Supplementary materials

Supplement Table 1. The sequences for genotyping primers were as follows (5 - 5)				
Genes (Mouse):	Forward (5'-3'):	Reverse (5'-3'):		
BCKDK	CCTCTCCATCTTCTTAATGCTGGG	GTCAGTAATAGGGGGGATGGAGAGAT		
Ubiquitin C Cre	GACGTCACCCGTTCTGTTG	AGGCAAATTTTGGTGTACGG		

Supplement Table 1: The sequences for genotyping primers were as follows (5'- 3')

Supplement Table 2: Antibody information

Antibodies	Company	Catalogue No.
GAPDH	Cell Signal Technology	2118s
BCKDHA	Abcam	ab126173
p-BCKDHA (Ser 293)	Abcam	ab200577
BCKDK	Abcam	ab128935
PP2Cm	Abcam	ab135286
AKT	Cell Signal Technology	9272S
p-AKT (Ser 473)	Cell Signal Technology	9271S
p-P70S6K (Thr 389)	Cell Signal Technology	9234S
P70S6K	Cell Signal Technology	9202S
АМРКα	Cell Signal Technology	2523S
р-АМРКа	Cell Signal Technology	4188S
Anti-IgG(H+L) Rabbit	Bio-RAD	1706515
Anti-IgG(H+L) Mouse	Bio-RAD	1706516

Supplement Table	8: The sequences for	RT-PCR primers were as	follows (5'- 3')
11	1	1	

Genes (Mouse):	Forward (5'-3'):	Reverse (5'-3'):
18s	AGGCCCTGTAATTGGAATGAGTC	GCTCCCAAGATCCAACTACGAG
BNP	GAAGGTGCTGTCCCAGATGATT	GCTCTGGAGACTGGCTAGGACTT
ANP	AGGCAGTCGATTCTGCTTGA	CGTGATAGATGAAGGCAGGAAG
CRP	AGCTACTCTGGTGCCTTCTG	GAGAAGACACTGAAGCTGCG
Col1a1	CGATGGATTCCCGTTCGAGT	GAGGCCTCGGTGGACATTAG
Col3a1	GAGAGCGAGGCCTTCCCGGA	GGGAGCCAGCGGGACCTTGT
BCAT2	CTCATCCTGCGCTTCCAG	CACACCCGAAACATCCAATC
BCKDHA	CAGTCCCGCAGGAAGGTGA	TAGTGCTCCCCGTAGGTCTGC
BCKDHB	GCAGTGGAACAGGTCCCAGTAG	TATCCACATCCCAAGGCACAAT
DBT	GCTCAGGAAAAGATGGCAGAA	TTTGGGCTGTGGTGGAGGT
PPM1K	TCTCATTGGCAAACGGAAAG	CAGACAGGTGGGCATAACTCG
BCKDK	GCTTCCGTAGCCTTCCTTT	GGTGAGTAGCCAGCATTCG

Figure Legend S1-S9

Figure. S1 HFpEF mice exhibit diastolic dysfunction. A-C, Echocardiography analysis of fraction shortening (FS) (A) and Isovolumic relaxation time (IVRT) (B) and Mitra Valve E/A ratio (C) in Control and HFpEF two-hit treated mice at indicated time points. n = 6-17. Two-way ANOVA followed by Turkey's test was used in A-C.

Figure. S2 HFpEF mice exhibit cardiac fibrotic remodeling. H&E staining for cardiac section and Masson's trichrome staining for left ventricle section in Control and HFpEF groups. Scale bars, 600µm (H&E) and 50µm (Masson).

Figure. S3 HFpEF mice exhibit cardiac hypertrophic remodeling and nitrosative stress. A-C, Real-Time PCR analysis of relative mRNA expression of BNP (A), CRP (B) and Col1a1 (C) in control and HFpEF mice left ventricle samples. n = 5-9. D-E, S-nitrosylation blot (D) and quantification (E) for left ventricle tissues in Control and HFpEF groups. n = 5. Student t-test was used for statistical analysis.

Figure. S4 HFpEF mice exhibit changes in BCAA catabolism. A-F, Circulating BCAA and BCKA levels at 8 (A-B), 11 (C-D) and 13 (E-F) weeks post HFpEF stimulation. n = 5-8. G, Relative mRNA expression of *Bcat2*, *Bckdha*, *Bckdhb*, *Dbt*, *Ppm1k* and *Bckdk* in Control and HFpEF mice left ventricle samples. n = 5-8. H-I, Relative protein level of BCKDK, PP2Cm and GAPDH (H), and quantification of p-BCKDHA (Ser 293), BCKDHA, BCKDK and PP2Cm (I) in control and HFpEF mice left ventricle samples. J, Summary schematic of differences in BCAA metabolites and BCAA catabolic enzymes in HFpEF compared to Control. One-way ANOVA followed by Turkey's test was used in A-F, G and I.

Figure. S5 Characterization of BCKDK^{flox/flox} and BCKDK-uKO mice at baseline. A, Schematic representation of global BCKDK knockout mice generated using ubiquitin-Cre (u-Cre). **B**, Real-Time PCR analysis of BCKDK mRNA expression in metabolic organs of BCKDK^{flox/flox} and BCKDK-uKO mice at baseline. **C-E**, Western blot analysis of p-BCKDHA (Ser 293), BCKDHA and their corresponding GAPDH as loading control in liver (C), kidney (D) and skeletal muscle (E) of BCKDK^{flox/flox} and BCKDK-uKO mice at baseline. **F-I**, Fat mass (F), Lean mass (G), Body Weight (H) and Glucose tolerance test (GTT) (I) of BCKDK^{flox/flox} and BCKDK-uKO mice at baseline. **J-N**, Echocardiography analysis of left ventricle ejection fraction (J), Fraction Shortening (K), IVRT (L), E/e' (M) and E/A ratio (N) in BCKDK^{flox/flox} and BCKDK-uKO mice at 20-24 weeks of age at baseline. **O-R**, Real-Time PCR analysis of mRNA expression of ANP (O), BNP (P), Col1a1 (Q) and Col3a1 (R) in BCKDK^{flox/flox} and BCKDK-uKO mice at 20-24 weeks of age at baseline. **S-T**, Masson's trichrome staining (S) for left ventricle section and H&E staining (T) for cardiac section in BCKDK^{flox/flox} and BCKDK-uKO mice at 20-24 weeks of age at baseline. **U-V**. Serum BCAA (U) and BCKA (V) levels in control and BCKDK-uKO mice at baseline. Repetitive t-test was used for I. Student t-test was used in F-H, J-R, U-V.

Figure. S6 Cardiac BCKAs and corresponding derivatives levels in BCKDK^{flox/flox} and **BCKDK-uKO mice post HFpEF stimulation**. **A**. Heart BCKA levels in control and BCKDK-uKO HFpEF mice. **B**. Heart 2-hydroxy-3-methylvaleric acid level in control and BCKDK-uKO HFpEF mice. **C**. Heart 2-hydroxyisocaproate level in control and BCKDK-uKO HFpEF mice. Student t-test was used in B-C.

Figure. S7 Targeting BCKDK to accelerate BCAA catabolism has no impact on blood pressure. A, Schematic view of experimental design. BCKDK^{flox/flox} and BCKDK-uKO mice were fed with tamoxifen and treated with BT2 or vehicle, blood pressure was measured by telemetry, Average daily pressure over the course of telemetry experiment from light cycle (7:00-19:00) and dark cycle (19:00-7:00). **B-C**, Systolic blood pressure measured via telemetry in BCKDK^{flox/flox} and BCKDK-uKO mice before (B) and after (C) tamoxifen treatment. n = 4-8. **D**, Systolic blood pressure measured via telemetry in BCKDK^{flox/flox} and BCKDK-uKO mice before and after BT2 treatment. n = 4-8. **E-F**, Diastolic blood pressure measured via telemetry in BCKDK^{flox/flox} and BCKDK-uKO mice before (E) and after (F) tamoxifen treatment. n = 4-8. **G**, Diastolic blood pressure measured via telemetry in BCKDK^{flox/flox} and BCKDK-uKO mice before and after BT2 treatment. n = 4-8. BT2 was administered via oral gavage once a day at 18:00. Two-way ANOVA followed by Turkey's test was used for B-G.

Figure. S8 Serum and cardiac KIV downstream metabolites in HFpEF mice with or without BT2 treatment. A-B. Serum 3-hydroxyisobutyrate (3-HIB) (A) and 3-aminoisobutyric acid (B) levels in BT2 or vehicle treated mice post HFpEF stimulation. **C-D**. Cardiac 3-hydroxyisobutyrate (3-HIB) (C) and 3-aminoisobutyric acid (D) levels in BT2 or vehicle treated mice post HFpEF stimulation. Student t-test was used in A-D.

Figure. S9 Pharmacological activation of BCAA catabolism prevents cardiac dysfunction and nitrosylative injury. A, Echocardiography analysis of Fraction Shortening in HFpEF mice treated with BT2 or vehicle. **B-C**, Western blot analysis (B) and quantification (C) of s-nitrosylation level in HFpEF mice treated with BT2 or vehicle. Two-way ANOVA followed by Turkey's test was used for A. Student t-test was used in C.

Figure S1

Control

HFpEF

Figure S3

Figure S4

Figure S6

Coomassie blue staining

HFpEF+VEH HFpEF+BT2

