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Abstract 

Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening disorder characterized by 
increased pulmonary blood pressures and regional inhomogeneities in flows, with diagnostic and 
treatment challenges arising from diverse underlying pathogenic mechanisms. Conventional in vitro 
models often obscure the mechanistic nuances of PAH by failing to replicate the dynamic mechanical 
environment of the diseased lung, limiting the identification of specific molecular patterns. To address 
this, we employed an in vitro shear stress model simulating physiological or pathological conditions to 
explore the transcriptional heterogeneity of human pulmonary microvascular endothelial cells (hPMECs) 
from PAH patients and healthy controls within their respective biomechanical context. 
Methods & Results: hPMECs from PAH patients and controls were exposed to static, low shear stress 
(LSS), and high shear stress (HSS) conditions, followed by bulk RNA-sequencing. While increasing shear 
stress resulted in a greater number of differentially expressed genes, traditional grouped analysis showed 
minimal overall transcriptional differences. Further, pathway enrichment analysis indicated common 
shear-induced responses in both groups, suggesting that standard analysis methods may mask meaningful 
disease-specific changes. 
Crucially, detailed dimensionality reduction analyses revealed pronounced inter-patient variability among 
PAH donors in response to increasing shear stress, facilitating the identification of 398 genes driving this 
transcriptional heterogeneity. Unsupervised clustering of these high-variability genes enabled the 
sub-classification of patients based on their unique transcriptomic profiles, each linked to specific 
combinations of PAH associated pathogenic pathways such as mesenchymal transition, inflammation, 
metabolism, extracellular matrix remodeling, and cell cycle/DNA damage signaling. Importantly, 
re-analysis of published peripheral blood mononuclear cell (PBMC) omics data from PAH patients 
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confirmed the clinical feasibility to utilize these high-variability genes as a non-invasive, accessible 
approach for molecular patient stratification. 
Conclusion: Our study uncovers patient-specific transcriptomic patterns in PAH, providing a novel 
molecular sub-classification strategy. These findings represent a significant step toward personalized 
molecular diagnostics in PAH and eventual therapeutic interventions for clinically well-defined PAH 
patients, with potential applications in clinically accessible cell populations such as PBMCs. 

Keywords: molecular profiling, transcriptomics, heterogeneity, shear stress, pulmonary arterial hypertension 

Introduction 
Pulmonary arterial hypertension (PAH) is a 

life-threatening disorder characterized by increased 
pulmonary vascular resistance, elevated pulmonary 
arterial pressure, and ultimately, right ventricular 
failure [1]. Despite advancements in understanding 
the clinical manifestations of PAH, its underlying 
pathogenic mechanisms remain highly heterogeneous 
[2]. This heterogeneity has presented a major 
challenge for both diagnosis and treatment, since 
growing clinical trial cohorts and registries have 
failed to identify a common molecular denominator 
across patients [3-6]. As a result, PAH remains a lethal 
condition where generalized therapeutic options often 
fail to capture patient-specific disease mechanisms 
and even lead to serious adverse events in some [7-9]. 
This underscores the critical need for personalized 
diagnostic and therapeutic strategies. Thus, 
innovative personalized research approaches are 
crucial for overcoming the challenge of molecular 
heterogeneity and improving patient outcomes in 
PAH. 

Central to the complexity of PAH is the role of 
biomechanical forces, particularly blood flow-induced 
shear stress resulting from the narrowing of the 
pulmonary vasculature [10]. While shear stress, the 
tangential force generated by blood flow, is necessary 
for normal endothelial cell function [11], 
supra-physiological shear stresses have long been 
implicated in PAH progression [12, 13]. Specifically, 
the shear-associated repetitive mechanical damage to 
the vascular wall and consequent emergence of 
pheno- and genotypically altered cells have been 
proposed to be a central contributor to the obliterative 
remodeling and formation of typical plexogenic 
lesions in PAH [14]. However, its precise role - 
whether as a disease inducer, maintenance factor, or 
exacerbator - remains unclear. Interestingly, despite 
its recognized importance, the molecular impact of 
both physiological and pathological shear stress on 
PAH lung endothelial cells is not fully understood. 

Conventional in vitro models for PAH typically 
rely on static culture systems, which fail to replicate 
the dynamic and spatially heterogenous 
biomechanical forces present in the pulmonary 

vasculature of PAH patients. These models may 
obscure key transcriptional differences between 
healthy and diseased cells, limiting the discovery of 
specific molecular pathways. Our previous work 
identified a significant delay in the morphological 
adaptation of human pulmonary microvascular 
endothelial cells (hPMECs) from PAH patients to high 
shear stress [15]. These findings point to an 
underlying mechanotransduction defect in hPMECs 
that may contribute to the disease. However, the 
transcriptional changes in the shear exposed PAH 
hPMECs remained unclear. 

To address this, we utilized our in vitro shear 
stress model that simulates physiological and 
pathological shear stress conditions, allowing for the 
investigation of shear-induced transcriptional 
changes in hPMECs from PAH patients and healthy 
controls by bulk RNA-sequencing. 

We hypothesized that increasing shear stress 
would unveil distinct patient-specific transcriptional 
signatures in hPMECs, reflective of individual 
molecular mechanisms contributing to PAH. These 
signatures hold potential for informing personalized 
molecular diagnostics, advancing the field toward 
more individualized therapeutic interventions. 

Methods 
Primary cell isolation 

Control hPMECs (n=4: 3 male, 1 female) were 
isolated from pulmonary lobectomies for suspected or 
proven non-small cell lung carcinomas, while PAH 
hPMECs (n=4: 3 female, 1 male) were isolated from 
peripheral microvascular tissue of patients with 
clinically well-characterized Group 1 PAH (Table 1). 
Cell isolation was based on a previously-published 
protocol, and cells showed typical growth patterns 
that formed cobblestone monolayers and were 
positive for endothelial markers [15]. The tissue 
collection and cell isolation were approved by the 
institutional review board of the VU University 
Medical Center (VUmc, Amsterdam, the Netherlands, 
protocol-nr: 2012/306), and written, informed consent 
was obtained from all participants or their surrogates. 
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Table 1: Control donor and PAH patient characteristics. 

Control group hPMECs 
ID Assays Diagnosis FVC FEV1 Dyspnea Sex Age Ethnicity Source Echo/CT 
CTR01 RNAseq, qPCR NSCLC, squamous cell carcinoma 2.75 (100%) 1.17 (50%) No F 61 Caucasian Lob No dilation of RV, RA, or LV 
CTR02 RNAseq, qPCR NSCLC, squamous cell carcinoma 3.11 (100%) 2.31 (98%) No M 79 Caucasian Lob No dilation of RV, RA, or LV 
CTR03 RNAseq, qPCR NSCLC, adeno-carcinoma - - No F 55 Caucasian Lob No dilation of RV, RA, or LV 
CTR04 RNAseq, qPCR Tumoral obstruction - - Yes M 42 Caucasian Lob Enlarged RV, small LV, enlarged RA 
PAH patient hPMECs 
ID Assays Diagnosis mPAP PVR CI Sex Age Ethnicity Source Treatment 
PAH01 RNAseq, qPCR iPAH 102 1375 3.4 M 21 Caucasian Ltx PDE5-I, ERA, PGI2 
PAH02 RNAseq, qPCR hPAH (BMPR2) 68 - 1.6 F 40 Caucasian Ltx PDE5-I, ERA, PGI2 
PAH03 RNAseq, qPCR iPAH 54 - 2.1 F 54 Caucasian Obd PDE5-I, ERA, PGI2 
PAH04 RNAseq, qPCR iPAH 43 620 2.1 F 42 Caucasian Ltx PDE5-I, PGI2 

hPMEC = human pulmonary microvascular endothelial cells; NSCLC = non-small-cell-lung carcinoma; FVC = forced vital capacity (L); FEV1 = first second of forced 
expiration (L); RV = right ventricle; RA = right atrium; LV = left ventricle; iPAH = idiopathic pulmonary arterial hypertension; hPAH = hereditary pulmonary arterial 
hypertension; mPAP = mean pulmonary artery pressure (mmHg); PVR = pulmonary vascular resistance (WU); CI = cardiac index (l/min/m²); PDE5-I = phosphodiesterase 
type 5 inhibitor; PGI2 = prostacyclin; ERA = endothelin receptor antagonist; Lob = lobectomy; Obd = autopsy; Ltx = lung transplantation.  

 

Cell culture and fluid flow techniques 
hPMECs were cultured in Endothelial Cell 

Medium with 5% FCS, 1% Penicillin-Streptomycin, 
1% Endothelial Cell Growth Supplement (ScienCell, 
#1001), and additional 1% Non-Essential Amino 
Acids (Gibco, #11140-035). All cells used were passage 
3-5. Single-channel ibidi µ-Slides I Luer 0.4 (ibidi, 
#80176) were seeded with 40,000 cells/cm2 and cells 
were allowed to attach overnight (four channels per 
donor). Each channel was then subjected to one of 
three fluid flow conditions for 24 hours: no flow 
(“Static”), 2.5 dyn/cm2 physiological low (“LSS”), or 
15 dyn/cm2 supra-physiological high unidirectional 
shear stress (“HSS”). Following this, the cells were 
immediately collected in QIAzol Lysis Reagent 
(Qiagen, #79306) for bulk RNA-seq analysis and 
quantitative real-time polymerase chain reaction 
(qPCR) validation. RNA was isolated with the 
miRNeasy Micro Kit (Qiagen, #217084). 

RNA purification 
Total RNA was purified with the MagMAX-96 

for Microarrays Total RNA Isolation kit 
(ThermoFisher, AM1839) according to the 
manufacturer’s instructions, in which genomic DNA 
was removed using MagMAXTurboDNase buffer and 
TURBO DNase. mRNA was purified from total RNA 
using Dynabeads mRNA purification kit (Invitrogen, 
#61006) according to the manufacturer’s instructions. 

Library preparation and RNA-sequencing 
ScriptSeq mRNA-Seq Library Preparation Kit 

(Epicentre, SS10906) was used to prepare 
strand-specific RNA-sequencing libraries. 
Twelve-cycle polymerase chain reaction was 
performed to amplify libraries. Sequencing was 
performed on Illumina HiSeq2000 by a 33-cycle 
multiplexed, single-read run. Raw sequence data 
(BCL-files) were converted to FASTQ format via 

Illumina Casava 1.8.2. Reads were decoded based on 
their barcodes and read quality was evaluated using 
FastQC [16]. Reads were mapped to the human 
transcriptome (hg38) and reads mapping to sense 
strand exons were summed at the gene level using 
ArrayStudio (OmicSoft). 

RNA-seq data preparation and filtering 
Gene read counts were analyzed using the 

ExpressAnalyst platform [17]. Data filtering was 
implemented to exclude likely uninformative or 
erroneous data by removing unannotated genes, the 
bottom 4% low abundance genes, and the bottom 15% 
low variance genes, assessed over all measured 
samples. Disease group (control, PAH) served as the 
primary factor, with flow condition (Static, LSS, HSS) 
as the secondary factor. Patient pairing was not 
performed due to platform limitations (max. 2 
factors).  

Differential expression and 
over-representation analysis 

For differential expression/over-representation 
analysis, gene read counts were processed utilizing 
the DESeq2 method [18] within the ExpressAnalyst 
platform [17] to determine differentially-expressed 
genes (DEGs) across all possible comparisons. 
Over-representation analysis was subsequently 
conducted for each pairwise comparison’s DEGs 
against the full filtered dataset background using the 
KEGG database. 

Similarity analysis in reduced-dimensionality 
data 

For similarity analysis, gene read counts were 
normalized sample-wise as log2(counts per million 
[CPM]), then full filtered expression data was 
subjected to three-component canonical correlation 
analysis (CCA) on each control vs. PAH flow 
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condition pair using the sklearn 1.1.1 Python package 
(e.g., control Static expressions vs. PAH Static 
expressions). Similarity between control and PAH at 
defined flow conditions was assessed by the CCA 
correlation coefficient between the two data sets. A 
higher correlation coefficient indicates a stronger 
alignment of gene expression patterns, indicating 
greater similarity. 

Grouping and spatial metrics analysis in 
reduced-dimensionality data 

For condition grouping and spatial metrics 
analysis, gene read counts were normalized 
sample-wise as log2(CPM), then subjected to Principal 
Component Analysis (PCA) using the ExpressAnalyst 
platform [17], where we considered the first three 
components to plot each sample in 3-dimensional 
reduced space and visualize their distributions. 
Ellipsoids representing 95% confidence intervals were 
delineated around groups in the 3D PCA space for 
visualization and to characterize separation between 
groups and heterogeneity within groups.  

Gene variability analysis 
For gene variability analysis, gene read counts 

were normalized sample-wise as counts per million. 
The coefficient of variation (CV, Equation 1) was then 
calculated on the normalized data for each individual 
gene within each unique group, applying a small 
sample size bias correction factor of (1+1/4n), where n 
is the sample size, σx is sample standard deviation, 
and x̄ is sample mean [19]. 

To elucidate the impact of supra-physiological 
shear stress on variability, ∆CV (CVHSS - CVStatic) was 
calculated for each gene per disease group. Only 
genes that had read counts >0 in all samples within 
the considered flow conditions were kept for further 
investigation. To identify highly variable genes in 
PAH responses to shear stress that are not highly 
variable in control shear responses, ∆∆CV between 
∆CVControl and ∆CVPAH was calculated (Equation 2). 
Genes with a cut-off of >50% ∆∆CV were used for 
later inputs as “top variable genes” in PAH shear 
stress responses. 

Equation 1) CV (%) = (1 + 1/4n) * (σx/x̄) * 100 

Equation 2) ∆∆CV = ∆CVPAH,StaticHSS - 
∆CVControl,StaticHSS 

Individual patient analysis 
For individual patient analysis, gene read counts 

were normalized sample-wise as log2(CPM). Z-scores 
were calculated to normalize each gene separately 
over the PAH samples, using the “top variable genes” 
log2CPM data from PAH hPMECs under HSS, chosen 

for its high inter-patient variability. This process 
aimed to develop a relative PAH patient-to-patient 
signature based on inter-patient heterogeneity as a 
readout for dysregulation in at least one patient. 
Z-scored “top variable genes” were subjected to 
unsupervised Partitioning Around Medoids (PAM) 
clustering to identify patient-specific gene clusters. 
These gene clusters were then used for 
over-representation analysis against the full filtered 
dataset background, utilizing the Reactome, KEGG, 
and MSigDB databases. Additionally, the average 
log2(fold change [FC]) for the “top variable genes” in 
each significantly enriched pathway was calculated 
individually for each PAH patient compared to the 
full control group. This analysis provided insights 
into how the relative PAH-PAH differences scale in 
an individual PAH patient relative to the control 
group. 

qPCR validation of RNA-seq data 
Purified RNA from hPMECs was used to 

synthesize cDNA using iScript cDNA Synthesis Kit 
(Bio-Rad, #1708890). qPCR was performed with iQ 
SYBR Green Supermix (Bio-Rad, #1708880) and run in 
triplicate using the Bio-Rad CFX384 Real-Time PCR 
Detection System. Analysis of qPCR results was 
performed using relative expression for ∆∆CV 
calculation, and the ∆∆Ct method for determining 
fold changes. RPLP0 or RPL27 were used as 
established non-shear-responsive internal controls. 
Primer efficiencies and melt temperatures were tested 
on general cDNA prior to usage, and amplification 
specificity was ensured through post-amplification 
melting curve analysis. Primer sequences are listed in 
Table S1. 

Selection and analysis of published PAH PBMC 
datasets for validation 

NCBI’s Gene Expression Omnibus (GEO) was 
queried for all publicly available RNA-seq or 
microarray data on PAH peripheral blood 
mononuclear cells (PBMCs), of which three 
microarray datasets were identified [20-22]. We 
selected the dataset with the largest cohort (n=41 
control, n=30 iPAH) for further analysis and 
validation of our findings (GEO accession: GSE33463) 
[21]. As stated in the GEO dataset description, the 
dataset consists of scaled microarray expression 
values for all probes in each sample to a median of 
256, followed by log2-transformation. For our 
analysis, we used the control and PAH patient data, 
and if a gene was represented by multiple probes, the 
probe with the highest expression value was chosen 
for further investigation. To align with our previous 
analysis of hPMECs, we then calculated the average 
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log2FC in accordance to our previously identified “top 
variable genes”, comparing each PAH patient 
individually to the full control group. 

Statistics 
P-values were calculated in using the 

hypergeometric test (one-tailed Fisher’s exact test) 
across all analyses except the DESeq2-based grouped 
analysis, where p-values were calculated with the 
Wald test. Correction for multiple hypotheses testing 
was consistently performed using the 
Benjamini-Hochberg method (False Discovery Rate 
procedure), and significance was established with an 
adjusted p-value ≤ 0.05 (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 
0.001). Additionally, pathway enrichments were 
deemed significant if there were at least three DEGs in 
the gene set. Figures were generated using GraphPad 
Prism 7.0a (GraphPad Software, Boston, 
Massachusetts) unless otherwise stated. 

Results 
hPMECs derived from control donors and PAH 

patients were exposed to differing unidirectional fluid 
flow conditions (either “Static” 0 dyn/cm2, “LSS” 2.5 
dyn/cm2, or “HSS” 15 dyn/cm2) for 24 hours to 
model in vitro no-flow, physiological, and 
supra-physiological high fluid shear stress in line with 
previously published protocols [23, 24]. hPMECs were 
confirmed to have sensed varying degrees of shear 
stress through qPCR-measured expression changes in 
the shear-responsive transcriptional master regulator 
KLF2, changes in multiple shear-sensitive genes in the 
RNA-seq dataset, and morphological adaptation 
(Figure S1). 

To discern how these mechano-environmental 
changes might impact PAH transcriptomic profiles in 
vitro, we followed a comprehensive analytical 
approach as detailed in Figure S2 and the Methods 
section. Overall, 26,479 genes were present in the 
dataset, reduced to 24,603 by removal of unmatched 
and unannotated genes, and finally condensed to the 
working dataset of 14,493 genes by filtering out low 
abundance and low variability genes (Figure S3). 

Despite a shear dependent increase in 
differential gene expression, no pathway 
enrichments were identified in PAH hPMECs 

PAH and control hPMECs gene expression 
profiles within each flow condition were compared 
(i.e., Static vs. Static, LSS vs. LSS, HSS vs. HSS) to 
explore if PAH and control hPMECs present a 
statistically differentiable profile under static 
conditions or after shear stress exposure, and whether 
HSS exacerbates pathway dysregulations in PAH 
hPMECs. Differential gene expression analysis 

identified 11 DEGs (7 unique) in the “Static” 
comparison, 28 DEGs (14 unique) in the “LSS” 
comparison, and 50 DEGs (36 unique) in the “HSS” 
comparison (Figure 1A, Table S2). Despite the 
increase in DEGs with increasing shear stress, no 
significant pathway enrichments distinguishing PAH 
from control hPMECs were found across all 
conditions (Figure 1B). 

Overall responses to fluid flow are conserved 
in PAH hPMECs despite transcriptional 
differences between flow conditions in PAH 

To investigate how hPMECs from PAH patients 
and controls respond to changing flow conditions, we 
then examined the following condition sets: PAH LSS 
vs. PAH Static, control LSS vs. control Static, PAH HSS 
vs. PAH Static, control HSS vs. control Static. We 
found that the number of non-overlapping DEGs 
between PAH and control flow responses increased 
substantially as the shear stress intensified. 
Specifically, there were 355 non-overlapping DEGs 
between PAH and controls at LSS vs. Static, which 
increased to 1203 in the HSS vs. Static comparison 
(Figure 2A). These results indicate that HSS amplifies 
the number of unique differences between control and 
PAH. 

Considering the increased non-overlapping 
DEGs due to HSS responses, we investigated whether 
there were also non-overlapping enriched pathways. 
For LSS vs. Static, 9 pathways were significantly 
changed in PAH and 16 in controls (6 overlapping). 
For HSS vs. Static, 13 pathways were significantly 
changed in PAH and 41 in controls (13 overlapping). 
However, considering each pathway significant in 
control, PAH, or both, the significant DEGs in the 
pathway gene sets were consistently similar between 
control and PAH despite the minimal statistical 
overlap. This was supported by the very strong 
correlation in the number of significant DEGs in each 
pathway between control and PAH. Specifically, the 
correlation was very strong in LSS vs. Static (p < 0.001, 
Pearson r = 0.854, Mean Absolute Error [MAE] = 
2.526) and HSS vs. Static (p < 0.001, Pearson r = 0.986, 
MAE = 3.488), where each point is a pathway that is 
significantly changed in either PAH or control due to 
shear stress. Here, x is the number of significantly 
changed genes in that pathway for control, and y is 
the number of significantly changed genes in that 
same pathway for PAH (Figure 2B). These results 
indicate PAH responses remained consistent with 
control responses, and the lower number of 
significantly changed pathways in PAH HSS 
conditions is most likely due to the larger DEG set in 
PAH increasing the background noise and reducing 
statistical power.  
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Figure 1: Minimal significant differences are found in PAH hPMECs within each flow condition by grouped analysis. (A) Grouped comparison of control and 
PAH hPMECs within distinct flow conditions. Under static conditions, 11 genes were differentially expressed (7 unique to static). Under low shear stress conditions, 28 genes 
were differentially expressed (14 unique to LSS). Under high shear stress conditions, 50 genes were differentially expressed (36 unique to HSS). (B) Top 5 enriched pathways in 
each comparison based on over-representation analysis. No significant pathway enrichments were identified. 

 
For this reason, we more deeply investigated the 

pathways significantly changed in PAH by comparing 
the fold changes of DEGs associated with these 
pathways in both PAH and control hPMECs using 
density plots (Figure 2C, Table S3). This revealed the 
contour and magnitude of change in significantly 
changed PAH pathways closely parallels control 
hPMEC changes, with similar patterns in both groups. 
The same was observed in density plots of pathways 
significantly enriched only in control hPMEC flow 

responses, where PAH hPMEC contours and 
magnitudes of change closely mirrored controls 
despite lacking statistical significance (Figure S4). 
Despite the notable increase in DEG differences 
between control and PAH with elevated shear stress, 
these results indicate that overall functional responses 
to fluid flow are conserved in PAH hPMECs, 
suggesting that standard enrichment analysis 
methods may mask meaningful disease-specific 
changes. 
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Figure 2: Overall responses to fluid flow are conserved in PAH hPMECs despite transcriptional differences between flow conditions. (A) Quantification of 
DEGs for LSS vs. Static and HSS vs. Static in both PAH and control groups, with overlaps noted. The number of non-overlapping DEGs between PAH and controls increased from 
355 non-overlapping DEGs at LSS vs. Static, to 1203 non-overlapping DEGs at HSS vs. Static. (B) KEGG pathway enrichment analysis for both disease condition groups in LSS vs. 
Static and HSS vs. Static. In LSS vs. Static, 9 pathways were significantly changed for PAH and 16 for control (6 overlapping). In HSS vs. Static, 13 pathways were significantly changed 
for PAH and 41 for control (13 overlapping). Including all significantly changed pathways in either control or PAH, the correlation in the number of DEGs per pathway between 
control and PAH was very strong in both LSS vs. Static and HSS vs. Static, indicating minimal differences between PAH and control flow responses. (C) Density plots for each 
significantly enriched pathway in PAH flow responses, where the curve represents the expression change profile in terms of log2FC of each DEG in the pathway (marked as ticks 
on pathway x-axes). Mean pathway log2FC are marked with a vertical line. Figure generated using the ggridges 0.5.6 R package. 
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Dimensionality reduction reveals exacerbation 
of a distinct PAH phenotype with increasing 
shear stress, accompanied by increased 
inter-patient variability 

Given the considerable lack of DEG overlap in 
flow responses of PAH and control hPMECs, we 
aimed to understand why no significant pathway 
enrichment differences were found. We therefore 
investigated the molecular differences between PAH 
and control hPMECs more deeply, using Canonical 
Correlation Analysis (CCA) to assess the similarity 
between gene expression profiles under matching 
flow conditions (e.g., static control vs. static PAH). 
CCA correlation coefficients revealed that as shear 
stress increased, the gene expression profiles between 
control and PAH became progressively dissimilar 
(Figure S5).  

To further explore this divergence, we employed 
Principal Component Analysis (PCA), considering the 
first three components to visualize individual sample 
distributions in three-dimensional space (Figure 3A). 
The 95% confidence ellipsoids for each condition 
revealed clear separations between different flow 
conditions for both groups, where the distance 
between flow conditions was generally similar for 
both PAH and control, mirroring our earlier finding 
that overall shear responses were conserved in PAH 
hPMECs (Figure 3B). However, fluid flow 
considerably increased divergence between control 
and PAH, underpinning that flow amplifies 
transcriptomic differences in PAH hPMECs (Figure 
3C). Considering the BMPR2 mutation in PAH02, a 
known pre-disposition to the development of PAH, 
we further explored the flow responses of BMP and 
TGF-beta pathway genes (Figure S6). We found that 
HSS notably resulted in downregulation of the BMP 
pathway specifically in PAH02 compared to the other 
patient samples and controls, demonstrating that 
shear stress exacerbates underlying PAH signaling. 

Lastly, shifting the projection of the PCA 90˚ 
revealed PAH ellipsoids are substantially larger than 
their control counterparts, indicating much greater 
dispersion of the individual PAH hPMEC samples 
(Figure 3D). We therefore calculated the standard 
deviation from the centroid for each ellipsoid, finding 
that PAH patient to patient variability was 
consistently higher than control variability at all flow 
conditions, peaking at HSS (Figure 3E). 

Considering the lack of significant pathway 
enrichments from our earlier analyses, these findings 
show that while shear stress amplifies differences 
between PAH and controls, each individual PAH 
patient hPMEC sample may diverge from controls in 
a distinct way. Therefore, rather than seeking a single 

unifying pathological signature to explain this general 
divergence under high shear stress, it may be more 
insightful to investigate the drivers of inter-patient 
variability in HSS flow responses as indicators of 
patient-specific dysregulations. 

Gene variability analysis identifies the drivers 
of heterogeneity in PAH hPMECs due to 
increasing shear stress 

We thus aimed to determine which genes drove 
the identified PAH heterogeneity through 
inconsistent adaptations to HSS. Therefore, we 
calculated the coefficient of variation (CV) for each 
gene within defined flow conditions and disease 
groups (e.g., CV for VEGFA in static PAH hPMECs) 
(Equation 1). As expected, distribution of gene CV 
values skewed higher in PAH HSS compared to other 
conditions, confirming the increased patient 
heterogeneity at HSS (Figure S7). 

Based on our results underscoring an 
exacerbated PAH phenotype with increasing shear 
stress, we focused on genes with the highest ∆∆CV 
score from this analysis - the genes that exhibited the 
greatest variability in how they changed from static to 
HSS in PAH only (Equation 2). These 398 genes, 
termed “top variable genes”, were considered the 
strongest drivers of heterogeneity in PAH responses 
to HSS that did not vary in control responses to HSS. 
In other words, these genes demonstrated extreme 
variability in the PAH group exceeding normal 
biological variability in controls. Cut-off curation of 
these genes is visualized in Figure S8. 

Subsequently, we calculated z-scores for each of 
the “top variable genes” HSS log2CPM values across 
the four PAH patients, focusing on the HSS condition 
due to its greatest observed inter-patient 
heterogeneity (Figure 4A, Table S4). This z-score 
standardization emphasized considerable differences 
in the relative rankings of these genes between 
patients, further demonstrating the role of these genes 
in driving inter-patient heterogeneity. 

This inter-patient heterogeneity is further 
emphasized when we perform an over-representation 
analysis on these “top variable” genes, where, as 
expected, minimal significant pathway enrichments 
are identified (homologous recombination (p=0.047, 6 
genes), cell cycle (p=0.047, 11 genes), and 
cytokine-cytokine receptor interactions (p=0.047, 12 
genes), Figure 4B, Table S5). The substantial 
differences in relative gene expressions between these 
patients suggest that individual gene regulation 
patterns need to be considered to capture 
patient-specific signatures.  



Theranostics 2025, Vol. 15, Issue 5 
 

 
https://www.thno.org 

1597 

 
Figure 3: Dimensionality reduction reveals exacerbation of a distinct PAH phenotype with increasing shear stress, accompanied by increased 
inter-patient variability. (A) Principal component analysis (PCA) was performed on the full filtered transcriptome, considering the first three components to reduce each 
sample into a point in 3D space. 95% confidence ellipsoids were fit to the samples in each condition group, emphasizing group differences. Figure generated using the matplotlib 
3.5.2 Python package. (B) Euclidean distance between the centroids of each flow condition ellipsoid quantifies overall transcriptional shifts due to flow. Minimal differences 
between control and PAH were observed. (C) Euclidean distance between the centroids of control and PAH within each flow condition quantifies PAH phenotype emergence. 
Fluid flow was found to drive separation between control and PAH overall expression profiles. (D) Shifting the projection of the PCA 90˚ emphasizes ellipsoid size, correlating 
directly to inter-sample variability. (E) Intra-ellipsoid variability, measured as standard deviation from the centroid for each ellipsoid, was higher for all PAH vs. control 
comparisons, peaking in PAH HSS. 
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Figure 4: Gene variability analysis reveals the main drivers of heterogeneity in PAH hPMECs unveiled by increasing shear stress. (A) Comparing the “top 
variable genes” in terms of log2CPM-based HSS z-scores, the expression of the genes between patients is seen to be highly variable as expected. For example, VCAM1 is 
comparatively highly expressed in PAH01, relatively near the mean in PAH02 and PAH03, and comparatively lowly expressed in PAH04. Meanwhile TAGLN is comparatively highly 
expressed in PAH02, relatively near the mean in PAH01 and PAH04, and comparatively lowly expressed in PAH03. The top 50 ∆∆CV genes are shown on the right, further 
demonstrating the shifting distribution of these genes between patients. Figure generated using the ComplexHeatmap 2.14.0 R package. (B) Over-representation pathway 
enrichment analysis of the top 398 variable genes in PAH due to HSS identified few significantly enriched pathways: homologous recombination (p=0.047, 6 genes), cell cycle 
(p=0.047, 11 genes), and cytokine-cytokine receptor interaction (p=0.047, 12 genes). 
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Unsupervised clustering on PAH top variable 
genes in response to shear stress reveals 
patient-specific disease signatures 

In order to separate individual patients and 
unveil their specific differential responses to HSS, 
unsupervised PAM clustering was applied to the 
z-scores of PAH HSS “top variable genes” calculated 
previously in Table S4 (Figure S9, Table S6). The 
resulting clusters revealed distinct upregulated gene 
profiles for each patient, with minimal similarity 
between patients (Figure 5A, Table S7). 

Using these clusters as gene sets, significant 
pathway enrichments were identified while ensuring 
minimal gene overlap between pathways (Figure 
S10). Cluster 1 showed Inflammatory Response 
(p=0.01648), Epithelial Mesenchymal Transition 
(p=0.00002173), and Extracellular Matrix 
Organization R-HSA-1474244 (p=0.04558) 
significantly enriched. Cluster 2, Extracellular Matrix 
Organization R-HSA-1474244 (p=0.03022), Rho 
GTPase Signaling [incl. Rho GTPase Effectors 
R-HSA-195258 (p=3.72E-04), Rho GTPases Activate 
Formins R-HSA-5663220 (p=8.09E-04), and Signaling 
by Rho GTPases R-HSA-194315 (p=0.032517)], and 70 
significantly enriched pathways related to cell cycle 
and DNA repair [e.g., Cell Cycle (p=1.56E-05), 
Homologous Recombination (p=4.42E-05), G2-M 
Checkpoint (p=1.75E-19), and E2F Targets 
(p=4.08E-09)]. Cluster 3 Angiogenesis (p=0.02804), 
KRAS Signaling Up (p=0.01394), p53 Pathway 
(p=0.008256), Hypoxia (p=0.008256), and TNFα 
Signaling via NF-κB (p=3.134E-06). Cluster 4 only 
showed enrichment in TNFα Signaling via NF-κB 
(p=0.02247). 

Utilizing these identified pathways to assess the 
magnitude of individual patient pathway 
dysregulation, we then calculated the average log2FC 
for genes contributing to each pathway’s significant 
enrichment, comparing individual patients vs. 
grouped controls (Figure 5B). Matching closely to the 
relative differences observed in Figure 5A, similar 
patterns emerge for individual patients against 
controls. From this, distinct defining upregulations 
were noted for individual patients: PAH01 
upregulated Cluster 2 pathways, PAH02 upregulated 
Cluster 1 pathways, PAH03 upregulated Cluster 3 
pathways, and PAH04 upregulated Cluster 4 
pathways.  

An alternative approach to identifying 
patient-specific signatures was conducted using the 
unclustered “top variable genes” in a gene set 
enrichment analysis (GSEA) [25] ranked by 
descending z-scores for each patient (Figure S11). 
While this approach identified many of the same 

patient-specific signatures and provides useful 
insights into pathway-level dysregulation, its focus on 
isolated individual patient ranked lists limits the 
ability to detect potential sub-groups of patients with 
shared molecular profiles, thus demonstrating how 
clustering promotes a more nuanced understanding 
of the disease’s heterogeneity. 

In summary, through this variability analysis, 
we assessed healthy biological variability and 
identified genes from the PAH cohort that deviated 
from this baseline. Unsupervised clustering of these 
genes then facilitated the identification of 
patient-specific pathways (Figure 5C). 

To validate our measurements, we performed 
qPCR on matched hPMEC samples under identical 
shear conditions. Genes were selected from the 
identified clusters, with a focus on those representing 
key pathways that could, independently or in 
combination, uniquely identify patients, while also 
exhibiting substantial divergence in the log2FC across 
the four patients (BRCA2, F2RL1, RAD51, PDGFB, and 
TAGLN). Additionally, we included a negative 
non-shear-responsive control (MRPL15) and an 
oppositely directed ∆∆CV gene (IL6). The ∆∆CV 
(Equation 1, Equation 2) of these genes were 
calculated and compared to RNA-seq data using 
Mean Absolute Error (MAE) and a Bland-Altman plot 
(Figure 5D). The MAE of 12.394 indicates a minor 
average ∆∆CV discrepancy between the two methods, 
and the Bland-Altman analysis confirmed a high level 
of agreement across a wide range of ∆∆CV values, 
supporting the reliability of our transcriptomics 
results in capturing true biological heterogeneity 
(Bias: -2.09; 95% Limits of Agreement: [-35.9, 31.73]). 
Furthermore, control HSS vs. PAH HSS fold changes 
showed low discrepancy (MAE) and strong linear 
correlation (Pearson r) between RNA-seq and qPCR, 
reinforcing the identified magnitudes of pathway 
dysregulations (Figure S12). 

Confirmation of hPMEC gene expression 
patterns in PBMCs supports translatability of 
findings to clinically accessible material 

Recognizing the systemic impact of altered 
hemodynamics in PAH, we extended our analysis to 
PBMCs. As PBMCs are exposed to the 
hemodynamically altered circulation of the PAH 
lung, we hypothesized that these circulating cells may 
also exhibit comparable transcriptional changes. By 
investigating PBMCs, we aimed not only to validate 
our findings in a larger cohort but also to provide a 
clinically accessible diagnostic approach to 
identifying patient-specific disease signatures. 
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Figure 5: Unsupervised clustering on PAH “top variable genes” in response to shear stress reveals patient-specific disease signatures. (A) Unsupervised PAM 
clustering on PAH log2CPM-based z-scores for “top variable genes”. Clear patient-specific signatures were observed, with each cluster correlating strongly to one individual 
patient. Figure generated using the ComplexHeatmap 2.14.0 R package. (B) Pathway enrichment analysis for each cluster gene set identified cluster-specific significantly enriched 
pathways. Bubble size indicates the magnitude of average log2FC of the “top variable genes” in each pathway, quantified as individual patient vs. grouped control. PAH hPMECs 
displayed patient-specific and exacerbated PAH signaling under HSS not seen under Static conditions or in grouped analyses. Figure generated using the ggplot2 3.5.1 R package. 
(C) Individual PAH patient pathological signatures were able to be extracted from transcriptional heterogeneity of hPMECs in response to HSS, stratifying patients on a molecular 
basis. (D) Key cluster-defining genes were validated via qPCR using hPMECs from the same patients with the same stimuli, showing a minimal MAE (12.394) between qPCR and 
RNA-seq ∆∆CV. Bland-Altman analysis demonstrated a lack of systemic biases or patterns in the differences between methods, pointing to the identified variability as biological 
heterogeneity (Bias: -2.09; 95% Limits of Agreement: [-35.9, 31.73]). 
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Figure 6: Validation of hPMEC gene expression patterns in PBMCs supports translatability of findings to clinically accessible material for patient 
sub-stratification. Using a publicly-available PAH PBMC microarray dataset (GEO accession: GSE33463) [21], patient-specific fold changes of the previously-identified cluster 
pathways, utilizing the same “top variable genes” from our earlier analysis, were calculated. Intra-cluster expression trends remained consistent, while inter-patient differences 
were still evident and could be used to identify individual patients or patient sub-groups. Clusters 1, 3, and 4 demonstrated the greatest capacity to retain PAH patient 
stratification in PBMCs. Figure generated using the ggplot2 3.5.1 R package. 

 
Analysis of the published PBMC microarray 

dataset (GEO accession: GSE33463 [21]) focused on 
the same clusters and pathways identified in our PAH 
patient hPMECs. We found that the same expression 
trends and inter-patient cluster differences were 
consistently reproduced in the PAH PBMCs 
compared to controls, although the magnitude of 
pathway dysregulations and divergence between 
patients was less pronounced (Figure 6). 
Nevertheless, the capacity to discern individual 
patients/patient sub-groups was retained, especially 
through clusters 1, 3, and 4. This consistency in 
patient-specific variations confirms that the shear 
stress-induced gene expression patterns in PAH 
hPMECs are effectively reflected in PAH PBMCs, 
emphasizing the applicability of our identified 
clusters and the capacity of our methodology to 
uncover individual patient and patient sub-group 
pathogenotypes. 

Discussion 
This study advances our understanding of the 

diverse molecular mechanisms underlying PAH by 
focusing on two key contributions. First, we 
integrated bulk transcriptomic sequencing of PAH 

and control hPMECs with exposure to shear stress in 
vitro, as a novel contribution to the field. Second, we 
developed a transcriptomic analytical strategy to 
uncover patient-specific mechanisms in PAH, 
providing deeper insights into the heterogeneity of 
this disease. Endothelial dysfunction is a key factor in 
PAH pathogenesis, with evidence demonstrating that 
endothelial cells from PAH patients exhibit abnormal 
responses to hemodynamic forces, disrupting 
vascular homeostasis [26-29]. We aimed to investigate 
this dysfunction transcriptionally to address the 
diagnostic and therapeutic challenges in PAH, where 
large-scale clinical trials have struggled to identify 
consistent molecular denominators across patients 
[3-6]. Our findings show that considering patients as a 
homogeneous group obscures key molecular insights, 
as grouped analyses fail to capture the patient-specific 
complexity of PAH. This aligns with studies 
recognizing the molecular and phenotypic diversity 
in PAH [30, 31], and highlights the variability in 
disease progression and treatment responses reported 
in clinical registries [32-35]. 

A central insight from our study is that HSS, 
modeling the pathological mechanical forces in PAH, 
reveals patient-specific molecular differences in 
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hPMECs. Shear stress is known to modulate 
endothelial function and gene regulation, particularly 
in processes such as inflammation, angiogenesis, and 
extracellular matrix remodeling [11, 36]. For instance, 
laminar shear stress promotes an anti-inflammatory 
endothelial phenotype, while disturbed flow leads to 
endothelial dysfunction and inflammation as seen in 
atherosclerosis [37]. Our findings extend this by 
showing that individual patient hPMEC responses to 
supra-physiological shear stress vary significantly in 
PAH, contributing to the patient-specific molecular 
heterogeneity observed in the disease. 

Through our analysis, we identified 
patient-specific gene expression patterns, and 
patient-differentiating genes such as RAD51, BRCA2, 
TAGLN, PDGFB, and F2RL1. These genes were part of 
larger identified gene subsets affecting key 
PAH-associated pathways such as cell cycle and DNA 
repair, mesenchymal transition, inflammatory 
response, extracellular matrix organization, and TNFα 
signaling. Notably, each patient exhibited distinct and 
often divergent combinations of these pathways, 
reinforcing the need for personalized approaches and 
individualized patient stratification. Previous 
research has highlighted the relevance of these 
pathways in PAH, particularly their role in 
endothelial dysfunction, vascular remodeling, and 
inflammation [28, 38-40]. 

BRCA2 and RAD51, genes part of the larger 
dysregulated pathways of cell cycle regulation and 
DNA repair, emerged as key patient-defining 
markers. RAD51 [41], and more broadly, DNA repair 
pathways have been linked to PAH, contributing to 
dysregulated cellular senescence, proliferation, and 
apoptosis resistance [42, 43]. Elevated TAGLN, an 
early marker of mesenchymal transition, may indicate 
a sub-group of patients prone to exacerbated vascular 
remodeling and stiffness [44]. PDGFB, involved in 
vascular smooth muscle cell proliferation and ECM 
remodeling, may identify patients predisposed to 
aggressive medial hypertrophy, aligning with 
evidence that excessive PDGF signaling drives 
pathological vascular remodeling in PAH [45]. Its 
connection to hypoxia, a known driver of PAH, 
further highlights the value of stratifying patients 
based on PDGF signaling, which has already been 
targeted therapeutically in PAH with imatinib [46]. 
Less explored in PAH, F2RL1 (PAR2) is linked to 
vascular smooth muscle relaxation [47], 
immune-mediated damage [48], and TNFα signaling 
[49], suggesting patients with altered F2RL1 
expression may experience heightened immune 
responses and dysregulated vascular tone. 
Rivaroxaban has also previously been shown to 
downregulate F2RL1 and associated pathways (ERK, 

JNK, NF-κB), thereby attenuating right ventricular 
remodeling in a PAH Sugen-Hypoxia rat model, 
indicating roles of F2RL1 in vascular remodeling by 
various mechanisms, fibrosis, and endothelial 
dysfunction in PAH [50, 51]. 

The validation of our findings in PBMCs 
enhances their translational relevance. PBMCs are 
recognized as non-invasive biomarkers in 
cardiovascular diseases, including PAH, where they 
can reflect systemic inflammation and endothelial 
dysfunction [52, 53]. The identification of similar gene 
expression patterns in PBMCs, particularly in genes 
involved in pathways such as KRAS signaling, p53 
pathway, TNFα signaling, and hypoxia response, 
underscores the utility of our approach for 
PBMC-based molecular diagnostics in PAH. Prior 
studies have also demonstrated the ability to identify 
PAH patients based on PBMC gene expression 
profiles with high certainty, supporting their potential 
for patient stratification based on molecular risk 
profiles and gene patterns [21, 22, 54]. 

Our findings hold important implications for 
improving PAH patient selection for treatment by 
identifying molecular profiles that classify patients 
based on activity of transcriptomic patterns. The 
molecular heterogeneity we observed may help 
explain the variability in treatment responses seen in 
PAH, where therapies like endothelin receptor 
antagonists and phosphodiesterase type 5 inhibitors 
have produced inconsistent outcomes [55, 56]. 
Understanding patient-specific molecular signatures 
could therefore assist in guiding therapeutic decisions 
and improve outcomes. This personalized approach 
aligns with advances in oncology, where molecular 
stratification of patients has increasingly been 
emphasized for clinical trial design and drug 
development [57]. 

While our study offers important insights into 
PAH’s molecular heterogeneity, several questions 
remain to be further explored. A key limitation is that 
our approach may not capture gene patterns broadly 
shared across the cohort, focusing instead on 
signatures that distinguish individual patients from 
the norm. Incorporating more clinically well-defined 
and diverse samples, including healthy controls, 
could refine PAH signatures and better capture 
underlying pathological patterns. Specifically, due to 
the small sample size, we were unable to consider sex 
differences in our analysis. However, as the female 
sex has historically been considered a risk factor, our 
sample set was selected to match the clinical situation 
of ~75% female patients [32]. Additionally, while 
PBMCs were used to validate gene patterns, they 
were not derived from the same patients as the 
hPMECs. This makes it unclear to what extent PBMC 
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gene variability reflects endothelial variability in the 
same individuals. Therefore, future prospective 
studies correlating PBMC and hPMEC data from the 
same patients could provide deeper insight into how 
circulating cells mirror tissue resident endothelial 
gene expression. Additionally, the published data set 
does not include information on clinical phenotype, 
treatment regimen, or drug efficacy, making 
correlations with the patient signatures not possible. 

Moreover, our study does not investigate the 
long-term evolution of the shear-induced 
transcriptomic responses observed in PAH. 
Longitudinal studies that track gene expression 
changes in both endothelial cells and PBMCs would 
therefore offer important insights into how 
patient-specific signatures could influence or forecast 
disease progression and treatment outcomes. Further 
exploring the relationship between shear stress 
responses and clinical metrics, such as hemodynamic 
measurements and treatment regimens, may also 
provide a more nuanced understanding of PAH 
prognosis. Therefore, integrating findings from our 
analysis pipeline with clinical metrics could enhance 
predictions of patient-specific disease progression and 
response to therapy, potentially improving patient 
management strategies and long-term outcomes. 

Conclusions 
Our study characterizes the transcriptomic 

landscape of hPMECs in PAH under varying shear 
stress conditions, leveraging shear stress as both a 
hallmark of PAH pathophysiology and a key 
regulator of endothelial function and vascular 
homeostasis [11]. Our analysis captured the 
complexity and variability of hPMEC responses to 
supra-physiological shear stress, revealing distinct 
molecular profiles for individual patients. These 
patient signatures were translatable to clinically 
accessible PBMCs, further enabling patient 
stratification based on the identified heterogeneity. By 
exploring molecular variability in PAH, our study 
advances patient molecular sub-classification and 
highlights the importance of personalized molecular 
insights, establishing a foundation for improved 
management and individualized therapeutic 
treatments in this clinically well-defined yet 
molecularly heterogeneous disease. 
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