

Figure S1. Characterization of SCS

(A) The structural formula and Fourier Transform Infrared (FTIR) of the CS and SCS. (B) The gel permeation chromatography (GPC), sulfur content of the SCS, and the Zeta-potential of different carbohydrate polymers.

Figure S2. The biosafety of SCS against RAW 264.7 (A) and HUVECs (B).

Figure S3. Strategy of sorting neutrophils and macrophages in ischemic stroke.

Figure S4. Representative flow cytometry plots in the tMCAO model.

(A-C) Representative flow cytometry plots of (A) $CD11b^+Ly6G^+$ cells (neutrophils), (B) $CD11b^+CD45^{hi}$ cells (macrophages), $CD11b^+CD45^{low}$ (microglia)and (C) macrophage subtype.

Figure S5. The immunostained images of F4/80 (green) and GLUT (red). Scale bar is 1.5 mm.

Figure S6. Isolation and activity of neutrophils

(A) Neutrophils (CD11b⁺Ly6G⁺) were identified by flow cytometry. (B-C) Flow cytometric analysis of neutrophils at different times, (B) SA- β -gal and (C) cell cycle.

Figure S7. SCS directs the immunomodulation of neutrophils in vitro.

(A) Immunofluorescence and (B) flow cytometry analysis of the binding capacity of SCS on neutrophils.

Figure S8. Representative flow cytometry plots of CD49d⁺ vessel-related neutrophil subsets.

Figure S9. Representative flow cytometry plots of macrophages.

Figure S10. The efficacy of SCS in the treatment of ischemic stroke.

(A) Mortality of mice after treatment with different concentrations. (B) Mortality of mice after treatment with different times. (C) Total movement distance and (D) movement time during the 15 min open field.

Figure S11. Tracing of SCS after ischemia reperfusion.

(A) Real-time fluorescence imaging of treatment with SCS at different times. (B-C). SCS were traced by flow cytometry in blood (B) and brain tissue (C) at different times. (D) SCS distribution in different brain regions 12 hours after injection. (E-F) Distribution of SCS in neutrophil and macrophage.

Figure S12. The efficacy of SCS in the treatment of ischemic stroke.

(A) TTC stained coronal brain sections were used for infarction analyses. (B) H&E staining of coronal infarcted brain sections.

Figure S13. ELISA analysis of IL-4 and IL-10 in blood. Data are shown as mean \pm SD (n = 3).

Figure S14. Characterization of GelMA

(A) Fourier Transform Infrared (FTIR) of the gelatin and GelMA. (B) ¹H-NMR of the gelatin and GelMA. (C) Scanning electron microscopy (SEM) of GelMA hydrogel.

Figure S15. Strategy of sorting neutrophils and macrophages in mouse ischemic hind limb.

Figure S16. Representative flow cytometry plots in mouse ischemic hind limb.

(A-C) Representative flow cytometry plots of (A) $CD11b^+Ly \ 6G^+$ cells (neutrophils), (B) $CD11b^+F4/80^+$ cells (macrophages) and (C) macrophage subtype.

Figure S17. The FMO control of CD86 and CD206.

(A) The FMO control of CD86 (A1) and CD206 (A2) of macrophages in stroke. (B) The FMO control of CD86 (B1) and CD206 (B2) of macrophages in vitro. (C) The FMO control of CD86 (C1) and CD206 (C2) of macrophages in mouse ischemic hind limb.

Gene	Direction	Sequence (5'-3')	
Twf ~	Forward	CAGGCGGTGCCTATGTCTC	
1 nj-a	Reverse	CGATCACCCCGAAGTTCAGTAG	
Π1β	Forward	TCCAGGATGAGGACATGAGCAC	
	Reverse	GAACGTCACACACCAGCAGGTTA	
Il6	Forward	ATAGTCCTTCCTAGCCCAATTTCC	
	Reverse	GATGAATTGGATGGTCTTGGTCC	
Il4	Forward	AGATGGATGTGCCAAACGTCCTCA	
	Reverse	AATATGCGAAGCACCTTGGAAGCC	
1110	Forward	GAGAAGCATGGCCCAGAAATC	
1110	Reverse	GAGAAATCGATGACAGCGCC	
$T_{\sigma} \mathcal{D}$	Forward	CAGTACAGCAAGGTCCTTGC	
rgjβ	Reverse	ACGTAGTAGACGATGGGCAG	
Vegf	Forward	CACGGAGGCAGAGAAAAGAG	
	Reverse	CACGGAGGCAGAGAAAAGAG	
D 10-1	Forward	GGAGCCTTGCGGAGGACTGT	
Рајбб	Reverse	GATCTGGGTGCCATCAGAGT	
Notch	Forward	AGTGTCAGAGGCCAGCAAGAAGA	
	Reverse	TGATTGTCGTCCATCAGAGCACCA	
Marrie O	Forward	GACGTGGGTCGATTCCAAA	
Mmp-9	Reverse	GGCAAGTCTTCAGAGTAGTTT	
<i>T</i> :	Forward	CGCTCGGCAACTTTGAAGAA	
Timp-3	Reverse	CGGATCACGATGTCGGAGTT	
<i>a</i> 3	Forward	ATCATTCAGGCCTGCCGGGG	
Caspase3	Reverse	CACGGGATCTGTTTCTTTGCG	
D	Forward	TTCCGGGTGGCAGCTGACATGTT	
Bax	Reverse	TGCTAGCAAAGTAGAAGAGGGCAA	
Bcl2	Forward	CATGCCAACGGGGAAACACCAGAA	
	Reverse	GTGCTTTGCATTCTTGGATGAAGG	
Ccl2	Forward	CAGCACCTTTGAATGTGAACTTG	
	Reverse	TGCTTGAGGTGGTTGTGGAA	
C_{z}	Forward	TTCTCTGTACCATGACACTCTGC	
Ccl3	Reverse	CGTGGAATCTTCCGGCTGTAG	
Ccc	Forward	TGCTACTCAGGAATTCTCCACAC	
Ccr2	Reverse	GGCCTGGTCTAAGTGCTTGTCAAT	
	Forward	CGGAGTCAACGGATTTGGTCGTAT	
Gapan	Reverse	AGCCTTCTCCATGGTGGTGAAGAC	

Supplementary Table S1. Table of genes examined and their primer sequences.

Antibody	Vender	Catalogue	Dilution*
F4/80	Abcam	Ab6640	1:100 (IF)
CD31	Abcam	ab28364	1:100 (IF)
Ly 6G	Abcam	Ab25377	1:100 (IF)
H3Cit	Abcam	ab219406	1:100 (IF)
GLUT	Abcam	Ab115730	1:100 (IF)
Alexa Fluor 647-conjugated goat anti-mouse IgG	Jackson Immuno.	115-605-00	1:400 (IF)
Alexa Fluor 488-conjugated goat anti-rat IgG	Abcam	150165	1:400 (IF)
Alexa Fluor 594-conjugated goat anti-rabbit IgG	Abcam	150080	1:400 (IF)
Prolong Gold Ant-ifade Reagent with DAPI	Cell Signaling Technology	70658	
LIVE/DEAD™	Thermo	L34976	0.2 μl (FC)
PE-conjugated CD11b	BioLegend	101208	1:100 (FC)
PE/Cy7-conjugated CD45	BioLegend	103114	1:100 (FC)
PerCP/Cy5.5-conjugated	BioLegend	127616	1:100 (FC)
BV421-conjugated F4/80	BioLegend	123131	1:100 (FC)
APC-conjugated CD86	BioLegend	105012	1:100 (FC)
FITC-conjugated CD206	BioLegend	141704	1:80 (FC)
GAPDH	Cell Signaling Technology	5174	1:1000 (WB)
Stat3	Cell Signaling Technology	4909	1:1000 (WB)
Phospho-Stat3	Cell Signaling Technology	9145	1:1000 (WB)
NF-κB	Cell Signaling Technology	8242	1:1000 (WB)
Phospho- NF-кВ	Cell Signaling Technology	3033	1:1000 (WB)
MyD88	Abcam	ab218413	1:2000 (WB)
MMP-9	Abcam	ab228402	1:2000 (WB)
Anti-rabbit IgG, HRP-linked Antibody	Cell Signaling Technology	7047	1:2000(WB)

Supplementary Table S2. Antibodies used in the study.

*IF: immunofluorescence staining; FC: flow cytometry; WB: western blot