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Figure S1: Correlation between VCAN and APOE expression and PCa patient prognosis. 

(A) Comparison of VCAN gene expression in PCa tissue and normal prostate tissue. 

(B) To assess the correlation between the PFS of patients and the expression of the VCAN gene in PCa, 

Kaplan-Meier analysis was undertaken using the TCGA and MSKCC databases. 

(C) Comparison of APOE gene expression in PCa tissues and normal prostate tissues. 

(D) Using the DKFZ and GSE94767 datasets, Kaplan-Meier analysis was carried out to determine the 

association of PFS of PCa patients with the expression of APOE. 

(E) A significant positive correlation was observed between higher APOE expression and increased 

pathological T stage and a higher Gleason score. ***, p < 0.001. 



Figure S2: Establishment of the C4-2B ENZ-R cell line. 

(A) Schematic drawing showing the establishment of the enzalutamide resistant C4-2B cell line (C4-2B-

ENZR). 

(B-C) The resistance of the C4-2B-ENZR cell line was confirmed using colony formation (B) and CCK8 

(C) assays. 

***, p < 0.001. 

 

 



Figure S3: Correlation between TRIM25 gene expression and PCa patient prognosis. Kaplan-

Meier survival analysis was conducted using data from the TCGA, GSE46602, GSE70770, 

DKFZ, and MSKCC datasets to evaluate the relationship between PFS of PCa patients and 

the expression levels of the TRIM25 gene. 

 

 

 

 

 

 

 

 

 

 



Figure S4: Dissection of the molecular landscape of APOE-high PCa with scRNA-seq. 

(A) Validation of Apoe and Ar expression in the RM-1 cells. 

(B-C) UMAP plot showing the distribution of the cluster (B) and cell types (C). 

(D) UMAP plot showing the subclusters of endothelial, mast, fibroblasts, B cell, monocyte/macrophage, 

T cell and malignant cell. 



Figure S5: AR signaling activity was suppressed by APOE and TRIM25 

(A-C) Comparisons were made between groups with high and low APOE gene expression in terms of 

androgen response gene signatures and AR signaling pathway activities. 



(D-F) Comparisons were made between groups with high and low TRIM25 gene expression in terms of 

androgen response gene signatures and AR signaling pathway activities. 

(G) Comparing the immune response gene signatures between groups with high and low APOE gene 

expression. 

***, p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S6: Correlation between APOE expression and the effectiveness of immunotherapy. 

(A) A correlation analysis between APOE and immunoregulatory gene expression across multiple PCa 

cohorts. 

(B) Established correlations between APOE expression and the enrichment scores of immunotherapy 

prediction pathways. 

(C) Evidence from ICB atlas indicates a positive correlation between high APOE expression and 

improved PFS across anti-PD1 cohorts, incorporating melanoma, NSCLC, GBM, RCC, and GC cases. 

*, p < 0.05; **, p < 0.01; ***, p < 0.001. 

Abbreviations: ICI, immune checkpoint inhibitor; NSCLC, non-small cell lung cancer; GBM, 

glioblastoma, RCC, renal cell carcinoma; GC, gastric cancer 



Figure S7: Association between APOE and immune characteristics in PCa 

(A-B) Statistical analysis was performed to assess the differences in TILs across the indicated groups 

within the spleen (A) and draining lymph node (B). 

(C) Quantitative analysis was conducted to examine MDSCs across specific groups within the spleen. 

*, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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Figure S8: Gating strategies for TILs and MDSCs. 

(A) Gating strategies for TILs. 

(B) Gating strategies for MDSCs. 

Abbreviations: TIL, tumor-infiltrating lymphocyte; MDSC, myeloid-derived suppressor cells. 

  



Supplementary Methods 

scRNA-seq data processing 

The Novogene Tools pipeline was utilized to process the cleaned reads and assemble 

the transcript expression matrices. A rigorous quality control procedure was 

implemented for the cells, based on four principal metrics: the total count of unique 

molecular identifiers (UMIs), the number of genes detected, the percentage of 

mitochondrial gene counts relative to each cell, and the percentage of hemoglobin gene 

counts relative to each cell. The cell filtering criteria were as follows: exclusion of cells 

that (1) exhibited gene expression levels below the minimum threshold of 500 or above 

the maximum threshold of 4000, (2) demonstrated UMI counts below the lower limit 

of 1500 or surpassing the upper limit of 15,000, (3) contained more than 5% of their 

gene content derived from mitochondrial genes, or (4) possessed hemoglobin gene 

representation surpassing 0.1%. Beyond the routine processing steps, the 

"DoubletFinder" tool was employed to detect and remove potential doublets from each 

sample1.  

 

After rigorous quality control and the elimination of doublets, only high-quality single 

cells were selected for further analysis. These cells underwent analysis using the 

"Seurat" package2, which was instrumental in creating gene expression matrices 

through the "NormalizeData" and "ScaleData" functions. The "Harmony" algorithm 

was then employed to integrate cells from various samples into a unified space3. After 

batch-effect correction, the top 30 principal components with the most significance 

were chosen for dimension reduction and visualization of gene expression using 

Uniform Manifold Approximation and Projection (UMAP) and t-distributed stochastic 

neighbor embedding (tSNE). The "FindClusters" function within the "Seurat" package 

was utilized to identify marker genes within each cluster. The initial clustering round, 

set at a resolution of 0.6, distinguished 6 cell types based on their distinct cellular 

markers. 

 



Functional enrichment analysis and pathway activity score calculation  

Differential expression analysis was conducted using the "FindMarkers" function from 

the Seurat package, adhering to the default settings. Genes were considered 

significantly differentially expressed (DEGs) if they met the criteria of p_val_adj < 0.05 

and |avg_log2FC| > 0.2. Subsequently, the "clusterprofiler" R package was employed 

to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analyses using the "enrichGo" and "enrichKEGG" functions, 

respectively, following the default parameters. The enrichment scores for a given gene 

signature of each cell were calculated using the R package “AUcell”4. A comprehensive 

list of genes utilized for calculating gene scores is provided in Table S12. Additionally, 

androgen receptor activity was estimated from gene expression data across samples 

using the "DoRothEA" R package5. 

 

Analysis of the human PCa dataset GSE141445 

The dataset comprising 13 human PCa samples with single-cell RNA sequencing data 

(GSE141445) was employed as a validation cohort. The Count matrix files and 

corresponding metadata information were downloaded from the TISCH database6. We 

processed the data using the standard Seurat pipeline. Utilizing the standard Seurat 

pipeline, we processed this data. We specifically isolated malignant cells that exhibited 

discernible APOE expression and proceeded to calculate the enrichment scores for the 

AR response gene signature and the transcriptional activity of AR for each cell, as 

previously described.  
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