Supporting Information

A Versatile Nanoplatform with Excellent Biofilm Permeability and Spatiotemporal ROS Regulation for Peri-Implantitis Treatment

Zeyu Han^{1,2#}, Ying Li^{1,2#}, Xin Zhan^{1,2}, Ming Sun^{1,2}, Yan Liang³, Mujie Yuan^{1,2}, Yong Sun³, Jie Cao³, Baodong Zhao^{1*} and Fan Li^{1,3*}

¹Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, P. R. China.

²School of Stomatology, Qingdao University, Qingdao 266000, P. R. China

³Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, P. R. China

#These authors contributed equally in this work.

* To whom correspondence should be addressed, E-mail: zbd315@sina.com; lifan911017@qdu.edu.cn.

Figure S1. Characterization of CuTA. (A) SEM image and EDS-mapping analysis of CuTA. (B) FTIR of TA and CuTA.

Figure S2. Images of CuTA, CuTA-Por, and CPP NPs before centrifugation and after 5 min centrifugation.

Figure S3. (A) Characterization of the *in vitro* photodynamic properties of CuTA-Por with different Por/CuTA ratios and (B) normalization analysis. (C) UV–vis spectra of CuTA-Por with different Por/CuTA ratios. (D) Hydrated particle size of CPP with different CuTA-Por/ε-PL ratios. (E) XPS spectrum of CuTA and (F) CuTA-Por. (G) XRD pattern of CuTA and (H) CuTA-Por. (I) Standard curve of Cu²⁺ and (J) the release

of Cu²⁺ from CPP at different pH. (K) CCK-8 assay of HGFs and L929 cells treated with different concentrations of CPP NPs. (L) Hemolysis assay of CPP NPs at different concentrations.

Figure S4. Images of 3% hydrogen peroxide solution after treatment with different concentrations of CPP NPs.

Figure S5. (A) (i) Images of colonies, (ii) TEM images, and (B) quantitative analysis of *P. gingivalis* after treatment with different concentrations of CPP NPs. Scale bar: 1 μ m. (C) Quantitative analysis of *P. gingivalis* after different treatments. (D) Nucleic acid leak assay of *P. gingivalis*, the absorbance curves of *P. gingivalis* suspensions after treated with various NPs at 260 nm. (E) Protein leak assay of *P. gingivalis*. (F) (i) Images of colonies, (ii) TEM images, and (iii) photos of *P. gingivalis* after different treatments. Scale bar: 1 μ m.

Figure S6. Evaluation of the antibacterial stability of CPP against *S. aureus* and *E. coli* after 7 days of incubation. (A) Images of *S. aureus* colonies and (C) quantitative analysis. (B) Images of *E. coli*. colonies and (D) quantitative analysis.

Figure S7. Quantitative analysis of the crystal violet-stained (A) established biofilms and (B) forming biofilms treated with different NPs.

Figure S8. Antibacterial effects on established biofilms of *S. aureus* and *E. coli*. (A) Images of *S. aureus* colonies and (B) quantitative analysis. (C) Images and (D) corresponding quantitative analysis of the *S. aureus* biofilm after crystal violet staining.

(E) Images of *E. coli.* colonies and (F) quantitative analysis. (G) Images and (H) corresponding quantitative analysis of the *E. coli.* biofilm after crystal violet staining.

Figure S9. (A) Principal component analysis was performed based on DEGs in the *P. gingivalis* biofilm in Control and CPP+L groups. (B) Genomic cycle map based on DEGs in the *P. gingivalis* biofilm in Control and CPP+L groups.

Figure S10. (A) Flow cytometry analysis of specific marker of M1 macrophage CD86

and (B) specific marker of M2 macrophage CD206.

Figure S11. H&E staining of major organs of rats after different treatments. Scale bar: 200 μm.

Figure S12. Scheme of the measurement of bone resorption height. Scale bar: 1 mm.

Gene	Forward sequence (5' to 3')	Reverse sequence (5' to 3')
16s rRNA	TGTAGATGACTGATGGTGAAA	ACTGTTAGCAACTACCGATGT
Rgp A	CTGCGAGCGGTATTAGTGGT	CTACCAGCCCGTTTCCAACT
Rgp B	TCGGGACAAGTGTACGAACG	AACCAGTCTTGGGCTTCTCC
Kgp	AGCTGACAAAGGTGGAGACCAA	TGTGGCATGAGTTTTTCGGAACCG
	AGG	Т
Fim II	ACAACTATACTTATGACAATGG	AACCCCGCTCCCTGTATTCCGA
Fim IV	CTATTCAGGTGCTATTACCCAA	AACCCCGCTCCCTGTATTCCGA

Table S1. Primer sequences used in this study.

Table S2. Primer sequences used in this study.

	1 2	
Gene	Forward sequence (5' to 3')	Reverse sequence (5' to 3')
β-Actin	CATCCGTAAAGACCTCTATGCCAAC	ATGGAGCCACCGATCCACA

IL-1β	TCCAGGATGAGGACATGAGCAC	GAACGTCACACACCAGCAGGTTA
IL-6	CCACTTCACAAGTCGGAGGCTTA	CCAGTTTGGTAGCATCCATCATTTC
TNF-α	ACTCCAGGCGGTGCCTATGT	GTGAGGGTCTGGGCCATAGAA
IL-10	CCAGTACAGCCGGGAAGACA	GAAGGCAGTCCGCAGCTCTA
TGF-β	CTTCAGCCTCCACAGAGAAGAACT	TGTGTCCAGGCTCCAAATATAG
Arg-1	TCATGGAAGTGAACCCAACTCTTG	TCAGTCCCTGGCTTATGGTTACC

 Table S3. Routine blood test of rats after 7 days of treatments.

	Normal range	Control	CPP (i.g.)	CPP (i.c.v.)
WBC	1.90-16.80 (10 ⁹ /L)	4.49±0.35	4.66 ± 0.40	4.61±0.56
Neu#	0.35-6.30 (10 ⁹ /L)	$0.52{\pm}0.04$	$0.47 {\pm} 0.33$	$0.55{\pm}0.07$
Lym#	0.91-12.20 (10 ⁹ /L)	3.50±0.25	$3.94{\pm}1.92$	$3.80{\pm}0.49$
Mon#	0.08-2.30 (10 ⁹ /L)	0.33 ± 0.03	$0.17{\pm}0.10$	$0.20{\pm}0.00$
Eos#	0.00-0.60 (10 ⁹ /L)	0.11 ± 0.06	$0.08{\pm}0.04$	$0.06{\pm}0.01$
Bas#	0.00-0.10 (10 ⁹ /L)	$0.04{\pm}0.01$	$0.01 {\pm} 0.01$	$0.00{\pm}0.00$
Neu%	7.30-50.00 (%)	11.55 ± 0.05	8.65 ± 2.65	11.80 ± 0.20
Lym%	40.00-88.90 (%)	77.90 ± 0.60	86.15±1.15	82.50 ± 0.70
Mon%	2.00-18.00 (%)	$7.40{\pm}1.10$	3.35 ± 0.55	4.20 ± 0.50
Eos%	0.50-6.00 (%)	2.35 ± 0.95	1.75 ± 0.05	1.45 ± 0.45
Bas%	0.00-1.00 (%)	$0.80{\pm}0.08$	$0.10{\pm}0.00$	$0.05 {\pm} 0.05$
RBC	5.00-9.80 (10 ¹² /L)	$5.89{\pm}0.81$	$7.91{\pm}0.66$	7.47±0.15
HGB	120.00-170.00 (g/L)	125.50 ± 8.50	155.00 ± 3.00	146.50 ± 2.50
HCT	32.00-53.00 (%)	39.65±5.25	50.70 ± 2.30	48.00 ± 0.30
MCV	50.00-67.00 (fL)	67.35±0.35	64.25±2.45	64.30±0.80
MCH	16.00-23.00 (pg)	21.55±1.55	19.70 ± 1.30	19.60 ± 0.00
MCHC	300.00-370.00 (g/L)	320.00 ± 21.00	306.00 ± 8.00	$305.00{\pm}4.00$
RDW-CV	11.00-16.00 (%)	15.45±0.15	12.90 ± 0.20	13.90±0.10
RDW-SD	30.00-50.00 (fL)	39.05 ± 0.45	31.65±1.95	34.00 ± 0.65
PLT	250.00-1500.00 (10 ⁹ /L)	840.00 ± 98.00	$871.50{\pm}10.50$	962.50±30.50
MPV	4.80-7.50 (fL)	10.85 ± 0.55	$9.40{\pm}1.00$	9.20 ± 0.20
PDW	12.00-17.50	15.90 ± 0.10	15.75±0.15	15.65±0.15
РСТ	0.20-0.78 (%)	0.71 ± 0.06	$0.72{\pm}0.09$	$0.79{\pm}0.01$

Table S4. Liver and kidney	functions test	of rats after 7	days of treatments.
2			2

	Normal range	Control	CPP (i.g.)	CPP (i.c.v.)
Liver Function				
ALT	21.53-61.75 (U/L)	30.62±3.16	35.06±4.77	31.61±1.12
AST	41.47-195.65 (U/L)	$104.40{\pm}18.00$	176.67 ± 0.95	159.39 ± 7.74
ALB	21.16-34.77 (g/L)	33.76±0.26	38.97 ± 1.98	33.72 ± 0.76
ALP	12.04-610.97 (U/L)	$198.44{\pm}67.21$	229.96±66.64	103.54 ± 2.27
γ-GT	0.58-6.81 (U/L)	4.53±0.18	3.07±1.41	4.55±0.03
DBIL	2.24-16.892 (µM)	9.27±1.49	10.08 ± 2.17	6.68±0.71
TBIL	2.57-36.85 (µM)	21.11±7.45	24.47±5.34	19.62±0.25

TBA	9.03-14.54 (µM)	12.77±0.23	12.14 ± 1.39	12.20 ± 0.65
Renal Function				
BUN	9.75-22.71 (mg/dL)	16.79±3.59	18.07 ± 1.73	14.14 ± 0.04
CREA	10.90-118.07 (mM)	26.54±6.42	27.25 ± 7.70	20.96 ± 2.09
UA	58.38-122.65 (µM)	68.77±3.85	76.97±6.45	71.52±4.21