Naturally derived hydrogel with antioxidant, angiogenesis and photothermal effect to accelerate infected diabetic wound healing and reduce scar formation Mengyu Yang¹, Pengyuan Liu¹, Pei Cheng¹, Chenghao Li¹, Jingmei Liu¹, Haifeng Sun², Fangxia Guan¹, Minghao Yao¹ ¹School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China ²Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, P. R. China *E-mail: yao453343550@126.com, guanfangxia@126.com, sunhaifeng@zzu.edu.cn **Figure S1.** A: Standard curve of PHL; B: Release of PHL in vitro (Mean \pm SD, n = 3) **Figure S2.** A: Images of cell migration promoted by different concentrations of PHL; B: Statistical graph of cell migration rate of different concentrations of PHL; C: Images of cell migration promoted by 3 mg/mL PHL after treatments at 45°C and 37°C, respectively; D: Statistical graph of cell migration rate of 3 mg/mL PHL at different temperatures (**P < 0.01, ****P < 0.001, ****P < 0.0001, Mean \pm SD, n = 3) **Figure S3.** Rheological test results of A) CT_{0.1}, B) CT_{0.2}, C) CT_{0.3}, D) CT_{0.3}P hydrogels; E Tensile stress-strain test results of each group of hydrogels