Supplementary Information:

Short-term starvation inhibits CD36 N-glycosylation and downregulates USP7 UFMylation to alleviate RBPJ-maintained T cell exhaustion in liver cancer

Banglun Pan, Siyan Chen, Hao Wu, Xiaoxia Zhang, Zhu Zhang, Dongjie Ye, Yuxin Yao, Yue Luo, Xinyu Zhang, Xiaoqian Wang, Nanhong Tang

Supplementary Figures and Legends

Figure S1. STS alleviated T cell exhaustion. (A) Flow cytometry gating logic showed T cell infiltration and its PD1 expression in primary cancer. (B) Non-metric Multidimensional Scaling analysis compared the similarity of CD4⁺ and CD8⁺ T cell characteristic antigen expression before and after STS (n = 6). (C, D) Mass cytometry revealed marker expression in CD4⁺ and CD8⁺ T cells. (C) Gating logic. (D) Representative plots and quantitative analysis (n = 6). (D) represented mean \pm SD analyzed by unpaired *t* test. **P* <0.05, ***P* <0.01. STS, short-term starvation.

Figure S2. STS prevented T cell exhaustion in vitro. (A) Gating logic. (B) Impact of STS on the expression of inhibitory receptors on CD3⁺ T cells in vitro (n = 6). (C) Influence of STS pre-stimulated or *Ampk*-deficient Hep-53.4 cells on the expression of inhibitory receptors on CD3⁺ T cells in vitro (n = 6). (D) Effect of Hep-53.4 cells with *Pdl1* or *Ampk* knockout on the expression of inhibitory receptors on CD3⁺ T cells in vitro (n = 6). (D) Effect of Hep-53.4 cells with *Pdl1* or *Ampk* knockout on the expression of inhibitory receptors on CD3⁺ T cells in vitro (n = 6). (B-D) represented mean ± SD analyzed by unpaired *t* test. **P* <0.05, ***P* <0.01. STS, short-term starvation.

Figure S3. USP7 aggravated T cell exhaustion through promoting PDL1 expression in tumor cells. (A) Effects of STS on USP7 protein expression in Hep-53.4 cells (n = 3). (B-D) Effect of *Usp7*-KO in Hep-53.4 cells on subcutaneous tumor growth (n = 6). (B) Representative. (C) Growth curve. (D) Tumor weight. (E-G) Effect of *Usp7*-OE in Hep-53.4 cells on subcutaneous tumor growth (n = 6). (E) Representative. (F) Growth curve. (G) Tumor weight. (H) Effect of *Usp7*-KO on PDL1 protein expression in Hep-53.4 cells (n = 3). (I) Effect of *Usp7*-OE on PDL1 protein expression in Hep-53.4 cells (n = 3). (J) Effects of STS and *Usp7*-OE on PDL1 protein expression in Hep-53.4 cells (n = 3). (K-M) Effects of STS and *Usp7*-OE in Hep-53.4 cells on subcutaneous tumor growth (n = 6). (K) Representative. (L) Growth curve. (M) Tumor weight. (N-P) Effects of *Usp7*-OE and *Pdl1*-KO in Hep-53.4 cells on subcutaneous tumor growth (n = 6). (N) Representative. (O) Growth curve. (P) Tumor weight. (Q) Mass cytometry gating logic revealed marker expression in primary carcinoma-infiltrating CD4⁺ and CD8⁺ T cells. (A), (C), (D), (F-J), (L), (M), (O), and (P) represented mean \pm SD analyzed by unpaired *t* test. **P* <0.05, ***P* <0.01. KO, knockout; OE, overexpression; STS, short-term starvation.

Figure S4. RBPJ aggravated T cell exhaustion. (A) Heatmap showed the median expression of the antigen used to generate self-organizing map (n = 6). (B) Mass cytometry revealed marker expression

in primary carcinoma-infiltrating CD4⁺ and CD8⁺ T cells (n = 6). (A) was analyzed by Euclidean Distance Clustering Algorithm, (B) represented mean \pm SD analyzed by unpaired *t* test. ***P* <0.01.

Figure S5. RBPJ aggravated T cell exhaustion not entirely dependent on Notch1. (A) Effects of *Rbpj*cKO, γ -secretase inhibitor MK-0752, Notch1/ γ -secretase inhibitor Avagacestat on the expression of

inhibitory receptors in primary carcinoma-infiltrating CD4⁺ and CD8⁺ T cells (n = 6). (B) Snapshot plots showed explicit transcription expression of Notch pathway-related genes and the enrichment signal of RBPJ on their promoters in CD3⁺ T cells (n = 3). Gray indicated the differential signal. (C) Flow cytometry gating logic presented the expression of inhibitory receptors in CD3⁺ T cells with *Rbpj*-cKO and *Irf4* or *Tnfrsf1b* overexpressed. (A) represented mean ± SD analyzed by unpaired *t* test. *P < 0.05, **P < 0.01. cKO, conditional knockout.

Figure S6. STS disrupted CD36 membrane localization rather than expression by inhibiting its Nglycosylation. (A) Effects of knockout of *Insr* or *Hmgcr* on AMPK phosphorylation in CD3⁺ T cells (*n*

= 3). (B-E) Flow cytometry showed CD36 expression in primary carcinoma-infiltrating CD3⁺ T cells. (B) Gating logic. (C) Influence of N-glycosylation inhibitors and glucose starvation on the membrane localization of CD36 on non-permeable CD3⁺ T cells (n = 3). (D) Effect of mutations of three Nglycosylation sites on the expression of CD36 on permeable CD3⁺ T cells (n = 3). (E) Impact of Nglycosylation inhibitors and glucose starvation in the expression of CD36 on permeable CD3⁺ T cells (n = 3). (A, C-E) represented mean ± SD analyzed by unpaired t test. *P <0.05, ** P <0.01. STS, shortterm starvation.

Figure S7. STS improved the immunotherapy efficacy of immunotherapy. (**A**, **B**) Influence of two ICIs with STS on patient-derived orthotopic xenograft growth (n = 5). (A) Representative. (B) Survival curve. (**C**, **D**) Flow cytometry analysis of two ICIs and STS on PD1, TOX, and TIGIT expression in CD4⁺ or CD8⁺ T cells. (C) Gating logic. (D) Representative plots and quantitative analysis (n = 5). (E) TIDE scores demonstrated susceptibility of immunotherapy in groups with high and low USP7 or RBPJ expression (n = 371). (B) was analyzed by Log-rank test, (D) represented mean ± SD analyzed by unpaired *t* test. **P* <0.05, ***P* <0.01. ICI, immune checkpoint inhibitor; STS, short-term starvation.