1 Supplementary data

2 Synthesis and analysis of [¹⁸F]DMPY2

^{[18}F]Fluoride was produced by a cyclotron (GE Qilintrace, USA) by irradiating ^{[18}O]H₂O via 3 a (p,n) reaction for 1 h. The [¹⁸F]fluoride was transferred to a hot cell containing a synthesis module 4 (GE Tracerlab FXFN,USA) for automated radiosynthesis. The [¹⁸F]fluoride was trapped on a 5 quaternary methyl ammonium (QMA) cartridge(Waters Corporation, USA) and the activity was 6 eluted into the reaction vial with a solution of Kryptofix 222 (19.1 mg) and potassium bicarbonate 7 (3.8 mg) in acetonitrile and water (85%/15% v/v; 1.0 mL). The eluted mixture was dried via 8 azeotropic distillation by heating the reaction vial to 110 °C under N₂-flow with 2 additions of 9 MeCN over 20 min. The chemical precursor (5 mg) dissolved in dry DMSO (0.7 mL) was added 10 to the dried [¹⁸F]fluoride mixture and the reaction was heated to 120 $^{\circ}$ C for 15 min. The reaction 11 was cooled and then quenched by addition of 3 mL of H₂O. The diluted reaction crude was injected 12 on a semi-preparative HPLC column (Luna C18 semipreparative column (10×250 mm, 10μ m, 13 Phenomenex, Torrance, CA, USA) with an eluent consisting of water and MeCN 80%/20% v/v, 14 15 each containing 0.5% trifluoroacetic acid), at a flow rate of 3 mL/min. The fraction corresponding to the desired product was collected and diluted by 45 mL H₂O. The diluted fraction was extracted 16 using a C18-cartridge (Waters Corporation, USA). The C18-cartridge was washed with 10 mL of 17 H₂O and then eluted using 2.0 mL of EtOH into a transfer vial containing 20 mL saline solution. 18 19 The complete content was subsequently transferred to the final product via a sterile filter (Merck 20 Millipore, USA).

Quality control was performed using Agilent 1260 Infinity II HPLC (Palo Alto, USA) with a Bioscan flow-count radioactivity detector and a ZORBAX SB-C18 column (5 μ m 4.6 × 250 mm). The HPLC was eluted with water-acetonitrile system (Phase A: 0.1 % TFA + H₂O; Phase B: 0.1 % TFA + CH₃CN) using gradient elution (0-2 min 5 % B; 2-15 min 5 %-90 % B) at a flow rate of 2.0 mL min⁻¹.

26

27

Supplemental Figure 1. The radio semi-preparative HPLC (A) and analytic HPLC (B) of
[¹⁸F]DMPY2.

Supplemental Figure 2. The analysis of Paired Raw SUVmax (A) and Unpaired Raw SUVmax

32 (B) of MM primary lesions tumors between $[^{18}F]DMPY2$ and $[^{18}F]FDG$ PET/CT.

33

Supplemental Figure 3 Comparison of independent ROC curves between [¹⁸F]DMPY2 and
[¹⁸F]FDG PET/CT in Assessment of Lymph Node Metastases in patient-based analysis(A) and
LN-based analysis(B).

Supplemental Figure 4. The analysis of [¹⁸F]DMPY2 Standardized SUVmax (A) and [¹⁸F]FDG
Standardized SUVmax (B) in metastases LN and non-metastases LN with pathological
confirmation.

Supplemental Figure 5. A postoperative MM patient (patient #13) with right plantar skin detected by [¹⁸F]FDG and [¹⁸F]DMPY2 PET/CT. [¹⁸F]DMPY2 showed well-defined uptake at the lesion margin, whereas [¹⁸F]FDG exhibited confounding uptake due to coexisting tinea pedis. No uptake in the left inguinal lymph nodes on [¹⁸F]DMPY2 PET/CT was pathologically confirmed as negative, while [¹⁸F]FDG PET/CT showed high uptake. Additionally, hematoxylin and eosin (HE)

- staining of both the primary melanoma lesion and the metastatic lymph node further validated the
- 47 pathological findings.