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Abstract

Rationale: Chronic kidney disease (CKD) is a progressively debilitating condition leading to kidney
dysfunction and severe complications. While dysbiosis of the gut bacteriome has been linked to CKD, the
alteration in the gut viral community and its role in CKD remain poorly understood.

Methods: Here, we characterize the gut virome in CKD using metagenome-wide analyses of faecal
samples from 425 patients and 290 healthy individuals.

Results: CKD is associated with a remarkable shift in the gut viral profile that occurs regardless of host
properties, disease stage, and underlying diseases. We identify 4,649 differentially abundant viral
operational taxonomic units (vOTUs) and reveal that some CKD-enriched viruses are closely related to
gut bacterial taxa such as Bacteroides, [Ruminococcus], Erysipelatoclostridium, and Enterocloster spp. In
contrast, CKD-depleted viruses include more crAss-like viruses and often target Faecalibacterium,
Ruminococcus, and Prevotella species. Functional annotation of the vOTUs reveals numerous viral
functional signatures associated with CKD, notably a marked reduction in nicotinamide adenine
dinucleotide (NAD*) synthesis capacity within the CKD-associated virome. Furthermore, most CKD
viral signatures are reproducible in the gut viromes of diabetic kidney disease and several other common
diseases, highlighting the considerable universality of disease-associated viromes.

Conclusions: This research provides comprehensive resources and novel insights into the
CKD-associated gut virome, offering valuable guidance for future mechanistic and therapeutic
investigations.

Keywords: gut virome; viral operational taxonomic units; deep metagenomic sequencing; chronic kidney disease; viral function

Introduction

Chronic kidney disease (CKD) is defined as a  months [1]. This condition has already created a major
decrease in kidney function (reduced glomerular  public health burden, affecting approximately 10% of
filtration rate) or kidney damage lasting at least three  adults worldwide and resulting in 1.2 million deaths
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annually [2]. By 2040, CKD is projected to be the fifth
leading cause of death globally [3]. Numerous risk
factors contribute to CKD, including diabetes,
hypertension, glomerulonephritis, cystic kidney
disease and inappropriate medication use [4-7]. As a
progressive disease, CKD increases all-cause
mortality and often leads to systemic complications,
such as cardiovascular disease, mineral bone disorder,
arterial hypertension, and anaemia [6, 8], and can
progress to end-stage renal disease (ESRD) requiring
dialysis or renal replacement therapy.

The aetiology of CKD remains largely unclear,
likely influenced by both genetic and environmental
factors [9-11]. The gut microbiota, reflecting
environmental influences, plays a critical role in the
pathogenesis and progression of kidney diseases.
Metabolites produced by gut microbes can regulate
host physiology and kidney functions [12].
Additionally, immune system components (e.g.,
lymphocytes, monocytes, and cytokines) facilitate
communication between the gut and the kidney [13,
14]. These interactions, termed the “gut-kidney axis”
[15, 16], act as an essential regulator in maintaining
the host’s metabolic and immunological balance.
Direct links between CKD and the gut microbiota
have been established through high-throughput
sequencing of faecal samples, revealing that CKD
patients have an altered gut microbiota characterized
by an increase in harmful bacteria and a decrease in
probiotics [17-19]. In ESRD patients, the gut
microbiota shows significant aberrations, promoting
the accumulation of uraemic toxins that worsen
disease progression [20]. Recent research has also
highlighted the connection between the gut
mycobiome, faecal metabolome, and serum
metabolome in ESRD patients [21].

Despite the established association between gut
microbiota and CKD, the composition and function of
the gut viral community in CKD patients remain
poorly understood. Viruses exhibit vast diversity
within the human intestine. A recent study, using the
faecal metagenome datasets of approximately 2,000
individuals, identified over 33,000 species-level viral
populations, showcasing the extensive breadth of the
human gut viral community [22]. Concurrently,
large-scale exploration of publicly available faecal
metagenomes reconstructed over 140,000 unique viral
genomes, revealing 280 viral clades prevalent
worldwide [23]. While viral genomes are typically
small, they represent an important reservoir of genetic
diversity in the ecosystem, facilitating lateral gene
transfer of virulence factors, antibiotic resistance, and
metabolic traits among microorganisms (e.g., bacteria
and archaea) [24]. Some viruses are thought to exert
immunomodulatory effects due to their intrinsic

anti-inflammatory properties and ability to adhere to
mucosal surfaces, allowing translocation to various
tissues [25, 26]. The overall profile of the gut viral
community (referred to as the gut virome) is relatively
stable but can rapidly change in response to shifts in
the host’s physical state or environment [27, 28].
Consequently, the dynamics of the gut virome
correlate closely with various diseases, including
colorectal cancer (CRC) [29, 30], inflammatory bowel
disease (IBD) [31-33], liver diseases [34, 35], and
autoimmune diseases [36-38]. Additionally, viruses
encode unique auxiliary metabolic genes (AMGs) that
may influence the metabolic and immunomodulatory
capabilities of the microbiota, potentially affecting the
risk of developing rheumatoid arthritis (RA) [39].
These findings suggest connections between the gut
virome and kidney function, highlighting the need to
evaluate the pathophysiological role of the gut virome
in CKD patients and the gut-kidney axis.

In this study, we devised and undertook a
metagenome-wide exploration of the gut virome in
CKD based on faecal metagenomic datasets from 425
patients and 290 healthy controls (HCs). We utilized
these data to create a study-specific viral catalogue,
pinpointed numerous viral and functional signatures
associated with CKD, and expanded our findings to
encompass CKD-associated viral signatures in diverse
common diseases. Our results offer a comprehensive
view of the CKD gut virome and provide a paradigm
for future studies on the virome in other relevant
disorders.

Materials and Methods

Subjects and data processing

The methods for subject recruitment, specimen
collection, faecal DNA extraction, and
whole-metagenome shotgun sequencing have been
detailed in previous studies [19, 20]. Raw
metagenomic datasets were downloaded from the
National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) under project
accession IDs PRJNA449784 and PRJEB65297 for
Beijing and Shanghai cohorts, respectively. The
Beijing cohort comprised 254 haemodialytic CKD
patients and 179 healthy controls, while the Shanghai
cohort included 111 healthy volunteers and 171
patients diagnosed as CKD stage 3 (n = 12), CKD stage
4 (n = 4), non-dialyzed CKD stage 5 (n = 31), and
haemodialytic CKD (n = 124). In both cohorts,
demographic characteristics such as sex, age, body
mass index (BMI), and dietary habits were matched
between patients and controls [19, 20]. CKD patients
were classified based on the following criteria: stage 3,
estimated glomerular filtration rate (eGFR) < 60

https://lwww.thno.org



Theranostics 2025, Vol. 15, Issue 5

1644

mL/min/1.73m? stage 4, eGFR <30 mL/min/1.73m?
and stage 5, eGFR < 15 mL/min/1.73m?2. Individuals
in the healthy group exhibited normal clinical
parameters from routine tests (e.g., blood, urine, liver
function, and renal function) and were excluded due
to diseases such as hypertension, atherosclerosis,
diabetes, obesity, IBD, cancer, and abnormal liver or
kidney function.

Quality filtering of the raw metagenomic
sequencing reads was performed using fastp v0.20.1
[40] with the parameters “-q 20 -u 30 -1 90 -y
--trim_poly_g”. Reads that mapped to the human
genome reference (GRCh38) were removed using
Bowtie2 v2.4.1 [41] to eliminate human
contamination. Paired-end clean reads were then
assembled using MEGAHIT v1.2.9 [42] with a wide
range of k-mer sizes “--k-list 21,41,61,81,101,121,141".
Assembled contigs with lengths less than 5kb were
discarded, while the remaining contigs were used for
the identification of viral sequences.

Identification and processing of viral sequences

The workflow of viral identification is shown in
Figure S1A. Metagenomically assembled contigs were
recognized as viral sequences based on their sequence
features and homology to known viral genomes. Raw
viral contigs were identified when they satisfied one
of the following criteria: 1) identified as a virus in
VIBRANT v1.2.1 [43] with default parameters (-meta
mode); 2) containing a greater number of viral genes
than microbial genes based on searches against the
CheckV marker gene set [44]; or 3) achieving a score
>0.9 and P <0.01 in DeepVirFinder v1.0 [45]. Contigs
that were recognized as “undetermined” sequences
by CheckV were discarded. Parallelly, raw provirus
sequences were extracted from the contigs by CheckV,
with those shorter than 5kb removed. These
procedures generated a total of 178,097 candidate
viral sequences (132,172 viral contigs and 45,925
proviruses). To decontaminate the viral sequences,
according to the previous study [22, 46], we searched
the bacterial universal single-copy orthologs (BUSCO)
[47] within the raw viral sequence using hmmsearch
[48] with default options and calculated the BUSCO
ratio as the number of BUSCOs relevant to the total
number of genes in each viral sequence.
High-contaminated viral sequences with a BUSCO
ratio >5% were removed, resulting in 170,759
sequences considered as the final viral sequences from
the metagenomic samples.

The viral sequences were de-replicated based on
the following steps: 1) all viral sequences were
pairwise aligned using BLASTn v29.0 with the
options “-evalue le-10 -word_size 20
-num_alignments 99999”; 2) viral sequences which

shared 95% nucleotide identity across 75% of their
length were clustered into a viral operational
taxonomic unit (vOTU) wusing custom scripts
(https:/ / github.com/RChGO/virusDectect); 3) The
longest viral sequence was considered as the
representative sequence for each vOTU. Additionally,
shared vOTUs between different gut virus collections
(i.e, Gut Virome Database [22] and Gut Phage
Database [23]) were identified following the same
steps as above, and the combined nonredundant
vOTU catalogue (n = 45,849) was generated
accordingly.

Viral taxonomic classification and functional
annotation

Viral proteins of vOTUs were predicted using
Prodigal v2.6.3 [49]. We compiled a reference
database by aggregating protein sequences from three
viral databases: the Virus-Host DB [50] (downloaded
in May 2021), crAss-like phage proteins from Guerin’s
study [51], and the protein catalogue from Benler’s
study [52]. For accurate family-level taxonomic
classification of viruses, we aligned the proteins of all
known viral sequences from the NCBI-RefSeq
database against the combined reference database
using DIAMOND [53] with the options
“--query-cover 50 --subject-cover 50 --id 30
--min-score 50 --max-target-seqs 10”. A viral sequence
was annotated to a viral family-level taxon when over
25% of its proteins matched that family. This
approach obtained an accuracy of 98.6% for
family-level classification of the viruses from the
NCBI-RefSeq database, which we applied to the
taxonomic classification of the vOTUs. For functional
analysis of viral populations, we performed BLAST
searches of protein sequences of all vOTUs against the
KEGG (Kyoto Encyclopedia of Genes and Genomes)
database (downloaded in December 2020) using
DIAMOND with the following options “--query-cover
50 --subject-cover 50 -e 1le-5 --min-score 50
--max-target-seqs 50”. The matched protein was
annotated to a KEGG orthologue (KO) based on the
best-hit protein.

Virus-host prediction

In our previous work, we assembled over 19,000
high-completeness microbial genomes, representing
1,303 bacterial or archaeal species, from the 715 faecal
metagenomic samples in this study [54]. Based on
these prokaryotic genomes, we used two approaches
to implement virus-host prediction of vOTUs: the
CRISPR-based approach and the homolog-based
approach. For the CRISPR-based approach, firstly, the
CRISPR spacer sequences of prokaryotic genomes
were predicted via MIinCED v0.4.2 [55] with the
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option “-minNR 2”. All vOTUs were then aligned
against the predicted CRISPR spacer sequences using
BLASTn with the parameters “-evalue 1le-5
-word_size 8 -num_alignments 99999”. We retained
only matches with bit-score 245 across the entire
length of the putative CRISPR spacer sequences,
assigning one or more hosts to each vOTU based on
these alignment results. For the homolog-based
approach, we performed alignments between vOTU
sequences and host genomes using BLASTn with the
options “-evalue le-2 -num_alignments 99999”. If the
match met the criteria of 290% nucleotide identity
over 30% coverage of vOTU, the prokaryote
associated with this genome was considered as the
host infected by the corresponding vOTU.

Reads mapping rate and metagenomic
profiling

We determined the read count for each vOTU in
each sample by mapping clean reads to all vOTU
sequences using Bowtie2 with the options
“--end-to-end --fast --no-unal --no-sq --no-head”. The
mapping rate of each vOTU was calculated as the
read count for that vOTU divided by the total amount
of clean reads in the corresponding sample. The
mapping rate for each family was derived by
summing the mapping rates of all vOTUs classified
within that family-level taxonomy. For metagenomic
profiling, to improve comparisons among samples
with vastly different read counts, we randomly
subsampled 2,000,000 mapped reads per sample to
recalculate the read count for each vOTU. The relative
abundance of each vOTU in every sample was
defined as its read count divided by 2,000,000. For
family-level profiles, the relative abundances of
vOTUs sharing the same family-level taxonomy were
added together to form the overall abundance for the
family.

Statistical analysis and data visualization

Evaluation of the viral richness and evenness. We
calculated three diversity indexes to assess the
richness and evenness of vOTUs composition in each
sample. The number of observed vOTUs was defined
as the count of unique vOTUs in each sample.
Shannon’s and Simpson’s diversity indexes were
calculated using the vegan package (function diversity)
in the R platform. The significant difference level in
diversity indexes between the two groups was
analyzed using the function wilcox.test.

Principal coordinates analysis (PCoA). PCoA was
performed with the R ape package by the function
pcoa, and was visualized with the ggplot2 package. To
quantify  similarities or dissimilarities among
individuals, we generated a Bray-Curtis dissimilarity

matrix (calculated by the function vegdist in the R
vegan package) based on the relative abundance
profiles of vOTUs.

The impact of host factors on vOTUs composition.
The influence of host factor on vOTUs composition
was assessed using permutational multivariate
analysis of variance (PERMANOVA) via the function
adonis (vegan package) with default arguments.
PERMANOVA p-values were generated based on
1,000 permutations. In addition, we evaluated the
impact of CKD status on vOTUs composition after
controlling for gender, age and BMI using the
function adonis with the argument “formula =
composition ~ gender + age + BMI + disease_status”.
All R-squares obtained from PERMANOVA were
further adjusted by the function RsquareAd;.

Identification of CKD-associated vOTUs. To
increase  the reliability of the identified
CKD-associated vOTUs, differential abundance

analyses were performed based on two independent
cohorts (Shanghai and Beijing). For each cohort, the
mean relative abundances of vOTUs were used to
calculate fold changes between healthy controls and
CKD patients. Statistical significance was assessed
using Wilcoxon rank-sum test for p-value calculation,
with false discovery rate (FDR) correction applied via
the function fdrtool in R platform 4.0.3. We identified
9,363 vOTUs in the Shanghai cohort and 10,784
vOTUs in the Beijing cohort as potential
CKD-associated vOTUs with a fold-change of = 1.2
and g-value < 0.2. Then, to test the consensus of two
independent tests for each vOTUs, the combined
p-value was used to further identify meaningful
vOTUs associated with the CKD via the sumlog
function in the R metap package. In total, 4,649 vOTUs
that exhibited significant differences (combined
p-value < 0.001)were considered as the final
CKD-associated vOTUs.

The  bacterium-dependency of CKD-associated
vOTUs. To explore the interaction network between
CKD-associated vOTUs and bacteria, we categorized
these CKD-associated vOTUs into
bacterium-dependent and bacterium-independent
groups based on virus-host predictions and statistical
correlations with 1,303 gut prokaryotic species. Three
methods were utilized to evaluate whether there is a
relationship between CKD-associated vOTUs and
prokaryotes: 1) host assignment mentioned above
reported 4,486 phage-host pairs; 2) SparCC [56]
co-abundance relationships were established based on
the read count profiles of vOTUs and prokaryotes
using fastspar v0.0.10 [57] with the option
“--iterations 20”, where SparCC p-values were
determined via 1,000 bootstraps; and 3) co-occurrence
relationships were assessed based on the contingency
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table using Fisher's exact test via the function
fisher.test in the R platform.

Functional comparison of gut virome. We focused
on auxiliary metabolic genes (AMGs) of the
CKD-associated viruses. According to the method
provided by the previous study [43], potential AMGs
were manually annotated based on the KEGG
database. The occurrence rate of each AMG was
calculated as the ratio of vOTUs containing that AMG
to the total number of CKD-enriched or HC-enriched
vOTUs. Differences in occurrence rates between
groups were analyzed using the function fisher.test,
with p-values adjusted using the function fdrtool.
Gene arrow maps of vOTU were visualized using the
R packages ggplot2 and gggenes.

Performance of classification models. We built the
random forest model to classify CKD status based on
vOTU-level profiles from two cohorts via the function
randomForest. For each cohort, 70% of the samples
were randomly selected as the training set, and the
remaining 30% of the samples were used as the testing
set. The classification performance of the model was
assessed by the area under the receiver operator
characteristic curve (AUC) via the function roc.
Additionally, this process was repeated 10 times with
different random splits, and the average AUC from
these 10 iterations was used as the final measure of
model performance. We also built a model to evaluate
the classification performance of CKD viral signatures
on other disease states. Specifically, the random forest
model was trained using the profiles of CKD viral
signatures from 425 CKD patients and 290 healthy
controls in this study. The model was then used to
predict the case/control status of samples in various
public datasets. The classification performance was
again evaluated using AUC.

Analysis of the public faecal metagenomic
datasets

For the Chinese populations, we downloaded
the publicly available faecal metagenomic datasets
from 9  studies, including  atherosclerotic
cardiovascular disease (ACVD) [58], diabetic kidney
disease (DKD, which also classified as CKD patients
with eGFR < 60 mL/min/1.73m?) [59], colorectal
cancer (CRC) [60], hypertension [61], inflammatory
bowel disease (IBD) [33, 62], liver cirrhosis (LC) [63],
obesity [64], rheumatoid arthritis (RA) [65], and type 2
diabetes (T2D) [66] from the NCBI-SRA (Sequence
Read Archive) and EBI (European Bioinformatics
Institute) databases. ACVD, hypertension, T2D, and
obesity are common complications or primary
conditions associated with CKD, while CRC, IBD, LC,
and RA have recently been extensively studied in

relation to the gut virome and are significant diseases
with high prevalence in the population. For other
CRC faecal metagenomes, we also downloaded the
datasets from 3 European studies [67-70], a USA study
[71], and a Japanese study [72]. All these faecal
metagenomes were quality-controlled and follow-up
processed using the same pipeline as the samples of
this study.

Results

Metagenomic delineation of the gut viral
community

This study included faecal samples from two
independent cohorts representing a total of 425 CKD
patients and 290 HCs that were characterized in
previous research [19, 20]. Deep whole-metagenomic
shotgun sequencing of faeces generated 8.8 Tbp of
data (12.3+2.0 Gbp per sample) for exploring gut viral
communities. Metagenomic assembly of each faecal
metagenome produced a total of 4.82 million long
contigs (=5 kb; total length 95.5 Gbp; Table S1), of
which 2.6% (n = 125,332) were recognized as credible
viral sequences using both homology-based [43, 44]
and feature-based [45] methodologies, alongside
45427 proviruses identified using the CheckV
algorithm [44]. These viruses and proviruses were
clustered at the species level (>95% nucleotide
similarity [73, 74]) to generate a catalogue of 46,011
vOTUs (average length: 20,958 bp; N50 length: 35,355
bp; Figure S1A). We compared these vOTUs with two
large-scale human gut virus collections, the Gut
Virome Database (GVD) [22] and Gut Phage Database
(GPD) [23], which contain 32,300 and 71,868
nonredundant vOTUs, respectively. Only 19.4% and
31.6% of the vOTUs in our catalogue were shared
with the GVD and GPD, respectively (Figure S1B).
The proportions of high-completeness and
high-confidence viruses in our catalogue were almost
equal to those in the GVD but significantly less than
those in the GPD (Figure S1C-D). However, the
proportion of low-contamination viruses was
remarkably high in both our catalogue (98.0%) and
the GVD (94.6%) when compared with that in the
GPD (83.4%) (Figure S1E). These findings suggested
substantial novelty alongside the high credibility of
the gut virome in our dataset. Finally, to facilitate
universality, we merged the GVD/GPD-shared
viruses into our catalogue and generated 45,849
vOTUs (average length: 27,623 bp; N50 length: 45,002
bp; Figure S1A) for follow-up analysis. The merged
catalogue contained 23.3% high-completeness (>90%
completeness) and 16.0% medium-completeness
(50-90% completeness) vOTUs (Table S2).
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Figure 1. Summary of taxonomic annotation, host prediction, and metage

nomic profiling of the vOTU catalogue constructed from faecal metagenomes.

(A) The number of vOTUs that are assigned into viral taxa at the family level. (B) Distribution of prokaryotic hosts of the vOTU catalogue. The vOTUs are grouped at the family
level, and the host taxa are showed at the phylum (upper panel) and family (bottom panel) levels. The number of vOTUs that had more than one predicted host is labeled by red
color. (C) Proportion of metagenomic reads mapped into the vOTU catalogue. Individuals demonstrate a wide range of compositional variations in their gut virome. Inset shows

the read proportions for several most abundant families.

A total of 47.3% of the nonredundant vOTUs
were robustly assigned to known viral families.
Siphoviridae  (31.0%) and  Myoviridae  (10.6%)
constituted the vast majority of taxonomically
assigned vOTUs (Figure 1A), and the other
representatives included Podoviridae, Microviridae,
Autographiviridae, and some eukaryotic viruses (e.g.,
Phycodnaviridae). Notably, 483 vOTUs were classified
as crAss-like viruses, distinct from other Podoviridae
members due to unique genomic features [75].
Additionally, three new candidate families, including
“Quimbyviridae”, “Gratiaviridae”, and
“Flandersviridae”, that were recently identified from
the human gut virome [52] were also frequently
present in our catalogue.

A total of 42.6% of the 45,849 vOTUs could be
assigned to one or more prokaryotic hosts based on
their homology to genome sequences or CRISPR
spacers of the microbial genomes reconstructed from
original faecal metagenomes (representing over
19,000 high-completeness genomes of 1,303 bacterial

or archaeal species [54], with the archaea regarded as
bacteria for simplicity unless specifically mentioned).
The most common identifiable hosts of Siphoviridae
and Myoviridee members were Firmicutes species
(mainly Lachnospiraceae and Ruminococcaceae), while
the major hosts of crAss-like viruses, “Quimbyviridae”,
“Gratiaviridae”, and “Flandersviridae” were
Bacteroidetes species, and the hosts of Podoviridae
members were generally Proteobacteria (mainly
Enterobacteriaceae) and some Firmicutes species
(Figure 1B; Table S3). Only 1.9% (379/19,545) of
annotated vOTUs had hosts from multiple bacterial
phyla, and only 8.7% (1,709/19,545) of the vOTUs had
hosts across different families (Figure 52), suggesting
a narrow host range of most gut viruses.

We profiled the viral composition of the faecal
samples by mapping metagenomic reads to the vOTU
catalogue. On average, 17.4% of reads (ranging from
6.2% to 66.0%) could be robustly mapped into the
catalogue (Figure 1C). Nearly half of these viral reads
appeared to derive from proviruses, as they mapped
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in parallel to the bacterial genomes; however, the
virus-specific read mapping rate still reached an
average of 8.3% in the samples. To ensure accuracy,
we investigated 15 samples with the highest
proportion (>30%) of viral reads and found that all of
these samples were dominated by high-confidence
vOTUs, including 2 samples with up to 40-50% of
reads aligned to crAss-like viruses (Figure S3). An
extremely high abundance (up to 95%) of crAss-like
viruses was also reported in adult gut metagenomes
by previous studies [51, 75, 76]. Thus, our findings
suggested a considerably high or even predominant
viral content in the human gut.

Diversity and structure of the gut virome
associated with CKD

To illustrate alteration in the gut viral
community associated with CKD, we conducted
comparative analyses of virome diversity and
compositional structure between CKD patients and
HCs across two independent cohorts: Shanghai (171
patients vs. 111 controls) and Beijing (254 patients vs.
179 controls). First, we found that the CKD patients
exhibited a lower viral richness (estimated by the
observed number of vOTUs) than HCs. However,
viral evenness (measured by Shannon and Simpson
diversity indexes) did not differ significantly between
the two groups (Figure S4A). Comparison of viral
composition at the family level revealed that in both
Beijing and Shanghai cohorts, the CKD patients were
significantly enriched in Siphoviridae, Microviridae,
Herelleviridae, and Drexlerviridae, while the HCs were
more abundant in Phycodnaviridae (Figure S4B-C).
“Flandersviridae” and “Gratiaviridae” were markedly
enriched in CKD patients in the Beijing cohort and
had the same trend in those of the Shanghai cohort,
while Podoviridae was uniquely enriched in patients of
the Shanghai cohort. Conversely, Myoviridae exhibited
significant depletion in Beijing CKD patients but
enriched in those from Shanghai.

PCoA of the gut vOTU profiles showed that the
CKD-associated virome significantly deviated from
that of controls in both cohorts (Figure 2A). This result
was confirmed using PERMANOVA analyses,
showing that the CKD status independently
explained 2.3% (adonis P <0.001) of the overall virome
variability. In contrast, confounding factors like age,
sex, and BMI explained less than 0.4% of variance
each (Figure 2B). Cohort stratification accounted for
2.7% of variance, suggesting that the population
and/or geographic factors still exerted considerable
influence on the gut virome [28]. We next trained two
machine learning classifiers to distinguish CKD
patients from HCs using the vOTU profiles of the
Shanghai and Beijing cohorts separately. Receiver

operating characteristic curve analysis showed that
both classifiers achieved high discriminatory power
with a minimum AUC of 0.90 (Figure 2C). Similar
discriminatory ability was also obtained in
cross-cohort prediction (Figure S5). These results
demonstrated profound changes in the gut virome of
CKD patients that could stratify them from HCs.

To test whether the clinical stages of CKD could
potentially impact the virome, we classified the
patients of the Shanghai cohort into three groups,
CKD stages 3-4 (n = 16), CKD stage 5 with
haemodialysis (HD, n = 124), and CKD stage 5
without dialysis (CKD5N, n = 31), and compared their
vOTU profiles with that of the control population. The
viromes changed in a similar fashion in all three
patient groups (Figure 2D; Figure S6), likely reflecting
the commonalities of the clinical stages. The virome of
HD patients showed the farthest distance from that of
controls and significantly differed from that of
CKD5N patients, suggesting that the dialysis
procedure might affect the gut virome. We next
evaluated the contribution of underlying diseases to
the gut virome by grouping the patients into chronic
glomerulonephritis (CGN, n = 102), diabetic kidney
disease (DKD, n = 28), hypertensive kidney disease
(HKD, n = 14), and other (n = 27) subgroups based on
their primary disease types. As expected, all
subgroups revealed a similar trend apart from the HC
group (Figure 2E; Figure S7A). We also found that the
gut virome of DKD patients was most distinct from
that of controls and showed a significant deviation
from that of CGN patients (adonis P = 0.017), which
was probably linked to the specific pathogenetic
background of DKD patients [77]. Random
forest-based classifier analysis also showed that the
use of the gut virome could identify DKD and
non-DKD patients with an AUC of 0.68-0.71 (Figure
S7B).

Identification of CKD-associated viruses in the
context of the gut bacterial microbiota

We identified 4,649 differentially abundant
vOTUs between CKD patients and healthy subjects
using the combined significance level of two
independent cohorts (Wilcoxon rank-sum test
combined with Fisher's method, P <0.005,
corresponding to g < 0.013; Figure 3A-B). Among
these, 2,455 vOTUs were more abundant in CKD
patients and 2,194 more abundant in HCs. The
majority (81.7% in the Shanghai cohort and 92.6% in
the Beijing cohort) of these vOTU abundance
differences were also significant within each cohort,
and 94.4% of them were still significant after adjusting
for sex, age, and BMI (Figure S8A; Table S4). Both
CKD-enriched and HC-enriched vOTUs were

https://lwww.thno.org



Theranostics 2025, Vol. 15, Issue 5

1649

dominated by members of Siphoviridae, Myoviridae,
and unclassified taxa (Figure 3C). Notably,
HC-enriched vOTUs included 29 crAss-like viruses,
while CKD-enriched vOTUs contained only two;
however, CKD patients had 10 Microviridae and 4
“Flandersviridae” members enriched, which were
absent in HCs. Notably, the 4,649 CKD-associated
vOTUs had a higher detectable rate and relative
abundance in the faecal metagenomes than other
vOTUs and performed well in distinguishing CKD
patients from the controls (Figure S8B-C),
highlighting their considerable importance.

Given that the majority of gut viruses are
bacteriophages, their lifestyles (e.g., proliferation,
migration) typically depend on host microorganisms

[23]. Such phages might not act on disease
independently  but rather through certain
bacterium-associated mechanisms [39, 78].

Accordingly, we examined relationships between
4,649 CKD-associated vOTUs and 1,303 gut
prokaryotic species to explore bacterium dependency
of these vOTUs for affecting CKD status. Three types

of relationships were investigated: 1) the host-phage
pairs, 2) co-abundance (defined as SparCC correlation
coefficient [56] >0.60, and g <0.001), and 3)
co-occurrence (defined as Fisher’s exact test g <0.001).
This procedure revealed 3,836 bacterium-dependent
vOTUs that had at least one relationship with
bacterial species, whereas the remaining 950 vOTUs
were bacterium-independent (Figure 3D).

The family-level taxonomic distribution of
bacterium-dependent and bacterium-independent
vOTUs seemed no different, with the exception of the
four CKD-enriched “Flandersviridae” vOTUs being
independent  (Figure 3E).  Although some
“Flandersviridae” viruses are known to infect
Bacteroidetes [52] (also see Figure 1B), these 4 vOTUs
lacked a host or strong correlation with any bacterial
species. Interestingly, we found that two of these
“Flandersviridae” vOTUs encoded a bacterioferritin
gene that was completely absent from other
CKD-associated vOTUs (Figure S9A), probably
related to their adaptation to the gut environment
[79]. Next, we performed a comparison of the viral
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<0.001.
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functions of bacterium-dependent and
bacterium-independent vOTUs based on the KEGG
database and found that their functional contents
were visibly different (Figure S9B). Forty-three
enzymes were more widespread in the
bacterium-independent vOTUs, and 5 enzymes were
encoded more frequently in the bacterium-dependent
vOTUs (Figure S9C); subsequent analysis based on
these differentially abundant enzymes may provide
insights into the mechanisms of environmental

adaptation and pathogenicity of the
bacterium-independent viruses.
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Crosstalk between CKD-associated viruses
and bacteria

We identified a large network of relationships
between 3,836 bacterium-dependent vOTUs and their
related bacteria (Figure 4A). Within each bacterial
family, we found that the host-linked and statistically
associated viruses exhibited high similarity in
taxonomic assignments (Figure S10). Considering that
a large number of potential host-phage pairs could
not be identified by current technology but might be
identified as co-abundance/occurrence relationships,
this result indicated that host-phage affiliation was
the major driver of the virus-bacterium interaction
network.
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assignment of the CKD-enriched and HC-enriched vOTUs. Fisher’s exact test: *, q < 0.05; *¥, g < 0.01; ¥ g < 0.001.

(D) Workflow for the determination of

bacterium-dependency of the CKD-associated vOTUs. The inserted Venn plot shows the overlap of three types of virus-bacterium correlations: host-phage pairs, co-abundance,
and co-occurrence. (E) Family-level assignment of the bacterium-dependent and bacterium-independent vOTUs. Fisher’s exact test: *, q < 0.05.
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blue, HC-enriched. Large rhombus nodes represent the bacterial species,

and some most frequent species are colored according to their genus-level taxonomic information.

Lines connect the vOTUs and bacterial species that have phage-host or co-abundance/occurrence relationships. (B) Barplots showing the number of vOTUs correlated with
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The CKD-enriched vOTUs were dominantly
connected to bacterial members that belonged to
Bacteroides, [Ruminococcus], Faecalimonas, Enterocloster,
Dorea, and Erysipelatoclostridium, followed by several
species, including Flavonifractor plautii,
Ruthenibacterium lactatiformans, and Hungatella effluvia
(Figure 4B). Many of these species, such as
[Ruminococcus] gnavus, Faecalimonas nexilis,
Enterocloster bolteae, Enterocloster clostridioformis, and
Flavonifractor  plautii, have been identified as
potentially harmful bacteria in human diseases (see
Discussion), and consistently, most of these
virus-related species have been found to be
significantly overabundant in the gut bacteriome of
CKD patients [54]. Viruses that correlated to
Bacteroides spp. were particularly noticed because
Bacteroides-infecting phages have been reported as the
most abundant viruses in the human gut and might
contribute to metabolic disorders [80, 81]. Twenty-six
Bacteroides species had targeted to 207 vOTUs
(including 159 CKD-enriched ones) in the
virus-bacterium network, with B. thetaiotaomicron
being the most frequently associated (Figure S11A).
Twenty-two of 207 vOTUs belonged to the
“Quimbyviridae” family, while most others were
unknown taxonomy. Moreover, genome-level
homology analysis of 207 vOTUs and known B.
thetaiotaomicron-infecting phages [82] showed that
nearly all of these vOTUs were newly identified
(Figure 4C; Figure S12). These findings suggested
largely unexplored phage diversity in the gut virome
and raised further research on their relevance to CKD.
In addition, some CKD-enriched vOTUs were linked
to two crucial uraemic toxin-producing clades,
Eggerthella and Fusobacterium [20], and showed direct
positive correlations with the serum concentrations of
several toxins in the individuals of the two cohorts
(Figure S13), suggesting that they probably affect the
toxin production process in the human gut.

In contrast, HC-enriched vOTUs were frequently
connected to the bacterial members of Prevotella,
Ruminococcus, Faecalibacterium, Oscillospiraceae,
Roseburia, Blautia, Acutalibacteraceae, and other taxa
(Figure 4C). Prevotella spp. were the most prevalent
members, connecting 363 vOTUs (311 of which were
HC-enriched) in the virus-bacterium network,
including 22 crAss-like and 21 “Quimbyviridae” viruses
and many taxonomically unknown viruses (Figure
S11B). Previous studies have widely validated that the
depletion of Prevotella spp. was associated with CKD
and ESRD [83]. Our results thus suggested that
Prevotella phages could also be noted for their
potential roles in CKD or related diseases. Another
typical bacterial clade was Faecalibacterium, which
contained 15 species in the virus-bacterium network

(Figure S11C), including the widely reported
butyrate-producing probiotic F. prausnitzii [84, 85].
The Faecalibacterium-related viruses (n=155 vOTUs,
including 133  HC-enriched vOTUs)  were
concentrated in Siphoviridae and Myoviridae, and most
of them (138/155) were novel viruses compared with
the known Faecalibacterium phages [86] (Figure 4D);
the potential roles of these viruses in the CKD gut
virome are worth future exploration. In addition,
several other species connected to numerous
HC-enriched vOTUs were also butyrate producers,
including  Roseburia  (mainly R. intestinalis),
Butyrivibrio, and Lachnospira spp. [87, 88].

Functions of the CKD-associated viruses

To explore the functional and metabolic
capabilities of the CKD-associated viruses, we
predicted a total of 221,424 protein-coding genes from
4,649 vOTUs and annotated the functions of 17.3% of
these genes by searching against the KEGG database.
Most genes were categorized under typical viral
functions such as DNA replication and repair,
transcription, and prokaryotic defence system, with
no significant deviation observed between
CKD-enriched and HC-enriched vOTUs (Figure
S514A). We next specifically focused on viral AMGs
since phage-encoded AMGs are known to redirect
host functional capacities, thereby directly influencing
bacterial ecology [39, 89]. A total of 10,376 genes were
identified as viral AMGs based on a previously
curated list [43], which composed 27.1% of the
annotated genes (4.7% of total genes) of the
CKD-associated vOTUs. These AMGs were primarily
linked to genetic information processing, particularly
nucleotide (purine and pyrimidine) metabolism and
peptidases and inhibitors (Figure S14B). Notably,
genes related to peptidoglycan biosynthesis and
degradation were frequently encoded by the viral
genomes, with CKD-enriched vOTUs containing a
higher proportion than HC-enriched vOTUs (5.9% vs.
4.5% of respective AMGs; Fisher’s exact test 4=0.002).
Furthermore, genes involved in sulfur metabolism
were also prevalent in vOTUs, in agreement with
recent reports showing that human gut viruses
actively participate in both organic and inorganic
sulfur metabolism [90, 91]; these genes accounted for
similar proportions between the CKD-enriched and
HC-enriched vOTUs (4.5% vs. 4.7%, q=0.409).

We compared the occurrence rate of AMGs
between CKD-enriched and HC-enriched vOTUs at
the enzyme level (representing 1,316 auxiliary
metabolic enzymes based on the KEGG database;
Table S5). The most frequent AMG was a
DNA-cytosine methyltransferase (K00558), which
mediates cytosine DNA  methylation using
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S-adenosylmethionine (SAM) as a methyl donor [92];
this enzyme was found to be more prevalent in
HC-enriched vOTUs compared to CKD-enriched
vOTUs (occurrence rate 17.3% vs. 11.9%; Fisher’s
exact test g<0.001). Interestingly, 21 of the 50 most
frequent AMGs showed significant differences in
frequency between the two groups (Figure 5A).
HC-enriched vOTUs had a higher frequency of
enzymes such as KO00986 (RNA-directed DNA
polymerase), KO01520 (dUTP pyrophosphatase),
K01185 (lysozyme), and two enzymes involving
assimilatory sulfate reduction (K00390
[phosphoadenosine phosphosulfate reductase] and
K00957 [sulfate adenylyltransferase]) compared to
CKD-enriched vOTUs. In contrast, enzymes such as
K21471 (peptidoglycan DL-endopeptidase), K00789
(SAM synthetase), and K22409
(N-acetylmuramoyl-L-alanine amidase) were more
frequent in CKD-enriched vOTUs. Although it is
outside the scope of this study to investigate the
mechanism of all differentially abundant AMGs, we
explored the prominent example of the enzymes
involved in nicotinamide adenine dinucleotide
(NAD*) biosynthesis. From the CKD-associated
vOTUs, we identified 25 enzymes involved in several
pathways of NAD* de novo biosynthesis and salvage
(Figure 5B), most of which were more likely to be
encoded by HC-enriched vOTUs than by
CKD-enriched vOTUs. In particular, 4 critical
enzymes of the pathways, namely K01916 (NAD+*
synthase, participating in the NAD* de novo
biosynthesis pathway), KO0969 (nicotinate-nucleotide
adenylyltransferase, participating NAD* salvage
pathways I and II), and K08281/K00763 (pncAB,
participating salvage pathways I and V), were
significantly higher in frequency in HC-enriched
vOTUs (Figure S15A). Genome analysis further
confirmed that these enzymes were usually encoded
in multiple genetic contexts within HC-enriched
vOTUs (Figure 5C; Figure S15B). Additionally, a
comparison of gene expression in faecal metagenomes
revealed a  higher abundance of NAD*
biosynthesis-associated enzymes in HCs compared to
CKD patients (Figure S16). Collectively, these findings
suggest a higher NAD* synthesis capacity in
HC-enriched vOTUs as well as in the gut virome of
HCs. Further investigations based on well-designed
clinical and/or animal experiments will ultimately
elucidate the mechanism underlying the interaction
between this vital function and CKD aetiology.

CKD viral signatures correlate with common
diseases

To test the specificity and universality of CKD
viral signatures, we curated the faecal metagenomes

previously studied for microbial alterations in
common diseases and explored the changes in
CKD-associated vOTUs in them. In total, 1,901
available faecal metagenomes (993 cases and 908
controls, Table S6) covering 9 different diseases were
downloaded and processed using a standardized
pipeline (see Materials and Methods). All data were
sourced from Chinese cohorts to minimize the impact
of inter-country variations in gut viromes [28]. Using
this large cohort, we quantified the relative
abundances of 4,649 CKD-associated vOTUs and
compared them between cases and controls for each
disease. For all 9 cohorts, the majority (ranging from
86.8% t0 99.4%) of vOTUs were frequently detected in
over 20% of individuals (Figure S17), suggesting that
CKD-associated vOTUs are widespread in the human
gut virome regardless of region and disease status.
For each disease, we calculated a “consistency rate”,
defined as the proportion of vOTUs exhibiting a
consistent trend in mean abundance between cases
and controls compared with the observation in CKD
patients vs. controls. Strikingly, the consistency rate
was markedly high in the cohorts for ACVD, CRC,
DKD, hypertension, IBD, and T2D, ranging from
742% in the ACVD cohort to 81.2% in the
hypertension cohort (permutated P <0.001 for all
diseases) (Figure 6A). In contrast, consistency rates in
the RA and obesity cohorts were lower, at 63.7%
(permutated P =0.045) and 57.7% (permutated P
=0.195), respectively. Furthermore, the gross
abundances of CKD-enriched vOTUs were
significantly higher in the patients with ACVD, CRC,
DKD, hypertension, IBD, LC, RA, and T2D than in
controls, while the gross abundances of
CKD-depleted vOTUs were also significantly reduced
in these patients, except in the RA cohort (Figure 6B).
Combining these findings suggested that the CKD
viral signatures are highly reproducible in patients
with ACVD, CRC, DKD, hypertension, LC, and T2D,
and partly reproducible in RA patients, but do not
appear to be associated with obesity. In addition, we
assessed CKD viral signatures in CRC-associated
faecal microbiomes from European, USA, and
Japanese populations (consisting of 6 studies with 248
patients and 448 controls) and found that most of
these signatures were reproducible (median
consistency rate 66.2%; permutated P <0.05 in 4 of 6
cohorts; Figure S18; Table S6), supporting the
hypothesis that CKD and CRC may share common
signatures within their associated gut viromes.

Using the abundance of CKD-associated vOTUs
in patients and healthy individuals in the current
study, we trained a machine learning classifier to
distinguish cases and controls for each disease cohort.
This model achieved the highest AUC of 0.890 for
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being associated with CKD, the gut microbiota
remains an important aspect that likely influences

Theranostics 2025, Vol. 15, Issue 5

CKD etiopathogenesis and development [83]. Given
that

distinguishing DKD patients from controls, and it also
demonstrated considerable discriminatory power for
predicting ACVD, CRC, hypertension, IBD, and LC,
with AUCs ranging from 0.702 to 0.795 (Figure 6C).
These findings underscore the impressive diagnostic
potential of CKD viral signatures in the external
kidney disease cohort as well as in other related

the vast diversity of viruses within the human gut
this

[23, 93], we
often-overlooked component may be pertinent to

disease
CKD. Our study is the first to identify gut virome

microbiome and their impact on host health and
hypothesize
signatures associated with CKD, paving the way for

further mechanistic investigations.
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Figure 6. Alterations of CKD-associated vOTUs in other diseases. (A) Volcano plots showing the fold change vs. g-values for vOTUs among 9 studies. The X-axis
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To establish the material for virome analysis, we
constructed a virus catalogue of 45,849 nonredundant
vOTUs derived from 715 deeply sequenced faecal
metagenomes based on the methodology developed
by recent studies [22, 23, 94, 95]. A significant
proportion of these vOTUs were newly found
compared with the existing human virus databases,
likely reflecting the advantage of deep metagenomic
sequencing for viral genome recovery [96] or the
specific characteristics of the Chinese population. The
current virus catalogues included on average 17.4% of

the sequencing reads in the original faecal
metagenomes, with some samples exhibiting viral
read proportions of 40-50%. This finding is
remarkably higher than previous estimates (usually
<3%) [81, 97, 98], although it aligns more closely with
Nayfach et al.’s estimation of 8.6% [94], suggesting the
presence of an unexplored extensive viral “dark
matter” in the human gut. Overall, our virus
catalogue and subsequent findings highlight the
efficacy of metagenome-based methodology for
exploring the complex human gut viral community.
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Consistent with previous studies [28, 99], the gut
viromes of both CKD patients and HCs were
dominated by several families, including Siphoviridae,
Myoviridae, and Podoviridae (containing crAss-like
viruses), all belonging to the dsDNA virus order
Caudovirales. Siphoviridae and Microviridae (a ssDNA
virus family that is prevalent in the human gut) were
significantly enriched in CKD patients. While most
members of these two families are temperate viruses
[100, 101], their specific functions in the CKD virome
remain unclear. Another prominent CKD-enriched
family was “Flandersviridae”, which contained 4
vOTUs consistently enriched in CKD patients. This
recently described viral taxon is highly abundant and
widespread in the human gut, suspected to be an
obligately lytic virus [52, 102]. Genome analysis of
these 4 “Flandersviridae” vOTUs showed that they
uniquely encoded a bacterioferritin gene, though their
relevance to CKD is still under investigation.
Importantly, all 4 “Flandersviridae” vOTUs were
independently associated with CKD, regardless of the
gut bacterial community, suggesting that they might
act on CKD status in a certain way that warrants
future exploration. To further investigate the
CKD-associated vOTUs, we connected them to gut
bacteria using both host-phage interactions and
statistical relationships. CKD-enriched vOTUs were
frequently connected to some widely reported
harmful bacteria, such as B. thetaiotaomicron (a gut
commensal that probably promotes enteric infections
and obesity [64, 103]), [Ruminococcus] gnavus (a
proinflammatory bacterium associated with multiple
diseases [104, 105]), Erysipelatoclostridium ramosum

(formerly  Clostridium ramosum, an obesogenic
bacterium [106, 107]), Enterocloster
bolteae/clostridioformis ~ (opportunistic =~ pathogens

previously included in the Clostridium XIVa group
[108]), and Flavonifractor plautii (a
flavonoid-degrading bacterium involved in CRC and
uraemic toxin production in CKD patients [20, 109]).
Conversely, HC-enriched vOTUs were generally
connected to beneficial species, including Blautia (one
of the most dominant gut microbial taxa with
probiotic properties such as biological transformation
and metabolic syndrome alleviation [110]),
Faecalibacterium, and Roseburia members. Given that
an extensive number of correlations existed between
CKD-associated vOTUs and these species, our
findings suggested that the viruses may interact with
bacteria to further influence disease progression.

To study the functional contents of gut viruses
and their relevance to CKD, we functionally
annotated the viral genes and performed a
comparative analysis between CKD-enriched and
HC-enriched vOTUs. The majority of the annotated

viral genes represented typical viral functions, such as
DNA replication/repair and nucleotide biosynthesis,
in accordance with previous observations [44]. Viral
AMGs were especially focused on because they can be
actively expressed during infection to reprogram host
metabolism and provide viruses with fitness
advantages [43, 111]. A considerable proportion (>5%)
of AMGs were involved in peptidoglycan
biosynthesis and degradation, with these genes being
more abundantly encoded by CKD-enriched vOTUs
than HC-enriched vOTUs. Peptidoglycan metabolism
genes are also enriched in the gut virome of RA
patients who are anti-cyclic citrullinated protein
antibody negative, indicating their potential
interactions with the immune system [39]. The most
prominent enzyme of these genes was peptidoglycan
DL-endopeptidase  (K21471), also known as
peptidoglycan ~ hydrolase  cwlO,  with  cell
wall-degrading activity [112, 113], which showed a
several times higher prevalence rate in the
CKD-enriched vOTUs than in HC-enriched vOTUs.
Virus-encoded peptidoglycan hydrolases are lytic
enzymes that locally degrade the peptidoglycan of the
bacterial cell wall during infection [114]. The
heightened production of peptidoglycan hydrolases
in CKD-enriched vOTUs suggests a potential shift
from lysogenic to lytic replication within the
temperate phage population, leading to increased
levels of proinflammatory bacterial debris that could
influence local innate immune responses and mucosal
immune system [115, 116], as previously observed in
the gut virome of IBD patients [31]. In addition to
K21471, several additional viral-encoded genes also
showed peptidoglycan hydrolase activity [117],

including  lysozyme  (K01185), peptidoglycan
LD-endopeptidase (K17733), and three
N-acetylmuramoyl-L-alanine = amidases  (K01447,

K01449, and K22409). Of these, K22409 was more
abundant in CKD-enriched vOTUs, whereas K01185
and K01449 were less frequent; subsequent studies of
these enzymes will help untangle the connections
between virus-mediated peptidoglycan degradation,
bacterial lysis regulation, and CKD pathogenesis.
Another striking finding was the lower
frequency of genes involved in NAD* biosynthesis in
CKD-enriched vOTUs compared to HC-enriched
vOTUs, coupled with reduced expression in the gut
virome of CKD patients. Various studies have verified
the presence of NAD* synthesis genes in viruses [118,
119] and revealed their indispensable role in phage
DNA replication and exploitation of host metabolic
pathways and biochemical processes during viral
infection [120]. The impact of reduced NAD*
synthesis in the virome of CKD patients is unknown
and is probably linked to viral reproduction,
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antioxidation, and other effects. Notably, there have
been numerous studies highlighting the disruption of
de novo NAD* biosynthesis in human cases of acute
kidney injury (AKI) [121-123]. Researchers have
found that in mouse models of AKI, there is a
decrease in renal NAD* levels, an increase in
quinolinate levels, and a reduction in the activity of
quinolinate phosphoribosyltransferase [121].
Moreover, the randomized double-blind clinical trial
has shown that the treatment aimed at restoring
NAD* could constitute a significant advance for
patients at risk of AKI [121]. Our findings suggest that
the gut virome of CKD patients also exhibits a de
novo NAD* biosynthetic downregulation, which
seems to hint at a broader metabolic dysregulation in
these individuals. This observation could open new
avenues for understanding the role of viral
communities in the pathophysiology of CKD and
might point towards potential therapeutic strategies
that target the gut virome to restore metabolic
balance.

Numerous studies have established associations
between gut microbiota and common diseases, often
identifying consistent microbiome changes across
multiple diseases [124-126]. Typically, systemic
diseases such as IBD and CRC are marked by the
presence of certain opportunistic pathogens [69, 124],
whereas cardiometabolic and immune diseases are
characterized by a depletion of potentially beneficial
microbes (e.g., the aforementioned short-chain fatty
acid (SCFA)-producing bacteria) [58, 127]. To
determine the generalizable scope of this knowledge
regarding gut viruses, we profiled the gut virome of 9
available Chinese cohorts with different diseases and
found that most CKD-associated viral signatures were
reproducible in cohorts with CVD, CRC, DKD,
hypertension, IBD, LC, and T2D cohorts. The
consistency of virus signatures across these diseases
may not only be correlated to their common changes
in the bacterial microbiome but also suggest that some
viruses can independently influence multiple diseases
through a consistent manner, such as
immunoregulation or viral infection [128]. Our results
highlight the importance of a broad exploration of the
gut viromes of microbiome-related complex diseases.

Unlike our whole-metagenome-based
technology, virus-like particle (VLP) enrichment
followed by subsequent metagenomic sequencing
(referred to as VLP metagenomic technology) has
shown promise in illuminating gut viromes across
diseases [129]. However, recent studies have revealed
that these two technologies substantially differ in
efficiency and coverage for viral identification [22, 96],
suggesting that a comprehensive “whole virome” in
faecal specimens should be measured using both

technologies. This represents a critical area for
improvement in future studies. CKD is a complex
disease with an uncertain aetiology and is often
accompanied by various complications, such as
hypertension, diabetes, and constipation. However,
due to the limited sample size in our study, we did
not conduct a specific analysis on the potential
impacts of these factors on the virome of CKD
patients. Future research should aim to further
explore these associations, as a more detailed
examination could uncover important insights into
how these coexisting conditions may interact with the
viral signatures associated with CKD. On the other
hand, considering the remarkable effect of disease
severity on the gut bacteriome of CKD patients [18,
130], its effect on the gut virome also needs to be
explored by future studies.

Conclusions

By a metagenome-wide analysis of the virome of
faecal samples from CKD patients and healthy
controls, we revealed that the gut viral community of
CKD was substantially altered, occurring across
different cohorts, host properties, disease severities
and underlying diseases. Our study identified
numerous CKD-associated viruses and uncovered
their 1) interactions with gut bacteria and 2) specific
functions that may be linked to substance metabolism
in the gut ecosystem. Overall, this research describes
an overview of the gut viral community of CKD
patients and HCs and implicates specific viruses in
CKD, offering new resources and insights to assess
viral involvement in other complex diseases.
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