	Servicebio	GB21301			
anti-mouse					
mouse anti-CamKII	Cell signaling	3362			
mouse anti-GAD67	Sigma	MAB5406			
mouse anti-Parvalbumin	Sigma	SAB4200545			
rabbit anti-Oxytocin-	abcam	EPR20973			
neurophysin 1					

Virus							
rAAV9-hSyn-OT1.8	Brain case Co., Ltd.	Cat#BC-1119					
rAAV2/9-camkII-SST2.0	BrainVTACo.,Ltd.	Cat#PT-7175					
rAAV2/9-DIO-VIP1.7	BrainVTACo.,Ltd.	Cat#PT-8304					
rAAV-CaMKIIa-CRE-	BrainVTACo.,Ltd.	Cat#PT-0220					
WPRE-hGH polyA							
Raav-EF1a-DIO-NES-	Brain case Co., Ltd.	Cat#BC-0212					
jRGECO1a							
rAAV2/9-OXT-Cre-	BrainVTACo.,Ltd.	Cat#PT-6086					
WPRE-hGH-pA							
rAAV2/9-CAG-DIO-	BrainVTACo.,Ltd.	Cat#PT-8161					
axon-jGCaMP7b							
rAAV-EF1a-DIO-	Brain case Co., Ltd.	Cat#BC-1378					
synaptophysin-							
jGCaMP7b							
rAAV2/9-DIO-EF1a-	BrainVTACo.,Ltd.	Cat#PT-3787					
hChR2 (H134R)-							
mCherry							
rAAV2/9-DIO-EF1a-	BrainVTACo.,Ltd.	Cat#PT-0007					
eNpHR3.0-mCherry							
rAAV2/5- EF1a-DIO-	BrainVTACo.,Ltd.	Cat#PT-2139					
tettoxicP2A-mcherry							
rAAV-EF1a-DIO-	BrainVTACo.,Ltd.	Cat#PT-0283					
GCaMp6m-WPRE-hGH							
polyA							
rAAV2/9-DIO-Efla-	BrainVTACo.,Ltd.	Cat#PT-0115					
mCherry							
Animals							
Mouse: C57BL/6J	Beijing Vital River	SCXK: 2022-0030					

		Laboratory		Animal			
		Technology Co., Ltd.					
Mouse:	PV-Cre	Beijing	Vital	River	Gifted	by	Professor
(C57BL/6)		Laboratory		Animal	Jianzhi	Wang	s' research
		Technology Co., Ltd.			group		
Mouse:	VIP-Cre	Genepax Biotechnology Co.,			GAP1043		
(C57BL/7)		Ltd					