Supplementary Information

Direct delivery of MRI contrast through skull vessel/marrow pathways into the brain guided by microCT

Li Liu^{1,*}, Martin J. MacKinnon¹, Tatjana Atanasijevic¹, Stephen Dodd¹, Nadia Bouraoud¹, Danielle Donahue², Harikrishna Rallapalli¹, Alan P. Koretsky^{1,*}

¹Section on Plasticity and Imaging of the Nervous System, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

²Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

*Corresponding to: <u>li.liu3@nih.gov;</u> <u>koretskya@ninds.nih.gov</u>.

Figure	Experiment	Animal Number
1	Quantification of volume ratio of channel (total of skull surface to brain and brain to skull) to bone and marrow to bone	6
2	H and E staining of rat skull bone	6
4	Mn ²⁺ can be delivered efficiently through "short paths"	
	Mn ²⁺ delivery	5
	Saline control	4
5	Mn ²⁺ can be delivered efficiently through intact skull above the cerebellum	
	Mn ²⁺ delivery	6
	Saline control	4
6	Minimum thinning skull can increase the delivery efficiency	
	Mn ²⁺ delivery	6
	Saline control	6
Supplementary Video 1	The reconstructed 3D microCT image to show the intricate geometry of vessel/marrow paths.	1
S1	MicroCT of bottom skull of a rat, especially under the olfactory bulb and forebrain, showed a large volume of marrow	3
	H and E staining of rat skull bone and femur bone	
S2	marrow	1
Total		48

 Table S1. Animal number used in each experiment.

Figure S1. Bottom skull of a rat, especially under the olfactory bulb and forebrain, showed a large volume of marrow. (**A-C**) microCT images of sagittal view of bottom skull. (**D**, **E**) microCT images of coronal view of bottom skull. (**F**, **G**) H & E staining of the marrow in the bottom skull.

Figure S2. H and E staining of rat skull bone and femur bone marrow. (A,B) Frontal bone.

(C,D) Parietal bone. (E-H) Interparietal bone. (I-K) Femur bone.

Figure S3. Efficient delivery of Mn^{2+} through intact skull above the cerebellum by using the skull/marrow pathways. (**A**) Representative views of T₁-weighted MRI of cerebellum 2-hr post Mn^{2+} application. (**B**, **C**) H and E staining of the skull-brain tissue at the cerebellum to show the skull vessel/marrow pathways.

Data Availability Statement

Figure-Data-List through Figshare Link: https://figshare.com/s/0c348af11fb86ab9e9b1

Figure 1.Zip High-resolution microCT of a rat top skull showing an intricate geometry of vessel/marrow paths connecting the outer skull surface and meninges.

Link: https://figshare.com/s/5fb97feeef60a24f36a0

Figure-1-(A-K) Coronal views of high-resolution microCT of a rat top skull and the reconstructed 3D image to show the intricate geometry of vessel/marrow paths. **Figure-1-(L-O)** Quantification of volume ratio of channel (total of skull surface to brain and brain to skull) to bone and marrow to bone.

Figure 3.Zip Human skull also shows vessel/marrow pathways connecting outer skull surface and meninges, as reviewed by high-resolution CT.

Link: https://figshare.com/s/c8a42bf566d25bd3e719

Figure-3-(A-H) Coronal views of high-resolution CT of a human skull shows vessel/marrow pathways connecting outer skull surface and meninges.

Figure-3-I Quantification of the diameters of skull channels (not including suture line areas) of human skull and rat skull.

Figure 4.Zip Mn²⁺ can be delivered efficiently through "short paths".

Link: https://figshare.com/s/ed5759286245f9499ace

Figure-4-B Representative T₁-weighted MRI to show that Mn²⁺ can be delivered efficiently through "short paths".

Figure-4-D Data for the quantification of the average median and 90th percentile of the contrast-to-noise ratio (CNR) of the enhanced area.

Figure-4-E Data for the quantification of T1 enhanced volume.

Figure 5.Zip Mn²⁺ can be delivered efficiently through intact skull above the cerebellum.

Link: https://figshare.com/s/8e8fa297fd8e93d59a9f

Figure-5-B Representative T₁-weighted MRI to show that Mn²⁺ can be delivered efficiently through intact skull above the cerebellum.

Figure-5-D Data for the quantification of the average median and 90th percentile of the contrast-to-noise ratio (CNR) of the enhanced area.

Figure-5-E Data for the quantification of T1 enhanced volume.

Figure 6.Zip Minimum thinning skull on the top of "brain to skull" vessel/marrow pathways can increase the delivery efficiency.

Link: https://figshare.com/s/b7076ed02275184a0f4c

Figure-6-B Representative T₁-weighted MRI to show that minimum thinning skull on the top of "brain to skull" vessel/marrow pathways can increase the delivery efficiency. **Figure-6-E** Data for the quantification of the average median and 90th percentile of the contrast-to-noise ratio (CNR) of the enhanced area. **Figure-6-F** Data for the quantification of T1 enhanced volume.

Supplementary Video 1. The reconstructed 3D microCT image to show the intricate geometry of vessel/marrow paths. **Link:** https://figshare.com/s/e506d8567974069184a9