Supporting data Table S1. Clinical characteristics of normal control and HF patient | D | Normal | HF patient | 1 | |---------------------------|------------------|------------------|---------| | Parameters | (n = 119) | (n = 143) | p value | | Male, n (%) | 57(47.89%) | 84(58.74%) | 0.08 | | Age, years | 45.82±1.13 | 69.15±1.11 | < 0.001 | | HR, beats/min | 76.27±1.11 | 79.10±1.55 | 0.423 | | SBP, mmHg | 118.84±14.80 | 147.62±22.22 | < 0.001 | | DBP, mmHg | 75.50±11.56 | 88.36±18.86 | < 0.001 | | LVEF, % | 59.07±0.09 | 42.85±1.09 | < 0.001 | | LV diameter, mm | 45.93±0.34 | 53.45±0.85 | < 0.001 | | LAD, mm | 34.06 ± 0.28 | 44.02 ± 0.60 | < 0.001 | | IVS, mm | 9.84 ± 0.20 | 12.29±0.56 | < 0.001 | | LVPW, mm | 9.46±0.12 | 10.08 ± 0.11 | < 0.001 | | WBC, 10^9/L | 6.15±0.16 | 6.47 ± 0.18 | 0.498 | | SCR, µmol/L | 65.41±1.25 | 97.45±4.20 | < 0.001 | | Total cholesterol, mmol/L | 4.48 ± 0.07 | 4.48 ± 0.34 | 0.007 | | Triglycerides, mmol/L | 1.29 ± 0.06 | 1.35 ± 0.11 | 0.253 | | HDL, mmol/L | 1.35±0.03 | 1.11 ± 0.03 | < 0.001 | | LDL, mmol/L | 2.42±0.05 | 2.29 ± 0.07 | 0.025 | | BNP, pg/ml | 27.27±2.35 | 1679.98±244.75 | < 0.001 | | S100A8/A9, ng/ml | 2245.58±1211.53 | 3783.88±1886.39 | < 0.001 | | FBG, mmol/L | 4.63±0.05 | 6.35±0.29 | < 0.001 | | | | | | p < 0.05 was considered significant. HF, heart failure; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; LVEF, left ventricular ejection fraction; IVS, Interventricular septum; LAD, left atrial diameter; LVPW, left ventricular posterior wall; WBC, white blood cell; SCR, serum creatinine; LDL, low-density lipoprotein; HDL, high-density lipoprotein; BNP, B-type natriuretic peptide; FBG, fasting blood glucose. Table S2. Echocardiographic parameters of WT or S100A9 KO mice performed TAC operation or Sham for 1 week | Parameter _ | Sham | | TAC 1 week | | |--------------|------------------|------------------|------------------------|----------------------------| | | WT | S100A9 KO | WT | S100A9 KO | | EF% | 67.51 ± 2.06 | 66.83 ± 5.95 | $79.33 \pm 7.45^{***}$ | 68.71 ± 5.26 ^{##} | | FS% | 38.29 ± 2.62 | 36.39 ± 4.06 | $47.44 \pm 7.18^{**}$ | $39.23 \pm 3.28^{\#\#}$ | | LVAW; d (mm) | 1.04 ± 0.13 | 1.00 ± 0.10 | $1.36 \pm 0.14^{***}$ | $1.16 \pm 0.09^{\#}$ | | LVAW; s (mm) | 1.58 ± 0.06 | 1.54 ± 0.10 | $1.88 \pm 0.14^{***}$ | $1.71 \pm 0.14^{\#}$ | | LVID; d (mm) | 3.24 ± 0.26 | 3.25 ± 0.17 | $2.78 \pm 0.48^*$ | $3.27 \pm 0.25^{\#}$ | | LVID; s (mm) | 2.18 ± 0.41 | 2.31 ± 0.31 | $1.59 \pm 0.38^{**}$ | $2.15 \pm 0.32^{\#}$ | | LVPW; d (mm) | 1.01 ± 0.15 | 1.06 ± 0.15 | $1.30 \pm 0.18^{**}$ | $1.08 \pm 0.05^{\#}$ | | LVPW; s (mm) | 1.47 ± 0.15 | 1.39 ± 0.16 | $1.81 \pm 0.09^{***}$ | $1.49 \pm 0.07^{\#\#}$ | Values: means \pm SD (n = 7-11); ^{*}p<0.05, **p<0.01 and ***p<0.001 vs. WT + Sham; $^{^{\}text{\#}}$ p<0.05, $^{\text{\#}}$ p<0.01 and $^{\text{\#}}$ p<0.001 vs. WT + TAC 1 week. Table S3. Echocardiographic parameters of WT or S100A9 KO mice performed TAC operation or Sham for 4 weeks | Parameter | Sham | | TAC 4 weeks | | |--------------|-------------------|------------------|------------------------|-------------------------| | | WT | S100A9 KO | WT | S100A9 KO | | EF% | 66.66 ± 10.35 | 67.20 ± 3.80 | 45.18 ± 8.57*** | 65.68 ± 7.19### | | FS% | 36.83 ± 9.17 | 36.65 ± 4.09 | $22.24 \pm 4.79^{***}$ | $36.01 \pm 4.07^{\#\#}$ | | LVAW; d (mm) | 1.02 ± 0.12 | 1.02 ± 0.05 | $0.85 \pm 0.14^{**}$ | $1.08 \pm 0.16^{\#\#}$ | | LVAW; s (mm) | 1.53 ± 0.23 | 1.54 ± 0.09 | $1.26 \pm 0.16^{**}$ | $1.53 \pm 0.27^{\#}$ | | LVID; d (mm) | 3.25 ± 0.37 | 3.26 ± 0.19 | $3.88 \pm 0.39^{***}$ | $3.36 \pm 0.28^{\#\#}$ | | LVID; s (mm) | 2.07 ± 0.40 | 2.08 ± 0.14 | $2.75 \pm 0.26^{***}$ | $2.18 \pm 0.27^{\#\#}$ | | LVPW; d (mm) | 1.02 ± 0.16 | 1.04 ± 0.09 | $0.86 \pm 0.13^*$ | $1.04 \pm 0.15^{\#}$ | | LVPW; s (mm) | 1.37 ± 0.12 | 1.36 ± 0.10 | $1.15 \pm 0.16^{**}$ | $1.33 \pm 0.21^{\#}$ | Values: means \pm SD (n = 9-16); ^{*}p<0.05, **p<0.01 and ***p<0.001 vs. WT + Sham; $^{^{\}text{\#}}p{<}0.05,\,^{\text{\#}}p{<}0.01$ and $^{\text{\#}\#}p{<}0.001$ vs. WT + TAC 4 weeks. Table S4. Echocardiographic parameters of S100A9 BM chimeric mice performed TAC operation or Sham for 4 weeks | | TAC 4 weeks | | | | |--------------|------------------|-----------------------|-----------------------|------------------| | Parameter | WT | | S100A9 KO | | | - | WT BM | S100A9 KO BM | S100A9 KO BM | WT BM | | EF% | 45.96 ±12.03 | 69.57 ± 11.42** | $66.92 \pm 3.72^{**}$ | 45.60 ±8.52 | | FS% | 22.63 ± 6.92 | $38.60 \pm 8.26^{**}$ | $36.47 \pm 4.29^{**}$ | 23.95 ± 4.22 | | LVAW; d (mm) | 0.92 ± 0.16 | $1.19 \pm 0.14^{**}$ | $1.19 \pm 0.11^{**}$ | 0.94 ± 0.05 | | LVAW; s (mm) | 1.47 ± 0.18 | $1.86 \pm 0.19^{**}$ | $1.83 \pm 0.06^{**}$ | 1.48 ± 0.18 | | LVID; d (mm) | 4.09 ± 0.36 | $3.41 \pm 0.33^{**}$ | $3.59 \pm 0.18^*$ | 4.24 ± 0.21 | | LVID; s (mm) | 3.07 ± 0.37 | $1.92 \pm 0.29^{***}$ | $2.05 \pm 0.36^{***}$ | 3.18 ± 0.37 | | LVPW; d (mm) | 0.90 ± 0.16 | $1.21 \pm 0.15^{**}$ | $1.19 \pm 0.05^{**}$ | 0.95 ± 0.08 | | LVPW; s (mm) | 1.45 ± 0.21 | $1.80 \pm 0.22^{**}$ | $1.77 \pm 0.04^*$ | 1.44 ± 0.11 | Values: means \pm SD (n = 6); ^{*}p<0.05, **p<0.01 and ***p<0.001 vs. TAC 4 weeks + WT BMT WT. Table S5. Echocardiographic parameters of WT mice treated with vehicle or ABR-238901 and performed TAC operation or Sham for 4 weeks | Parameter - | Sham | | TAC 4 weeks | | |--------------|------------------|------------------|------------------------|---------------------------| | | Vehicle | ABR-238901 | Vehicle | ABR-238901 | | EF% | 67.83 ± 5.23 | 69.00 ± 5.47 | $49.37 \pm 5.10^{***}$ | $66.42 \pm 4.02^{\#\#\#}$ | | FS% | 36.82 ± 4.30 | 37.83 ± 4.08 | $24.25 \pm 2.31^{***}$ | $37.55 \pm 5.14^{\#\#\#}$ | | LVAW; d (mm) | 1.04 ± 0.16 | 1.02 ± 0.16 | $0.84 \pm 0.12^*$ | $1.17 \pm 0.11^{\#\#}$ | | LVAW; s (mm) | 1.57 ± 0.19 | 1.57 ± 0.25 | $1.27 \pm 0.09^*$ | $1.63 \pm 0.19^{\#}$ | | LVID; d (mm) | 3.11 ± 0.24 | 3.07 ± 0.30 | $3.76 \pm 0.17^{***}$ | $3.09 \pm 0.24^{\#\#}$ | | LVID; s (mm) | 2.02 ± 0.22 | 2.07 ± 0.34 | $2.57 \pm 0.32^{**}$ | $1.82 \pm 0.29^{\#\#}$ | | LVPW; d (mm) | 1.00 ± 0.14 | 1.00 ± 0.16 | $0.84 \pm 0.11^*$ | $1.08 \pm 0.10^{\#}$ | | LVPW; s (mm) | 1.44 ± 0.19 | 1.35 ± 0.18 | $1.15 \pm 0.13^*$ | $1.53 \pm 0.23^{\#\#}$ | Values: means \pm SD (n = 10); ^{*}p<0.05, **p<0.01 and ***p<0.001 vs. Sham + Vehicle; $^{^{\#\#}}p{<}0.01$ and $^{\#\#}p{<}0.001$ vs. TAC 4 weeks + Vehicle. ## **Figures** Figure S1. S100A8/A9 expression in Ang II-infused heart and cardiac subcellular localization after TAC. (A) WT mice were infused with saline or Ang II for 3 and 7 days. Representative blot of S100A8, S100A9 and GAPDH in heart (left), and quantification of these proteins (right, n = 6). (B) The tSNE map of CD45⁺ cells in mouse hearts on week 1 and 4 post-TAC. Values are presented as mean \pm SD (n = 1 number of animals). *p < 0.05 and ***p < 0.001 vs. Saline group. **Figure S2. S100A8/A9 expression level in cardiac neutrophils after TAC. (A)** ScRNA-seq analysis of S100A8/A9 expression levels in cardiac neutrophils on week 4 post-TAC. **(B)** S100A9-KO and WT mice were subjected to TAC for 1 week. Representative image of H&E-stained cardiac tissue. **(C)** Representative image of immunofluorescence staining with Mac-2 antibody (left, red) and quantification (right, n = 6). **(D)** Representative image of Ly6G (red) and S100A8 (green) immunofluorescence staining and quantification of Ly6G⁺S100A8⁺ neutrophils (right, n = 6). **(E)** Representative image of Ly6G (red) and S100A9 (green) immunofluorescence staining and quantification of Ly6G⁺S100A9⁺ neutrophils (right, n = 6). **(F)** qPCR analysis of IL-1β expression levels (n = 6). Values are presented as mean ± SD (n = 6) number of animals). ***p < 0.001 vs. WT + Sham group; *###p < 0.001 vs. WT + TAC 1 week group. Figure S3. S100A8/A9 expression level in macrophages from TAC-induced heart or Ang II-stimulated bone marrow. (A) ScRNA-seq analysis of S100A8/A9 expression levels in cardiac macrophages on week 1 post-TAC. (B) Bone marrow macrophages derived from WT and S100A9-KO mice were stimulated with saline or Ang II (100 nM) for 12 and 24 hours. Representative blot of S100A8, S100A9 and GAPDH (left), and quantification of these proteins (right, n = 4). Values are presented as mean \pm SD (n = 10 number of replicate experiments). **p < 0.01 and ***p < 0.001 vs. Saline group. Figure S4. Myeloid-specific S100A9 deletion inhibits TAC-induced cardiac oxidative stress damage. WT or S100A9-KO mice were transplanted with BM from WT or S100A9-KO mice and subjected to TAC for additional 4 weeks. (A) Agarose gel electrophoresis bands for genotypic identification of mouse BM. (B) Representative image of DHE-stained cardiac tissue (left) and quantification of the fluorescence intensity (right, n = 6). (C) Representative image of cardiac immunofluorescence staining with γ -H2AX antibody (left, green) and quantification (right, n = 6). (D) qPCR analysis of the expression levels of NOX2 and NOX4 (n = 6). Values are presented as mean \pm SD (n = 10 number of animals). **p < 0.01 and ***p < 0.001 vs. WT BMT WT group. Figure S5. Knockout of S100A9 in neutrophil prevents Ang II-induced CCL2/6 secretion and macrophage migration *in vitro*. (A) Bone marrow (BM)-derived neutrophil from WT or S100A9-KO mice were stimulated with saline or Ang II (100 nM, 24 h). qPCR analyses of CCL2 and CCL6 (n = 6). (B) Representative images of migrated macrophage stained with DAPI (blue) and analysis of the number of migrated macrophage (n = 6). **Figure S6. S100A9 specific inhibitor ABR-238901 attenuates TAC-induced cardiac oxidative stress response.** WT mice were intraperitoneal injections of ABR-238901 at dose of 30 mg/kg/day for four consecutive weeks after Sham or TAC surgery. **(A)** Representative image of DHE-stained cardiac tissue (left) and quantification of the fluorescence intensity (right, n = 10). **(B)** Representative image of cardiac immunofluorescence staining with γ-H2AX antibody (left, green) and quantification (right, n = 10). **(C)** qPCR analysis of the expression levels of NOX2 and NOX4 (n = 10). Values are presented as mean \pm SD (n = number of animals). **p < 0.01 and ***p < 0.001 vs. Vehicle + Sham group; *#p < 0.01 and *##p < 0.001 vs. Vehicle + TAC group.