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Abstract 

Background: Immunotherapy has revolutionized cancer treatment and holds great potential for them, including metastatic clear 
cell renal cell carcinoma (ccRCC). However, immune resistance remains a major obstacle, limiting its efficacy and durability. 
Understanding the mechanisms of immune tolerance in the tumor microenvironment (TME) is pivotal for overcoming these 
challenges and enhancing therapeutic outcomes. 
Methods: Over 2000 samples, including a real-world cohort of 230 advanced ccRCC patients treated with immune checkpoint 
blockade (ICB) were analyzed. Single-cell RNA sequencing data from 13 tumor regions were categorized into ICB-exposed, 
ICB-resistant, and ICB-responsive groups. Multiple robust algorithms and multiplex immunofluorescence were used to explore 
TME composition and macrophage heterogeneity. Spatial communication dynamics were further investigated. In vitro experiments 
were performed to evaluate the impact of SPP1 on 786-O and 769-P cells. Co-culture experiments with THP-1-derived 
macrophages, followed by Western blot, flow cytometry, and functional assays, were performed to investigate SPP1-mediated 
macrophage polarization and its impact on tumor progression. 
Results: The results revealed an elevated presence of Apolipoprotein E (APOE)+ macrophages in ICB-resistant ccRCC. Notably, 
higher APOE+ macrophage proportion indicated shorter prognosis and worse response to ICB (P < 0.001). Elevated expression of 
CCAAT Enhancer Binding Protein Delta (CEBPD) was markedly linked to several immunosuppressive pathways, hindering T cell 
recruitment, promoting exhaustion, ultimately diminishing poorer prognosis and worse ICB efficacy. Meanwhile, upregulated 
Secreted Phosphoprotein 1 (SPP1) significantly enhances the proliferation, clonal formation, and migration of ccRCC cells. 
Tumor-derived SPP1. Additionally, SPP1 signaling from malignant cells appeared to recruit APOE+ macrophages to tumor margins, 
and promotes macrophage polarization into APOE+ M2-like macrophages. In the vicinity of the tumor, these APOE+ macrophages 
shape immunosuppressive TME by releasing abundant TGF-β signals, limiting anti-tumor effector T cells activity in ICB-resistant 
tumors, and contributing to tumor progression. 
Conclusion: This study reveals the critical role of APOE+ macrophages in promoting immune suppression and resistance to ICB 
therapy in ccRCC. By promoting T cell exhaustion and immunosuppressive signaling, particularly via localized TGF-β, these spatially 
segregated macrophages undermine treatment efficacy. Targeting APOE+ macrophages, especially in conjunction with ICB, 
presents a promising strategy to overcome immune resistance and enhance outcomes for ccRCC patients. 

Keywords: APOE+ macrophages, Immune checkpoint blockade (ICB), Tumor microenvironment (TME), Clear cell renal cell carcinoma (ccRCC), Immune 
resistance 
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Introduction 
Renal cell carcinoma (RCC) is listed among the 

top ten most common malignant cancers worldwide, 
representing 4.2% of all new cancer diagnoses. The 
most common histological subtype, clear cell renal cell 
carcinoma (ccRCC), originates from the proximal 
renal epithelial tubules and leads to the majority of 
deaths related to cancer [1-3]. Significant challenges 
exist in the early detection of this disease, with around 
30% of ccRCC patients being diagnosed at 
presentation with distant metastasis. In recent years, 
the adoption of targeted therapies and 
immunotherapy in clinical practice has resulted in a 
slight increase in the overall survival rate for patients 
[4]. Nevertheless, variances in individual treatment 
responses and the development of drug resistance 
mean that most individuals eventually progress to the 
advanced ccRCC stage, which has a 5-year survival 
rate of under 10% [5, 6]. 

Immunotherapy that utilizes immune 
checkpoint inhibitors has surfaced as a promising 
strategy for treating various cancers by rejuvenating T 
cell activity and promoting the destruction of tumor 
cells [7]. Currently, a significant challenge limiting the 
widespread application of immune checkpoint 
blockade treatment (ICB) in ccRCC is the lack of 
robust and reliable biomarkers to predict therapeutic 
efficacy. 

According to the National Comprehensive 
Cancer Network (NCCN) guidelines, ICB is 
recommended as the first-line adjuvant treatment for 
high-risk renal cancer that defined by the 
International Metastatic RCC Database Consortium 
(IMDC) risk score [8], while only a small percentage of 
patients have realized substantial and lasting benefits 
[9, 10]. A subset of ccRCC patients experience rapid 
disease progression following ICB treatment, with 
approximately 20-30% demonstrating primary 
resistance or quick relapse post-therapy, underscoring 
the critical issue of immune tolerance. Consequently, 
understanding the mechanisms driving such 
resistance is crucial to improving patient outcomes 
and expanding the utility of ICB [11]. 

The tumor microenvironment (TME) is highly 
heterogeneous, providing a complex ecosystem that 
can profoundly influence both tumor progression and 
therapeutic resistance. This heterogeneity offers a 
valuable window for dissecting the intricate interplay 
between tumor cells and immune components, 
particularly in understanding how these interactions 
evolve over time and under therapeutic pressure [12, 
13]. Investigating the phenotypes and functions of 
specific immune cell populations infiltrating tumors 
at various stages of ccRCC progression or in response 

to ICB is vital. Such studies can uncover key 
molecular events that drive immune cell exhaustion, 
immune evasion, and impaired anti-tumor responses 
[14-16]. Moreover, identifying immune-regulatory 
signals and biomarkers associated with tumor 
evolution holds significant potential for developing 
novel drug targets and sensitization strategies for 
anti-tumor immunotherapy [17, 18]. These insights 
could also pave the way for new technologies to 
monitor tumor progression, therapeutic response, and 
prognosis through peripheral immune detection, 
ultimately advancing our understanding of immune 
modulation and tumor evolution of ccRCC. 

The role of tumor-associated macrophages 
(TAMs) in regulating tumor immunity and 
influencing responses to ICB therapy has been 
reported in previous studies [19]. Macrophages are 
traditionally characterized by a dual role in cancer 
immunotherapy, with M1-like macrophages 
displaying anti-tumor activity, while M2-like 
macrophages promote tumor growth, metastasis, and 
immune evasion. In the TME, TAMs predominantly 
exhibit an M2-like phenotype, contributing to tumor 
progression and resistance to ICB therapy [20, 21]. 
M2-like TAMs have been widely recognized for their 
critical role in the immunosuppressive environment 
of tumors. These TAMs can directly inhibit T cell 
activity by expressing high levels of surface 
molecules, including PD-L1 [22], CD206 [23], and 
CD163, which interact with T cell molecules such as 
PD-1, leading to immune evasion. Additionally, 
TAMs secrete chemokines, such as CCL2, CCL5, and 
IL-10, which recruit and induce other 
immunosuppressive cells, including regulatory T cells 
(Tregs) [24, 25], thereby further suppressing 
anti-tumor immune responses. Additionally, our 
further work, patients belong to early-TLS (tertiary 
lymphoid structures) group harbored more CD68 + 
CD163 + M2 infiltration. The presence of early-TLS in 
the former is thought to be associated with 
poor-prognosis, suggesting the significant role of 
TAMs in cancer progression [26]. 

Recent advancements in single-cell and spatial 
transcriptome sequencing have enabled deeper 
characterization of macrophage subtypes with distinct 
functional attributes. For instance, Bill et al. identified 
macrophages characterized by CXCL9 and SPP1 
expression to better elucidate the polarization and 
prognostic implications [27]. Ma et al. explored the 
transcriptomic diversity of TAMs at a single-cell level, 
categorizing them into seven distinct subtypes by 
unique functional markers, including lipid 
metabolism (APOE, APOC1, ACP5, FABP5), 
angiogenic factors (VEGFA, SPP1), IFN regulation 
(IDO, ISG15, CXCL8, CXCL9, CXCL10), and cell cycle 
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progression (MKI67, CDK1) [28]. These TAM subsets 
play critical roles in driving tumor progression, 
shaping the TME, and mediating varied responses to 
ICB therapy. 

A pan-cancer analysis has emphasized the 
pivotal role of APOE+ macrophages in influencing 
anti-tumor immunotherapeutic outcomes [29]. 
Notably, non-responders to ICB therapy exhibit 
higher infiltration of APOE+ macrophages compared 
to responders. Additionally, responders tend to have 
a greater spatial separation between APOE+ 
macrophages and CD8+ T effector exhausted cells. 
Preclinical studies have also demonstrated that 
combining APOE inhibitors with ICB therapy 
significantly enhances therapeutic efficacy in mouse 
models. These findings suggest that the presence of 
APOE+ macrophages is associated with poor response 
to ICB therapy, highlighting their potential as 
therapeutic targets to improve treatment outcomes. 

The importance of APOE+ macrophages in 
ccRCC remains poorly understood. Specifically, the 
effects of APOE+ macrophages on ccRCC tumor 
progression, their contribution to reshaping the 
immune microenvironment, and their impact on 
immunotherapy and underlying mechanisms are not 
yet fully elucidated. To investigate these, we first 
employed single-cell spatial multi-omics and 
multiplex immunofluorescence (mIF) to characterize 
the infiltration patterns of APOE+ macrophages 
within tissues and constructed a target gene network 
integrated with spatial cell-cell communication 
analysis, revealing their potential role in shaping the 
TME. Based on these findings, we conducted 
functional analyses, including in vitro transfection, 
colony formation assays, CCK-8 proliferation assays, 
and Transwell migration/invasion assays, to confirm 
the role of SPP1 in the progression of ccRCC. 
Furthermore, SPP1-based co-culture experiments 
combined with Western blot, ELISA, and flow 
cytometry demonstrated that tumor-derived SPP1 
regulates macrophage phenotypes and contributes to 
the immunosuppressive function of APOE+ 
macrophages. 

Method and Materials 
Data collection and processing 

Single-cell RNA sequencing (scRNA-seq) data 
(PRJNA705464) [30] were downloaded from the 
European Nucleotide Archive (ENA) database 
(https://www.ebi.ac.uk/ena/browser/home). This 
cohort comprised six patients with advanced disease, 
from whom different tumor regions and peripheral 
blood mononuclear cells were subjected to single-cell 
sequencing, encompassing proximal, distal, and 

central tumor areas (N = 29). The study primarily 
focuses on the tumor itself and its surrounding 
microenvironment; therefore, only 13 samples from 
three patients with varying immunotherapy 
responses were selected. Data from different tumor 
regions of each patient were analyzed, categorizing 
them into the Nivo-exposed group, Ipi/Nivo-resistant 
group, and Ipi/Nivo-completely remitted group, 
which correspond to the ICB-exposed group, 
ICB-resistant group, and ICB-responsive group, 
respectively. The subsequent analysis focused on 
single-cell sequencing data from 13 tumor regions (N 
= 13). Additionally, spatial transcriptome sequencing 
data (GSE210041) were obtained from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) [31]. 
Bulk sequencing data and clinical profiles were 
sourced from TCGA-KIRC (N = 530) and EMTAB3267 
(N = 53), accessible via The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov/) and 
ArrayExpress (https://www.ebi.ac.uk/ 
arrayexpress/). The Tumor Immune Dysfunction and 
Exclusion (TIDE, http://tide.dfci.harvard.edu/) 
algorithm was used to predict potential responders to 
immunotherapy in the two cohorts [32]. Three 
external immunotherapy cohort included GSE67501 
(N = 11) [33], and Checkmate cohorts (N = 311) [16], 
Miao et al. (N = 16) [34], which were acquired from the 
GEO database and previously published articles. A 
real-world ICB therapy cohort, FU-ICI (N = 230), were 
also used, and more detail could refer to prior studies 
[35]. The gene sequencing outcomes across the three 
groups were represented as transcripts per million 
(TPM), where mRNAs with a TPM value of less than 1 
were present in more than 90% of the samples that 
were not included in the analysis. Additionally, 
patients without corresponding mRNA profiles, 
clinical data, or follow-up timelines were eliminated 
to reduce the likelihood of bias. Overall survival (OS) 
and progression free interval (PFS) were set as clinical 
outcome parameters. 

Quality control, clustering and annotation of 
single-cell data 

For the processed 10x data, the R package Seurat 
version 4.3.0 was employed for the initial 
preprocessing stages [36]. Double cells were removed 
using the R package DoubletFinder [37] and inferior 
cells were filtered. Exclusion criteria: 1) per cell with 
detected a gene number > 6000 or < 200; 2) The 
proportion of mitochondrial gene count more than 
10%. In the gene filtration step, any genes expressed 
in fewer than five cells were disregarded. The 
function CellCycleScoring() was employed to assess 
the cell cycle status, and subsequently, the regressout 
algorithm within the ScaleData() function was applied 
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to reduce the influence of cell cycle variations. 
Following the normalization and scaling of expression 
data, batch effects were addressed using the R 
package Harmony, which also facilitated the selection 
on of the top 2000 variable genes. Principal 
Component Analysis (PCA) was applied to the top 
2000 highly variable genes to achieve dimensionality 
reduction of the data. By extracting the principal 
components that account for the greatest variability, 
PCA reduces dimensionality while retaining the 
majority of important biological information. 
Subsequently, based on the first 15 principal 
components, the Leiden algorithm was employed to 
identify cell populations by optimizing modularity. 
Finally, the UMAP algorithm was utilized to further 
reduce dimensionality, generating a two-dimensional 
embedding that optimizes the local structural 
relationships between data points. The annotation of 
the clustered cell populations was conducted 
manually by referencing signature genes associated 
with various cell types and consulting relevant 
literature [38, 39]. Visualization of the data was 
executed using the SCP R package (available at 
https://github.com/zhanghao-njmu/SCP) alongside 
the omicverse Python module [40]. 

BayesPrism deconvolution analysis 
In this research, we employed the BayesPrism 

algorithm to separate bulk RNA sequencing data of 
EMTAB3267 and TCGA-KIRC cohorts into its 
individual cell types. BayesPrism is a probabilistic, 
model-driven framework tailored for accurately 
deconvoluting bulk gene expression data by utilizing 
reference single-cell RNA sequencing datasets. This 
approach integrates a Bayesian model that effectively 
manages the noise found in bulk expression data as 
well as the uncertainty that is intrinsic to single-cell 
reference datasets [41]. 

TFvelco and PAGA analyses 
The TFvelo algorithm was used to examine the 

dynamic behavior of transcription factors (TFs) by 
leveraging single-cell RNA velocity data. By 
combining RNA velocity with recognized TFs 
regulatory networks, TFvelo allows for the inference 
of temporal variations in TFs activity throughout 
cellular processes. We employed TFvelo on our 
single-cell RNA-seq dataset, using default settings to 
model the temporal dynamics of TFs. Prior to this, the 
RNA velocity data underwent preprocessing, and 
regulatory interactions were established based on 
known relationships between TFs and their targets. 
This approach provided us with the capability to 
monitor shifts in TFs activity across different cellular 
states, offering valuable insights into the mechanisms 

of transcriptional regulation. The analysis was carried 
out using the TFvelo package in the Python.[42]. In 
addition, Partition-based graph abstraction (PAGA) 
analysis was performed by RunPAGA() implemented 
in SCP package to infer connectivity and potential 
lineage relationships between cell clusters in 
single-cell RNA sequencing data [43]. 

Infercnv analysis 
Epithelial cells were isolated, and a novel 

gene-cell matrix was created. The somatic large-scale 
chromosomal copy number variation (CNV) score for 
each ductal cell was computed with the use of the R 
package inferCNV (v1.6.0). Following the data 
requirements specified in the inferCNV 
documentation (https://github.com/broadinstitute/ 
inferCNV), we assembled a raw counts matrix, an 
annotation file, and a gene/chromosome position file. 
Normal epithelial cells were used as reference normal 
cells. The analysis with inferCNV began with 
parameters, including 'denoise,' default hidden 
Markov model (HMM) settings, and a cutoff 
threshold of 0.1. To reduce the likelihood of erroneous 
CNV identifications, the default Bayesian latent 
mixture model was applied to ascertain the posterior 
probabilities of CNV changes in each cell, adopting a 
standard threshold value of 0.5 [44]. 

Construction of Regulon network and AUCell 
analysis 

The SCENIC package (version 1.2.4) [45] was 
utilized to build the gene regulatory network. This 
undertaking encompassed an examination of 38 
transcription factor (Regulon) motif enrichment and 
co-expression modules derived from the dataset. 
Furthermore, the AUCell package (version 3.12) was 
used to calculate and rank the activities of Regulons 
based on their Regulons specificity scores. GENIE3 
facilitated the identification of co-expressed genes 
related to each Regulon, and Spearman's correlation 
was then applied to determine the relationships 
between Regulons and their target genes. Using the 
findings from the co-expressed genes associated with 
each TF, we developed the Regulon-target gene 
network, which was subsequently annotated with 
references to GO and KEGG pathways. To compare 
the functional status of T cells across different groups, 
we conducted an AUCell score analysis for various 
genes associated with cytotoxicity (including GZMB, 
GZMH, GZMK, GZMA, TIA1, PRF1, LAMP1, GNLY, 
FASLG, SLAMF7, ZAP70, CD69, TNF) and exhaustion 
(comprising LAG3, PDCD1, TIGIT, HAVCR2, CD160, 
CTLA4). 
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Cell-to-cell communication analysis in 
single-cell analysis 

To understand the communication between cells 
and the interaction from ligand to receptor (L-R), we 
conducted an analysis using Cellchat (v.2.0) [46]. We 
analyzed the distinct communication characteristics 
between the ICB-resistant group and the ICB-exposed 
group using the CellChatDB.human database. 
Intercellular communication for each signaling 
pathway was established through the 
computeCommunProbPathway() function, while 
graphical representations were generated using the 
netVisual_chord_gene() function. The inference of 
intercellular communication networks was conducted 
with default parameters. The rankNet function was 
employed to evaluate the overall information flow, 
which allowed for the identification of signals 
exhibiting significant differences in activity between 
the two groups. For each specific pathway, we 
calculated the network centrality measures for each 
cell group, identifying the dominant senders, 
receivers, mediators, and influencers within the 
cell-cell communication network. For more details, 
please refer to the tutorial documentation 
(https://github.com/sqjin/CellChat/tree/master/tu
torial). 

Spatial transcriptome analysis 

The R package Seurat was employed to carry out 
QC, clustering, and gene expression analysis on the 
acquired spatial transcriptomics (ST) data. All 
analyses were conducted on a representative ST 
sample (GSM6415705, Stage IV, ISUP3) from the 
GSE210041 dataset. Mitochondrial and ribosomal 
genes were excluded to minimize technical noise. 
Low-abundance genes, defined as those expressed in 
fewer than 10 spots, were filtered out to ensure robust 
expression data. Data normalization was performed 
using SCTransform to stabilize variance across spots. 
PCA was conducted on the top 3,000 variable genes, 
and the first 20 principal components were selected 
for downstream analysis. To analyze the spatial 
arrangement of the cell subclusters detected from the 
single-cell cohort, the ST and single-cell 
RNA-sequencing expression matrices were merged 
and co-dimensioned through the use of Robust Cell 
Type Decomposition (RCTD) [47]. RCTD utilizes a 
probabilistic approach that incorporates scRNA-seq 
data as a reference to estimate the composition of 
various cell types within each spatial transcriptomics 
spot. This technique represents gene expression as a 
weighted combination of cell types, considering both 
variation specific to genes and technical noise present 
in the spatial data. The investigation of cell-to-cell 

interactions and ligand-receptor (L-R) identification 
was performed with Stlearn algorithms [48]. The 
spatial map illustrating cell dependencies was 
generated using the MISTy algorithms implemented 
in the MISTy (v1.2.1) package [49]. The estimations of 
cell types derived from RCTD across all slides were 
amalgamated into a cohesive model utilizing two 
different spatial contexts: (1) an intrinsic context, 
evaluating correlations among deconvolution 
estimates in a particular location; (2) a juxta context, 
which consolidates deconvolution estimates from 
adjacent spots within a maximum distance of 5. The 
aggregated standardized importance values (median) 
from each context across all slides were interpreted as 
spatial relationships between cell types, such as 
co-localization or mutual exclusion, although this 
does not suggest any causal connections. Before 
aggregation, predictors displaying an R² value below 
10% for the target cell type were omitted from each 
slide. 

Immunohistochemical (IHC) staining analysis 
Tissue chip from 230 individuals [35] who had 

undergone either radical or partial nephrectomy at 
the Department of Urology, Fudan University 
Shanghai Cancer Center (FUSCC, Shanghai, China), 
were chosen for this analysis. We conducted IHC 
staining to evaluate the expression of APOE 
(anti-APOE antibody: Cat. PA5-27088, ThermoFisher, 
USA) and PD-L1 (anti-PD-L1 antibody: Cat. DF6526, 
RRID: AB_2838488, Affinity, USA) and CEBPD 
(anti-CEBPD antibody: Cat. AF9027, RRID: 
AB_2843218, Affinity, USA) between ICB-response 
and ICB-resistant tissues. Detailed IHC procedures 
could refer to our prior studies [50, 51]. Tumor 
samples were gathered and preserved in a 4% 
formaldehyde solution for 24 h. Subsequently, these 
samples were embedded in paraffin and sectioned 
into approximately 5 μm thick slices. The tumor 
sections underwent deparaffinization and 
rehydration, followed by the inhibition of 
endogenous peroxidase activity and antigen retrieval. 
After that, a 5% BSA solution was applied to the 
tumor sections to minimize non-specific binding for 
30 min, after which they were incubated with primary 
antibodies overnight. Following a secondary antibody 
incubation for one hour, the tumor sections were 
visualized using a DAB kit. 

Multiplex immunofluorescence analysis 
Multiplex immunofluorescence (mIF) was 

performed to evaluate the spatial distribution and 
co-expression of specific markers within the tumor 
microenvironment. Formalin-fixed, paraffin- 
embedded (FFPE) tissue sections were subjected to 



Theranostics 2025, Vol. 15, Issue 11 
 

 
https://www.thno.org 

5317 

sequential staining using the Opal™ multiplex 
immunofluorescence system (Akoya Biosciences). The 
following primary antibodies were employed: CD68 
(macrophage marker), CD163 (M2 macrophage 
marker), APOE (apolipoprotein E), and CK 
(cytokeratin, epithelial marker). DAPI 
(4',6-diamidino-2-phenylindole) was used for nuclear 
counterstaining. After deparaffinization and 
rehydration, antigen retrieval was performed using 
Tris-EDTA buffer (pH 9.0) in a pressure cooker. The 
tissue sections were blocked with a protein blocking 
buffer to reduce non-specific binding. Each primary 
antibody was applied sequentially, followed by the 
corresponding Opal fluorophore-conjugated 
secondary antibody. Between each staining round, 
antigen retrieval was repeated to strip off the previous 
antibody complex without affecting the fluorophore 
conjugates [26, 35]. The fluorophores used were as 
follows: Opal 520 for CD68, Opal 570 for CD163, Opal 
620 for APOE, and Opal 690 for CK. Finally, DAPI 
was added to visualize the nuclei. 

The stained slides were imaged based on the 
Vectra Polaris™ imaging system (Akoya Biosciences) 
under multispectral conditions. Images were captured 
at 20× magnification, and the fluorescence signals for 
each marker were unmixed into individual channels 
using inForm software (Akoya Biosciences). This 
method allowed for the precise localization and 
quantification of the various immune cell populations 
and their interactions with tumor cells, providing 
critical insights into the tumor microenvironment. 

Cell lines culture and transfection 
Human ccRCC lines 786-O and 769-P were 

cultured in RPMI-1640 medium supplemented with 
10% fetal bovine serum (FBS) and 1% 
penicillin/streptomycin. To knock down the 
expression of SPP1, two independent shRNA vectors 
(SPP1 Sh1 and Sh2) and a control shRNA (shControl) 
were transfected using Lipofectamine 3000. For the 
overexpression of SPP1 (SPP1 OE), the SPP1 
expression vector or an empty vector control was 
transfected. SPP1 Sh-1: CCGAGGTGATAGTGTGG 
TTTA, SPP1 Sh-2: CCACAAGCAGTCCAGATTATA. 

Colony formation analysis 
The assay for colony formation involves the 

initial seeding of cells in a 6-well plate, followed by a 
culture period lasting 14 days. After this incubation 
phase, 4% polyformaldehyde is utilized to fix the 
colonies, which are then stained with crystal violet 
and counted manually. The quantities of colonies 
from various experimental groups are measured and 
analyzed to derive pertinent conclusions. 

CCK-8 assay analysis 
The assessment of cell proliferation is conducted 

using the CCK-8 assay technique. Cells are placed in a 
96-well plate and treated with the CCK-8 solution at 
specific time intervals of 24, 48, 72, and 96 h. To 
determine cell proliferation, the absorbance is 
measured at a wavelength of 450 nm. 

Transwell invasion assay 
For conducting the transwell invasion assay, a 

24-well Transwell chamber equipped with an 8.0 μm 
pore polycarbonate membrane insert is employed. 
Initially, 50 μL of a diluted Matrigel solution (mixed at 
a ratio of 1:8 in serum-free medium) is used to coat the 
upper chamber, which is then incubated at 37°C for 2 
hours. The 786-O and 769-P cell lines are treated with 
trypsin, reconstituted in serum-free medium, and 
adjusted to a concentration of 1 × 10⁵ cells per 200 μL 
prior to being placed in the upper chamber. To act as a 
chemotactic agent, the lower chamber is filled with 
600 μL of complete medium containing 10% FBS. 
Following this, the cells are incubated at 37 °C with 
5% CO₂ for 24 h. Once incubation is complete, a cotton 
swab is employed to eliminate non-invading cells 
from the upper chamber, and the membrane is 
subsequently washed with PBS. The cells that have 
invaded and are attached to the lower surface are 
fixed using 4% paraformaldehyde for 15 min, stained 
with 0.1% crystal violet for an additional 15 min, 
washed again with PBS, and left to air dry. The 
number of invading cells is then counted in 5 
randomly chosen fields within each well, using an 
optical microscope set at 100× magnification. 

Wound healing assay 

Inoculate 786-O and 769-P cells into 6-well plates 
and culture them in complete medium until they 
reach 90-100% confluence. Use a 10μL pipette tip to 
create a straight wound line on the cell monolayer. 
Gently wash the wells with PBS to remove any 
detached cells, and then add fresh serum-free 
medium to minimize the impact of cell proliferation. 
Capture images using an inverted microscope at 0 h 
and 24 h. Utilize ImageJ software to measure the 
wound area at each time point to quantify the wound 
closure rate. All experiments are conducted in 
triplicate. 

Co-culture analysis 

THP-1 monocytes were differentiated into M0 
macrophages by priming with 100 nM PMA for 48 h, 
followed by co-culture with three experimental 
groups: (i) Ordinary group (macrophages in standard 
RPMI-1640 medium with 10% FBS), (ii) Vetor 
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co-cultured condition medium (CM) group 
(macrophages co-cultured with vector-transfected 
cells), and (iii) SPP1 OE co-cultured CM group 
(macrophages co-cultured with SPP1 OE renal cancer 
cells). Furthermore, in further phenotypic analysis, 
three groups were divided, including: (i) Vetor 
co-cultured CM group (macrophages co-cultured 
with vector-transfected cells), (ii) SPP1 OE co-cultured 
CM group (macrophages co-cultured with SPP1 OE 
renal cancer cells), and (iii) SPP1 OE co-cultured CM + 
APOE Ab group (macrophages co-cultured with SPP1 
OE renal cancer cells and APOE antibody). All CM 
were centrifuged (2000 rpm, 10 min) to remove debris, 
sterilized through 0.22 μm membranes, and subjected 
to cross-lineage validation (e.g., 786-O-derived CM 
applied to 769-P) to eliminate cell type-specific bias. 

Western Blot (WB) analysis 
Cells were lysed with RIPA buffer containing 

protease inhibitors. The protein concentration was 
determined using a BCA kit. Proteins were separated 
by SDS-PAGE and transferred onto PVDF 
membranes. After blocking with 5% non-fat milk, the 
membranes were incubated with primary antibodies 
overnight at 4 °C, followed by secondary antibodies 
for 1 h at room temperature. Protein bands were 
visualized using ECL reagents and analyzed with 
ImageJ software. 

Flow cytometry analysis 
Macrophages were incubated for 48 h in either 

vector Co-cultured CM or SPP1 OE co-culture CM. 
After the treatment, the cells are harvested by gentle 
digestion with trypsin, followed by two washes with 
ice-cold PBS, and then resuspended in FACS buffer, 
which consists of PBS with 2% FBS. For the staining of 
surface markers, the cells need to be incubated with 
fluorochrome-conjugated antibodies targeting 
CD206-PE, APOE-APC, and PDL1-FITC at 4 °C in the 
dark for 30 min. Following this incubation period, the 
cells should be washed twice with FACS buffer and 
then resuspended in 500 μL of PBS before proceeding 
with the analysis. Flow cytometry was performed 
using a BD FACSCanto II flow cytometer, with the 
data analyzed using FlowJo software. The 
quantification of positive cells for each marker was 
accomplished following the established gating 
strategy. 

ELISA analysis 
The cell culture supernatant was collected, 

centrifuged at 1000 × g for 10 min at 4 °C, and stored 
at -80 °C. Cytokine levels (CCL2, TGF-β, and IL-10) 
were measured using an ELISA kit according to the 

manufacturer's instructions. Briefly, a 96-well plate 
was pre-coated with a capture antibody, blocked with 
1% BSA, and then incubated with either the 
supernatant or standard for 2 h. After washing, 
biotin-labeled detection antibody and 
HRP-streptavidin were added, followed by the 
addition of TMB substrate for color development. The 
absorbance was measured at 450 nm. All experiments 
were performed in triplicate. 

Statistical analysis 
The analysis of categorical data was performed 

using Fisher's exact test and the rank sum test. For 
comparisons between two groups, a T-test was 
employed, whereas ANOVA facilitated pairwise 
comparisons among several groups. K-M curves were 
plotted for survival analysis. All statistical analyses 
were performed using, R (Version: 4.2.2) and Python 
(Version: 3.9). A two-tailed p-value < 0.05 was 
recognized as statistically significant. 

Results 
APOE+ macrophage enrichment correlates 
with immunotherapy resistance in ccRCC 

In this study, we integrated multi-omics data, 
including scRNA-seq, ST, bulk RNA-seq, and in vitro 
experiments to comprehensively explore the key 
immunosuppressive mechanisms in the ICB response 
of ccRCC (Figure S1, Table S1). Firstly, a total of 62, 
840 cells from 13 samples were ultimately included to 
delineate the cellular landscape acorss the 
ICB-response, ICB-expose, and ICB-resistant groups 
(Figure S2A). Uniform Manifold Approximation and 
Projection (UMAP) was applied for dimensionality 
reduction and cell clustering (Figure S2B). Based on 
signature gene expression, ten distinct cell types were 
identified (Figure 1A), including epithelial cells, NK 
cells, T cells, mast cells, endothelial cells, 
macrophages, monocytes, dendritic cells, and smooth 
muscle/pericytes (SMC/peri cells). T cells were 
characterized by high expression of CD3D, CD3E, and 
CD3G, while NK cells exhibited elevated expression 
of NKG7 and KLRB1. B cells predominantly 
expressed MS4A1, CD79A, and CD79B, and 
monocytes showed high levels of TPSAB1 and CPA3. 
Macrophages were marked by increased expression of 
C1QA and C1QB, and dendritic cells by CD1C and 
CD1E. Epithelial cells were distinguished by high 
expression of EPCAM and KRT8, endothelial cells by 
VWF and PECAM1, and smooth muscle/pericytes by 
ACTA2, MYH11, ABCC9, PDGFRB, and RG55 (Figure 
1B-C, Figure S2C). 
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Figure 1. Increased APOE+ macrophages in immune checkpoint blockade (ICB)-resistant tumors. (A) Uniform Manifold Approximation and Projection (UMAP) 
visualization of ten distinct cell populations. (B) Density plot showing the expression levels of CD3D, S100A8, C1QA, PECAM, CD79A, CD1C, EPCAM, and ACTA2 across 
62,840 cells. (C) Stacked violin plot illustrating the expression of signature genes across the ten cell types. (D) Distribution of ten cell types classified by ICB response status (left) 
and tissue preference across ICB groups (right). (E) Heatmap showing the top 10 differentially expressed genes (DEGs) across ICB groups, along with density plots highlighting 
CST3, APOE, CTSD, PDK4, FTH1, and C3 expression. (F) Immunohistochemistry (IHC) comparison of APOE expression between ICB-resistant and ICB-responsive samples. 
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Among the three groups, the ICB-resistant group 
exhibited significantly higher proportion of TAMs 
infiltration, as well as increased tissue preference 
(Figure 1D). TAMs demonstrated a distinct 
preference for the tumor center, as well as both distal 
and proximal regions of ICB-resistant tumors, 
although their proportions varied. This observation 
suggests a potential link between high TAM 
infiltration and reduced immunotherapy efficacy 
(Figure S2D-E). To further investigate, we calculated 
cell correlations across the groups (Figure S2F). 
Differentially expressed genes (DEGs) were 
identified, and the top 10 were visualized. As shown 
in Figure 1E, genes such as CST3, CTSD, APOE, PDK4, 
NURP1, KCNMA1, SERPINA1, FTH1, and C3 were 
among the most highly expressed, particularly in 
TAMs, in the ICB-resistant group. 

Given the special role of APOE+ macrophages in 
influencing immunotherapy outcomes, as previously 
highlighted in a pan-cancer analysis [29], we 
conducted IHC to evaluate APOE expression in both 
ICB-resistant and ICB-responsive patients. The results 
revealed that ICB-resistant patients exhibited higher 
levels of APOE expression (85 vs. 145, P < 0.05) 
(Figure 1F). To further validate these findings, we 
analyzed APOE expression in an independent 
immunotherapy cohort (the Checkmate cohort) 
(Figure S2G), which similarly showed elevated APOE 
levels in patients who experienced no clinical benefit 
(NCB) compared to those with clinical benefit (CB) (P 
= 0.02). In FU-ICI cohort (N = 230), we found high 
expression of APOE correlated to a shorter OS (P = 
0.002) and PFS (P < 0.001) (Figure S2H). Patients 
exhibiting elevated levels of APOE expression were 
more likely to encounter progressive disease (PD) or 
stable disease (SD) events compared to those with 
lower APOE expression levels. This observation 
suggests that heightened APOE levels may be linked 
to resistance to immunotherapy (all P < 0.05, Figure 
S2I). Based on this evidence, we hypothesize that 
APOE+ macrophages play a central role in the 
development of ICB resistance in ccRCC. 

APOE+ macrophages as key drivers of ICB 
resistance through lipid metabolic 
reprogramming 

To validate the hypothesis that APOE+ macro-
phages contribute to ICB resistance, we extracted all 
macrophages and performed re-clustering. 
Eventually, this analysis identified six distinct 
macrophage clusters (Figure 2A), and the top 5 
differentially DEGs for each macrophages clusters 
were specifically illustrated in Figure 2B. 
Additionally, in reference to a published study [27], 
we compared the expression levels of SPP1 and 

CXCL9 across the six clusters (Figure 2C). As a result, 
six macrophage populations were identified, includ-
ing APOE+ macrophages, CXCL9+ macrophages, 
HLA+ macrophages, MRC1+ macrophages, and 
NKG7+ macrophages. Notably, SPP1+ and APOE+ 
macrophages constituted the majority of macro-
phages in ICB-resistant tumors. Furthermore, both 
APOE+ and SPP1+ macrophages showed a marked 
preference for the resistant tumor microenvironment 
(Figure 2D). 

Further analysis using TFvelo and PAGA 
algorithms revealed that APOE+ macrophages are 
positioned at the developmental terminal, indicating 
they represent a terminally polarized macrophage 
state (Figure 2E-F). We found that APOE+ macro-
phages demonstrated high activity in lipid metabolic 
processes and oxidative phosphorylation pathways 
(Figure S3A), consistent with the characteristics of 
lipid-associated tumor-associated macrophages 
(LA-TAMs) [28]. Lipid metabolism in macrophages is 
closely linked to immunosuppression and immune 
tolerance functions [52, 53], and LA-TAMs are known 
to actively suppress anti-tumor immune responses 
while promoting tumor progression [54]. 

mIF analysis confirmed a significantly greater 
presence of APOE+ macrophages in the ICB-resistant 
group compared to the immune-responsive group. 
Notably, many of these macrophages exhibited high 
expression levels of CD68 and CD163, indicating 
M2-like macrophages, which are known for their roles 
in inflammation suppression and tumor progression 
[55] (Figure 2G). To combine phenotypic features of 
ccRCC patients, we conducted BayesPrim 
deconvolution algorithm in FU-ICI cohort (N = 230). 
The results showed that higher APOE+ macrophage 
proportion indicated shorter OS (P < 0.001) and PFS (P 
< 0.001) (Figure 2H). Meanwhile, despite receiving 
ICB treatment, patients with high APOE+ macrophage 
infiltration characteristics may be more likely to have 
disease progression and less likely to benefit from it 
(all P < 0.05, (Figure 2I)). To further distinguish 
between ICB-sensitive and ICB-resistant patients, we 
employed the TIDE algorithm, followed by 
BayesPrim deconvolution to analyze macrophage 
composition in the EMTAB3267 (Figure S3B-D) and 
TCGA-KIRC datasets (Figure S3E-G). The results 
revealed that non-responders demonstrated higher 
infiltration of APOE+ macrophages compared to 
responders (all P < 0.05). The Kappa consistency test 
indicated a favorable classification consistency among 
observers  (all P < 0.05), suggesting the reliability of 
the segregated macrophages classification. Collect-
ively, the infiltration of APOE+ macrophages, charac-
terized by elevated lipid metabolism, is a strong 
predictor of poor immunotherapy efficacy in ccRCC. 
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Figure 2. APOE+ macrophages correlate with poor ICB response. (A) UMAP plot illustrating six macrophage populations. (B) Top five DEGs across the six 
macrophages subtypes. (C) Comparisons of SPP1 and CXCL9 among the six macrophages. (D) Six macrophage distribution classified by ICB groups(left); Tissue preference of 
six ten populations across ICB groups(right). (E) TFvelo analysis. (F) PAGA analysis. (G) Comparison of cellular components between resistant and response groups assessed by 
multiplex immunofluorescence (mIF). Red arrows represent high APOE expression in CD68highCD163high (M2-like) cells, and blue arrows represent low APOE expression in 
CD68highCD163low (M2-like) cells. CK, cytokeratin (white); DAPI, 4, 6-diamidino-2-phenylindole (mazarine); CD68, Macrophage marker(cycan); CD163, M2-like marker 
(orange); APOE, Apolipoprotein E(yellow). (H) K-M plots demonstrated distinct overall survival (OS) and progression-free survival (PFS) outcomes for groups classified by 
APOE+ macrophage. (I) Comparison of ICB response rates between high and low APOE+ macrophage proportion groups. CR: complete response; partial response; PR: partial 
response; PD: progression disease; SD: stable disease. 
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Upregulated CEBPD in APOE+ macrophages 
correlates with poor response to ICB therapy 

To further elucidate the mechanisms by which 
APOE+ macrophages impair the efficacy of ICB 
therapy, we constructed a regulon-target-function 
network. Based on the SCENIC analysis, we identified 
differences in regulon activities among various 
macrophage populations across the ICB-responsive, 
ICB-exposed, and ICB-resistant groups (Figure S4A). 
Notably, APOE+ macrophages in resistant patients 
exhibited higher levels of AR, MLX, JUN, JUNB, FOX, 
KLF6, CEBPA, KLF2, KLF4, CEBPB, CEBPD, USF2, 
SPI1, and DRAP1 (Figure 3A). Compared to other 
tumors, these regulons also exhibited higher 
expression levels in the proximal, distal, and central 
regions of ICB-resistant tumors, as well as in adjacent 
tissues. These results suggested that these regulons 
are potential hallmark features of ICB-resistant 
tumors and warrant further research (Figure 3B). 
Furthermore, we constructed directly positive regulon 
network specific to APOE+ macrophages (Figure 3C) 
to identify corresponding target genes associated with 
each regulon (Figure 3D, Figure S4C-E). Interestingly, 
CEBPD was particularly notable for directly 
regulating multiple genes such as ALK, ANG, FGGY, 
KLF99, and TCEA2. These targeted genes were 
enriched in immune-suppressive signaling pathways, 
including the negative regulation of focal adhesion 
assembly, negative regulation of chemotaxis, negative 
regulation of cell-substrate junction organization, 
negative regulation of B cell proliferation, and PD-L1 
expression and PD-1 checkpoint pathway in cancer 
(Figure S4F). 

Secretion of chemokine are crucial in recruiting T 
cells, APOE+ macrophage in ICB-resistant group 
showed relatively lower chemokine transcriptional 
activity, such as CXCL1, CXCL2, CCL4, CCL5, CCL7, 
CCL13, and CCL18(Figure S4G), among which CCL4 
(P < 0.001) and CCL5(P < 0.001) (Figure S4H) were 
tightly related to CD8+ T cells [56]. Evidence above 
suggested that activation of these pathways by 
CEBPD in APOE+ macrophages lead to the 
suppression of effector immune cell function by 
restricting the migration and activity of effector T cell 
and NK cells, suppressing B cell proliferation, and 
enhancing the PD-L1/PD-1 pathway, thereby 
reducing the efficacy of ICB therapy. To further asses 
the suitability of CEBPD as a biomarker, we 
systematically evaluated its expression and 
prognostic correlation among different ICB samples. 
Notably, its expression significantly increased in 
APOE+ macrophages within the ICB-resistant patients 
(Figure 3E). Furthermore, to validate these findings, 
we further compared the expression of CEBPD 

(Figure 3F) and PD-L1 (Figure 3G) among resistant 
and response patients based on IHC analysis, and the 
results showed that CEBPD significantly upregulated 
in resistant patients. Further validation was 
performed across two independent ICB therapy 
cohorts (GSE67501 cohort, N = 11; Miao et al. cohort, 
N = 16) revealed a trend of higher CEBPD expression 
in non-responders compared to responders, although 
the difference did not reach statistical significance 
(Figure S4I). 

In a real-world cohort collected at our center, the 
FU-ICI cohort, high CEBPD expression related to 
shorter OS (P < 0.001, HR = 1.25, 95%CI: 1.18-1.359) 
and PFS (P < 0.001, HR = 1.08, 95%CI: 0.368-1.634) 
(Figure 3H). Patients with high CEBPD expression 
occurred more SD and PD events, and overall, 
derived less benefit from ICB strategy (all P < 0.05, 
Figure 3I). Taken together, these results suggest that 
CEBPD-driven immune suppression in APOE+ 
macrophages contribute to ICB resistance in ccRCC, 
highlighting CEBPD as a potential therapeutic target 
to overcome immunotherapy resistance. 

Heterogeneous epithelial populations show 
distinct preferences in ICB-resistant groups 

Given the pivotal role of the TME in shaping 
immune responses, we next focused on the 
heterogeneity of epithelial populations to explore how 
they might contribute to ICB resistance. We identified 
nine distinct epithelial cell clusters across all samples 
(Figure 4A), with cluster EP0 and EP1 demonstrating 
a specifically stronger association with ICB-resistant 
groups (Figure 4B). Each of these epithelial clusters 
exhibited unique transcriptomic profiles, with 
differential enrichment into various HALLMARK 
pathways (Figure 4C). Specifically, EPI0 was 
characterized by elevated adipogenesis, xenobiotic 
metabolism, glycolysis metabolism, hypoxia, 
MTORC1 signaling and decreased Wnt/β-catenin 
signaling, while EPI1 was associated with allograft 
rejection, complement, IL6-JAK/STAT3 signaling and 
cell cycle regulation, such as E2F targets and G2M 
checkpoint (Figure 4D-E). 

To further distinguish malignant epithelial cells 
in ccRCC, we inferred somatic large-scale 
chromosomal CNV and calculated the CNV score for 
each epithelial cluster, using normal epithelial cells as 
a reference. After obtaining the CNV score of each 
cell, we re-clustered all tested epithelial cells into five 
categories based on the scores (Figure 4F). Clusters 1, 
2, and 3 exhibited significantly higher CNV scores 
compared to the other two groups (Figure 4G-H), 
thereby classifying them as tumor cells. This 
classification was further validated by the elevated 
expression of known ccRCC markers, including 



Theranostics 2025, Vol. 15, Issue 11 
 

 
https://www.thno.org 

5323 

NDFA4L2, CA9, and MET, which were highly 
expressed in the malignant epithelial cells identified 
by CNV analysis, consistent with previous studies 
[57] (Figure 4I-J). 

Additionally, we compared the gene expression 
profiles of tumor cells between the ICB-resistant and 
ICB-expose groups. Notably, genes such as CST3, 
GPX3, and CXCL14 were significantly elevated in the 

ICB-resistant group, suggesting that these genes may 
serve as potential biomarkers for identifying ICB 
resistance in ccRCC (Figure 4K). Overall, these 
findings highlight the heterogeneity of epithelial 
populations in ccRCC and suggest that specific 
transcriptomic and genomic features, particularly in 
EP0 and EP1, may contribute to ICB resistance. 

 
 

 
Figure 3. Network of regulon-target gene interactions. (A) Different regulon activities across different macrophages among the three groups. (B) Comparative analysis 
of positively regulated regulons in different tumor regions. (C) Network of directly activated regulons and their interactions. (D) CCEBPA, CEBPB, and CEBPD regulons and their 
top associated target genes. (E) Differential expression of CEBPA, CEBPB, and CEBPD across ICB groups. (F) Comparison of CEBPD expression between ICB-resistant and 
ICB-responsive patients. (G) Differential expression of PD-L1 between ICB-resistant and ICB-responsive patients. (H) Kaplan-Meier survival curves illustrating overall survival 
and progression-free survival stratified by CEBPD expression, using the median CEBPD value as the cutoff. (I) Analysis of ICB response rates based on high versus low CEBPD 
expression levels. CR: complete response; PR: partial response; PD: progressive disease; SD: stable disease. 
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Figure 4. Epithelial heterogeneity across ICB groups. (A) UMAP visualization of nine epithelial cell populations. (B) Tissue preference of each epithelial subset, assessed 
using the Ro/e index. (C) Differential expression of upregulated and downregulated genes in each epithelial subset. (D) Heatmap displaying Gene Set Enrichment Analysis (GSEA) 
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results based on the HALLMARK database. (E) UMAP showing the HALLMARK pathways with high activation in the EPI0 subset. (F) Semi-supervised clustering heatmap based 
on copy number variation (CNV) scores, identifying five distinct clusters. (G) Comparison of CNV scores across the five clusters. (H) Facet plot illustrating the distribution of 
tumor and normal cells. (I) Differential expression of NDUFA4L2, CA9, and MET between malignant and normal epithelial subsets, stratified by CNV scores. (J) Density plots 
showing the expression of NDUFA4L2, CA9, SLC17A3, and MET in the UMAP space. (K) Top ten differentially expressed genes (DEGs) in malignant epithelial cells between 
ICB-resistant and ICB-exposed patients. 

 
Dissecting T cell subsets and their implications 
in ICB-resistant groups 

Building on our previous findings that 
elucidated the clinical relevance of APOE+ 

macrophages and their impact on immunotherapy 
outcomes, we now turn our attention to the role of T 
cell dysfunction and its contribution to resistance 
mechanisms. We performed a detailed analysis of T 
cell subsets (Figure 5A). Using signature genes 
(Figure 5B) [58] and DEGs (Figure 5C), we annotated 
each T cell subset with precision. CD4+ regulatory T 
cells (Tregs) were characterized by high expression of 
CTLA4 and FOXP3, while CD8+ effector T cells (TEFs) 
were defined by the expression of GZMB and GZMH. 
Additionally, CD4+ naïve T cells were characterized 
by high expression of CCR7 and IL7R. 

Notably, CD4+ Tregs were predominantly 
localized to the peritumoral regions in ICB-resistant 
samples, suggesting their involvement in therapy 
failure (Figure 5D). Through DEGs analysis, we 
observed that CD8+ TEF exhibited higher expression 
levels of CCL4 (Figure 5E) and CCL5 (Figure 5F), both 
of which facilitate the recruitment of macrophages, 
dendritic cells, and other T cells into the tumor 
microenvironment. Notably, among the three groups 
analyzed, the expression of CCL4 and CCL5 was 
relatively low in the ICB-resistant group, indicating a 
compromised functional capacity of CD8+ TEFs in 
these tumors. This diminished chemokine secretion 
may hinder their ability to orchestrate an effective 
anti-tumor immune response. 

Further functional assays revealed that 
ICB-resistant tumors expressed higher levels of 
exhaustion markers, including CTLA4, HAVCR2, 
TIGIT, PDCD1, and LAG3 (Figure 5G), all of which 
are strongly associated with immune exhaustion [59]. 
To systematically assess the functional status of CD8+ 
TEF cells, we utilized the AUCell score across the 
different groups (Figure 5H). The cytotoxicity score 
was highest in the ICB-response group (P < 0.001), 
whereas the exhaustion score peaked in the 
ICB-resistant group (P < 0.001), corroborating our 
earlier findings. Collectively, ICB-resistant tumor 
exhibits an exhausted CD8+ TEF phenotype and 
demonstrate a reduced capacity for chemokine 
secretion, potentially influenced by APOE+ 

macrophages or tumor cell reprogramming. This 
immune dysfunction underscores a critical barrier to 
effective immunotherapy in these tumors. 

Tumor-derived SPP1 signaling promotes 
APOE+ macrophage polarization and TGF-β 
secretion to establish an immunosuppressive 
microenvironment 

Furthermore, we conducted a comprehensive 
Cell-to-Cell Communication analysis to assess 
signaling dynamics within the tumor immune 
microenvironment. Distinct cell-to-cell 
communication patterns were revealed between the 
ICB-exposed and ICB-resistant groups (Figure 6A). 
The ICB-resistant group displayed stronger and more 
active signaling pathways, including TNF, VISTA, 
AGT, EPO, WNT, SPP1, GDF, IL1, CSF, CD45, EFG, 
and TGF-β signaling. Among all cell types, APOE+ 
macrophages exhibited the most prominent incoming 
and outgoing signaling activities (Figure 6B). 

In the SPP1 signaling pathway network, 
malignant epithelial emerged as the primary signal 
sender, while APOE+ macrophages acted as the 
predominant receiver, medicator and influencer 
within the ICB-resistant group (Figure 6C). Although 
macrophage-derived SPP1 is well-documented to 
promote macrophage polarization toward an M2-like, 
immunosuppressive phenotype, the role of 
epithelial-derived SPP1 in this process has been less 
explored [60]. Our results suggest that tumor-derived 
SPP1 may similarly promote the polarization of 
macrophages into an immunosuppressive state, 
indicating that SPP1 could be a potential therapeutic 
target in ICB-resistant tumors. Moreover, we also 
found APOE+ macrophages were the largest source of 
TGF-β signaling in ICB-resistant group (Figure 6D), 
which is known to play a central role in shaping an 
immunosuppressive microenvironment, further 
contributing to immune evasion and tumor 
progression [61]. Therefore, these findings indicate 
that tumor-derived SPP1 signaling drives the 
polarization of APOE+ macrophages, which 
subsequently secrete TGF-β to establish an 
immunosuppressive microenvironment, contributing 
to the failure of immunotherapy in ICB-resistant 
ccRCC. 
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Figure 5. T cell subset characterization and functional implications across ICB groups. (A) UMAP visualization of T subset cells. (B) Dot plot displaying the signature 
gene expression profiles of various T cell types. (C) Differentially expressed genes (DEGs) among the five T cell subsets. (D) Tissue distribution of the five T cell subsets across 
different samples. (E) Comparison of CCL4 and CCL5 expression among the three groups. (G) Differential expression of exhaustion markers (CTLA4, HAVCR2, TIGIT, 
PDCD1, and LAG3) across the ICB groups. (H) CD8+ T effector cell status among the three ICB groups was assessed using AUCell analysis, highlighting two key features: 
cytotoxicity and exhaustion * represent P < 0.01; ** represent P < 0.001; *** represent P < 0.05. 
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Figure 6. Intercellular communication alterations in ICB resistant and exposed patients. (A) Comparison of overall signaling pathway activity between ICB-resistant 
and ICB-exposed patients. Red indicates high enrichment in the ICB-resistant group, green indicates high activation in the ICB-exposed group, and black indicates no significant 
difference between the two groups. (B) Total incoming and outgoing signaling strength for different cell types across ICB groups. (C) Comparison of the SPP1 signaling network. 
Ligand-receptor interaction weights in ICB-resistant patients (top left) and ICB-exposed patients (top right). The heatmap displays the dominant senders, receivers, mediators, 
and influencers in SPP1 signaling, based on network centrality scores. (D) Comparison of the TGF-β signaling network. Ligand-receptor interaction weights in ICB-resistant 
patients (top left) and ICB-exposed patients (top right). The heatmap displays the dominant senders, receivers, mediators, and influencers in TGF-β signaling, based on network 
centrality scores. 



Theranostics 2025, Vol. 15, Issue 11 
 

 
https://www.thno.org 

5328 

Spatially segregated APOE+ macrophages at 
the tumor border mediate 
immunosuppressive communication and 
structural organization 

Building on our previous findings regarding the 
spatial arrangement of immune cell populations, we 
next focused on the localization and functional role of 
APOE+ macrophages at the tumor border. We initially 
confirmed the tumor regions based on morphological 
features (Figure 7A). By utilizing the malignant 
markers (NDFA4L2, CA9, MET), macrophages 
(APOC1, C1QA, C1QB, CD14, CD16, CD68, CD163), 
and CD8+ T cell (CD2, CD3D, CD3E, CD8A, CD8B), we 
calculated corresponding scores to map the relative 
spatial position of these cells (Figure 7B). To further 
delineate the spatial distribution of celltypes within 
the TME, we applied the RCTD method (Figure 7C), 
which deconvoluted scRNA sequencing data into 
spatial data, allowing the inference of primary cell 
types at each spatial location. Expression of key 
molecules, such as APOE, SPP1, and CD8A, validated 
the deconvolution results (Figure 7D). 

These findings showed that APOE+ 
macrophages are predominantly distributed along the 
tumor border regions, forming a physical immune 
barrier between CD8+ T cells and tumor cells. In the 
MISTy analysis, APOE+ macrophages emerged as 
central mediators of cell-to-cell communication within 
the TME. The intra- and jux-context interaction 
networks demonstrate that APOE+ macrophages 
engage in extensive interactions with other immune 
cells, such as CD8+ Tex cells, CD4+ Tregs, and 
malignant cells (Figure 7E-F). These macrophages 
exbited higher predicted communication importance 
scores, underscoring their critical role in shaping an 
immune-suppressive microenvironment niche. 

Further investigation using Stlearn analysis 
explored spatial patterns of ligand-receptor 
interactions involving APOE+ macrophages. Elevated 
interaction scores were observed for key 
ligand-receptor pairs, such as ITGAL_ITGAL, 
COL3A1_ITGA1, CCL18_CCR1, and TGF-β signaling, 
particularly in regions with high APOE+ macrophage 
activity. These interactions were concentrated in 
regions of immune cell infiltration and structural 
support, suggesting that APOE+ macrophages help 
establish immune-suppressive niches. Notably, the 
enrichment of collagen and integrin interactions (e.g., 
COL1A1_ITGA1) further indicates that APOE+ 
macrophages organize the tumor stroma elements to 
facilitate tumor progression and immune evasion 
(Figure 7G, Figure S5). 

Upregulated SPP1 promotes the proliferation 
and migration of 786-O and 769-P cells 

Compared to the shControl group, the SPP1 
protein levels in the ccRCC cell lines (786-O and 
769-P) significantly decreased following shRNA 
knockdown (Figure 8A). Concurrently, low 
expression of SPP1 in the Vector control group and 
high in SPP1 OE group indicated successful model 
construction (Figure 8B). Both in the 786-O and 769-P 
cell line, significant reduction in the number of clones 
in the culture dishes for the SPP1 Sh1 and SPP1 Sh2 
groups, and SPP1 OE significantly enhanced the 
ability of cell clone formation (all P < 0.05, Figure 
8C-D). After four days, SPP1 Sh1 and SPP1 Sh2 
groups showed a marked decrease in their 
proliferation capabilities, while the SPP1 OE group 
displayed a notable enhancement in proliferation (all 
P < 0.05, Figure 8E). 

In terms of the impact of SPP1 on migration 
ability of ccRCC, the SPP1 Sh1 and Sh2 groups 
demonstrated a significant decrease in the number of 
transmembrane cells compared with shControl, while 
the SPP1 OE group (P < 0.05) exhibited the highest 
number of transmembrane cells, suggesting that SPP1 
overexpression significantly enhanced cell migration 
ability (all P < 0.05, Figure 8F-G). Compared to 
shControl groups, the Sh1 and Sh2 groups displayed a 
significantly reduced migratory ability, with the 
degree of scratch healing being lower than that of the 
control group, as the scratch remained evident after 24 
h. The SPP1 OE group showed a significant 
improvement in migration ability, with the highest 
degree of scratch healing. After 24 h, the scratch area 
was almost completely filled with cells (all P < 0.05, 
Figure 8H-I). Taken together, these experiments 
comprehensively confirmed that the expression level 
of the SPP1 protein is closely related to the malignant 
biological behavior of ccRCC cells. 

SPP1 overexpression drives APOE+ M2-like 
macrophage polarization, promoting tumor 
progression and immunosuppressive TME 
formation 

In the following analysis, as showed in Figure 
9A, ccRCC cells (786-O and 769-P) transfected with 
SPP1 overexpression or control vectors were 
co-cultured with THP-1 derived macrophages, 
followed by CM collection for subsequent analysis. 
Next, we employed WB analysis to elucidate the 
impact of SPP1 OE in renal cancer cells on 
macrophage. The results indicated that the SPP1 OE 
Co-cultured CM group significantly increased the 
protein levels of SPP1, APOE, ARG1 and CEBPD.  
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Figure 7. Spatial colocalization and intercellular communication analysis. (A) Hematoxylin and eosin (H&E) staining. (B) Spatial plot showing feature scores for 
tumors, macrophages, and CD8+ T cells. (C) Robust Cell Type Decomposition (RCTD) deconvolution revealing the cell type composition at each spatial spot. (D) Spatial plot 
showing the expression of CD8A, APOE, and SPP1 across spatial spots. (E) Heatmap illustrating intra-context spatial dependencies of cell types based on RCTD results (left), and 
a network plot showing cell-to-cell interactions within spatial spots (right). (F) Heatmap illustrating juxta-context spatial dependencies of cell types based on RCTD results (left), 
and a network plot showing cell-to-cell interactions between spatial spots (right). (G) Spatial plot showing the colocalization of ligand-receptor pairs based on stLearn analysis. 
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Figure 8. Upregulated SPP1 expression promotes the proliferation and migration of 786-O and 769-P cells. (A) The levels of SPP1 expression in 786-O and 
769-P cell lines after SPP1 knockdown are shown through Western blot analysis, with GAPDH used as the internal control. (B) The Western blot analysis indicates the 
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expression of SPP1 in 786-O and 769-P cell lines following its overexpression. (C) Representative images from colony formation assays in 786-O and 769-P cells, featuring both 
SPP1 knockdown (Sh1 and Sh2) and overexpression, are compared to their respective controls. (D) The quantification and comparison of colony counts are depicted (* 
represent P < 0.05; ** represent P < 0.01; *** represent P < 0.001). (E) The CCK-8 assay for proliferation was conducted to investigate how varying levels of SPP1 expression 
impact cell growth. (F) Transwell migration assay was performed to assess the ability of renal cancer cells to migrate after SPP1 knockdown or overexpression. (G) The quantity 
of cells that migrated was measured. (H) Representative images show SPP1 knockdown and overexpression during the wound healing assays at 0 hours and 24 hours. (I) A 
quantitative assessment of the percentage of wound closure is presented. 

 
Figure 9. SPP1 overexpression drives APOE+ M2-like macrophage polarization, promoting tumor progression and immunosuppressive TME formation. 
(A) The schematic diagram illustrates the co-culture system in which THP-1-derived macrophages are cultured alongside the CM from SPP1-overexpressing renal cancer cells 
(co-culture CM) to investigate macrophage polarization and its effects on tumor progression, including Ordinary CM, Vector Co-cultured CM, and SPP1 OE Co-cultured CM. (B) 
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Western blot analysis demonstrated that after co-culturing SPP1-overexpressing 786-O cells or 769-P with THP-1-derived macrophages, the protein levels of SPP1, iNOS (M1 
marker), APOE, CEBPD, CXCL9, and ARG1 (M2 marker) were assessed, with GAPDH serving as the internal reference. (C) ELISA results indicated the secretion levels of CCL4, 
TGF-β, and IL-10 in the conditioned medium from 786-O and 769-P cells (* represent P < 0.05; ** represent P < 0.01; *** represent P < 0.001). (D) Flow cytometry analysis was 
conducted to evaluate the expression of CD206, APOE, and PD-L1 in macrophages among Vector Co-cultured CM and SPP1 OE Co-cultured CM. (E) A colony formation assay 
was performed to assess the impact of co-culture CM and APOE neutralization on the cloning ability of 786-O cells. (F) Transwell migration assays analysis showed the different 
migration ability of 786-O cells. (G) Evaluation of the effects of co-culturing CM and APOE neutralization on cell migration by wound healing analysis. (H) Assess the impact of 
co-culturing CM and APOE neutralization on tumor cell proliferation by CCK-8 proliferation analysis. 

 
Concurrently, the expression of iNOS was 

notably reduced, while changes in CXCL9 expressions 
were minimal. This suggested that SPP1 OE induced 
macrophage polarization towards APOE+ 
macrophages (Figure 9B, Figure S6A), alongside an 
increase in CEBPD expression. Notably, CCL4 levels 
significantly decreased after co-culture, particularly in 
the SPP1 OE Co-cultured CM group (P < 0.01). 
Furthermore, TGF-β and IL-10 levels were 
significantly elevated (P < 0.001) (Figure 9C). This 
finding aligns with our previous hypothesis. 
Additionally, by assessing the expression changes of 
macrophage polarization markers CD206, APOE, and 
PDL1 using flow cytometry, we observed that in both 
786-O and 769-P cells, the SPP1 OE Co-cultured CM 
demonstrated a significant increase in CD206, APOE, 
and PDL1 compared to the ordinary CM (P < 0.001, P 
< 0.0001) (Figure 9D). This evidence suggested that 
high SPP1 CM drive macrophage polarization toward 
an APOE+ M2-like Macrophage phenotype, which 
was consistent with above. 

Furthermore, we utilized the Vector Co-cultured 
CM, the SPP1 OE Co-cultured CM group, and the 
SPP1 OE Co-culture CM+APOE Ab group to 
investigate the malignant progression of renal cancer 
cells in the presence of APOE+ M2-like macrophages. 
The results of the plate cloning formation 
demonstrated that the SPP1 OE Co-cultured CM 
group significantly increased the number of tumor 
cell clones. After the addition of the anti-APOE 
antibody, the clonal formation ability of the tumor 
cells was significantly reduced (all P < 0.05, Figure 9E, 
Figure S6A). Transwell migration experiment 
confirmed that the number of migrated cells in the 
SPP1 OE Co-cultured CM group was significantly 
higher than that in the Vector Co-cultured CM; after 
adding the anti-APOE antibody, the number of 
migrated cells decreased significantly (all P < 0.05, 
Figure 9F, Figure S6B). The SPP1 OE Co-cultured CM 
group showed the highest wound closure rate, 
indicating that APOE+ macrophage plays a crucial 
role in promoting migration (all P < 0.05, Figure 9G, 
Figure S6C). The CCK-8 cell proliferation analysis 
revealed that the SPP1 OE Co-cultured CM group 
significantly promoted cell proliferation, as evidenced 
by a substantial increase in the OD value (P < 0.05, 
Figure 9H, Figure S6D). Following the addition of the 
anti-APOE antibody, the cell proliferation curve 
exhibited a significant decrease. 

Collectively, the experimental results align with 
previous findings from single-cell spatial multi-omics 
studies. Tumor-derived SPP1 promotes the 
polarization of macrophages into APOE+ M2-like 
macrophages, upregulates CEBPD, inhibits the release 
of chemokines, enhances the activation of the PD-L1 
pathway, and modulates immune suppressive signals 
such as TGF-β and IL-10, thereby shaping an 
immunosuppressive microenvironment. 

Discussion 
Malignant renal cancer is characterized by high 

invasiveness, with advanced renal cancer being 
particularly prone to metastasis. It is resistant to 
conventional chemotherapy and radiotherapy, 
making treatment very challenging once metastasis 
occurs [62, 63]. Therefore, effective early intervention 
is crucial in renal cancer treatment. Currently, 
immunotherapy has become the fourth treatment 
modality alongside surgery, radiotherapy, and 
chemotherapy, and is increasingly applied in clinical 
settings, especially for patients with metastatic renal 
cancer [64, 65]. Nonetheless, the mechanisms that 
contribute to resistance are still not well 
comprehended. We comprehensively analyzed the 
scRNA transcriptomes of both cancer and immune 
cells in patients with metastatic RCC, both prior to 
and following ICB treatment. 

Macrophage-derived APOE tightly correlated to 
shorter progression of recurrence and poor prognosis 
of renal cancer [66]. APOE expressed by macrophages 
inhibits inflammation by transmitting 
anti-inflammatory signals via extracellular vesicles. 
Wild-type macrophage vesicles increase levels of 
apoE and miR-146a-5p, reducing NF-κB signaling and 
enhancing fatty acid oxidation and oxidative 
phosphorylation, thus promoting an anti- 
inflammatory metabolism. In contrast, apoE-deficient 
vesicles promote NF-κB activity and oxidative stress 
[67]. Liu et al. [29] primarily explored the potential 
role of APOE+ macrophage in ICB therapy among 
pan-cancer analysis, and the infiltration might be 
related CD8+T exhausted cells and to ICB therapy 
failure in triple negative breast cancer (TNBC). In this 
study, we identified the role of APOE+ macrophage 
infiltration in ICB failure of RCC and 
comprehensively explore the molecular mechanisms 
based on combination of single-cell and spatial 
transcriptome multi-omics. 
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In the results, significantly elevated APOE+ 

macrophage infiltrated in ICB-resistant TME 
compared to ICB response and expose. More than 80% 
of macrophage in the ICB-resistant group were 
APOE+ macrophage, while the proportion was less 
than 10% in the other two subgroups. In mIF analysis, 
we also more infiltration of M2 macrophage in 
ICB-resistant patient with elevated APOE expression, 
indicating the anti-inflammatory function. This 
evidence indicated the role of APOE+ macrophage in 
ICB failure. In addition, we found APOE+ macrophage 
might be the terminal cells which indicated tumor 
might promote macrophage to polarized in the 
direction of APOE+ macrophage under some extent 
signaling. To solve this, we established 
Regulons-targets network and performed enrichment 
analysis. Among these regulons, CEBPD might be a 
key molecule for suppressing immunotherapy of 
APOE+ macrophage. CEBPD target genes are heavily 
enriched in immunosuppression-related singling, 
inhibits the production of chemokines and cell 
adhesion thereby preventing T cells from infiltrating 
the local milieus and creating a relatively immune 
microenvironment. In addition, we found elevated 
CEBPD could upregulate PD-L1 expression in RCC to 
suppress T cell mediated anti-tumor response, 
contributing to tumor escape. Coincidently, Zhao et 
al. [68] also found the CEBPD can activate expression 
of VAMP3 in TNBC, which further increase the 
secretion of PD-L1 in extracellular vesicles, thereby 
enhancing the chemoresistance of TNBC. In IHC 
analysis, increased expression of CEBPD also be 
found in Resistance tumor, as well as the results in 
two external cohort. 

SPP1 is widely expressed in many immunocytes 
and tumor cells, and has a prominent role in tumor 
development and immune response. In glioma, SPP1 
plays as a chemokine that drives the infiltration of 
TAM to suppress anti-tumor response [69]. In present 
studies, SPP1 expression contributed to IO-TKI 
resistance and shorter progression-free time in RCC. 
Similarly, our results validated that upregulated SPP1 
enhances the proliferation, clonal formation and 
migration abilities of renal cancel cells, suggesting the 
essential role of SPP1 in promoting tumor 
progression. However, the mechanism for immune 
evasion centered on SPP1 in RCC still unclear [70]. In 
this study, we found that ICB-resistant RCC presented 
significant activation of SPP1, and directly target 
APOE+ macrophage. Co-culture experiments revealed 
that the increased expression of SPP1 in renal cancer 
cells led to a marked polarization of APOE+ M2-like 
macrophages, elevated the levels of 
immunosuppressive markers like APOE and CEBPD. 
This polarization fostered an immunosuppressive 

microenvironment that facilitated tumor progression, 
as indicated by heightened tumor cell proliferation, 
migration, and colony formation. Importantly, the use 
of anti-APOE antibodies significantly counteracted 
these effects. When APOE+ macrophage as singling 
sender, many immunosuppressive singling was 
deciphered, where TGF-β attracting much attention. 
TGF-β was famous for its central role in formulating 
suppressive TME [71], which were also upregulation 
in ICB-resistant RCC. In resistant patients, APOE+ 

macrophage secreted prominent TGF-β singling to 
inhibit T cell activation. In addition, we found APOE+ 

macrophage gather accumulate around tumor 
borders, as well as abundant TGF-β signaling. 
Together form a barrier at the tumor boundary 
inhibiting the infiltration and activating of T cells, 
creating good conditions for the growth and 
progression of malignant cells. Meanwhile, hindering 
the effective infiltration of T cells, thereby inhibiting 
the efficacy of ICB therapy. 

This research has revealed a variety of 
innovative therapeutic targets with potential 
applications in the treatment of cancer, along with 
insights into their mechanisms of action. The Anushka 
team has shown through their studies that the 
targeting and removal of important elements such as 
CD73, CSF1, or SPP1 secreted by quiescent metastatic 
cancer cells can significantly disrupt the establishment 
of the immunosuppressive TME. This disruption may 
resensitize quiescent metastatic tumors that were 
earlier unresponsive to ICB therapy [72]. As described 
above, Liu et al. validated that combining the APOE 
inhibitor COG 133 TFA with anti-PD-1 therapy yields 
a marked synergistic anti-tumor response in TNBC, 
indicating that targeting APOE can significantly 
enhance the effectiveness of immune checkpoint 
inhibitors [29]. Comprehensive mechanistic 
investigations have demonstrated that APOE+ 

macrophages contribute to a complex 
immunosuppressive network by enhancing the 
expression of the transcription factor CEBPD along 
with its downstream target genes, reducing the 
release of chemokines, which in turn hinders the 
infiltration of CD8+ T cells. Furthermore, it 
diminishes the phagocytic abilities of macrophages 
and strengthens the immunosuppressive 
microenvironment via PTX3 and IL-10 [73, 74]. These 
observations lay a theoretical framework for the 
advancement of inhibitors targeting CEBPD in 
conjunction with immunotherapy. Notably, TGF-β, 
the principal effector molecule modulated by APOE+ 
macrophages, has been recognized as a key player in 
immunosuppression. The bispecific antibody 
LBL-015, which combines anti-PD-1 monoclonal 
antibodies with the extracellular domain of TGF-βRII, 
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was created stemming from this research and has 
shown promising safety profiles in Phase I clinical 
trials. Out of 25 patients enrolled with advanced solid 
tumors, one individual with renal cancer experienced 
a partial response lasting more than 28 weeks 
(NCT05107011) [75]. 

This study presents a few limitations. To begin 
with, the data utilized in this research came from a 
limited group of patients, which could limit how 
broadly the results can be applied. Additionally, the 
single-cell RNA sequencing and spatial 
transcriptomics technologies employed present 
challenges in directly analyzing protein level 
regulation, thereby hindering a comprehensive 
understanding of the interactions involving APOE+ 

macrophage at the protein level. Furthermore, 
single-cell sequencing data are often noisy, potentially 
compromising the accuracy of gene expression 
measurements. Lastly, this study relies on static 
single-cell and spatial transcriptome data, which do 
not capture the dynamic changes occurring within the 
tumor microenvironment, thus limiting insights into 
the evolutionary trajectory of APOE+ macrophage 
before and after ICB treatment. 

Conclusion 
In conclusion, our study highlights the critical 

role of APOE+ macrophages in promoting 
immunotherapy resistance and immunosuppressive 
TME in ccRCC. This study integrates single-cell 
spatial multi-omics a, mIF and multiple experiments 
to uncover the pivotal role of APOE+ macrophages in 
fostering an in ccRCC. Tumor-derived SPP1 signaling 
recruits and polarizes APOE+ macrophages to the 
peri-tumoral regions and tumor borders, where they 
secrete TGF-β, upregulated CEBPD, and triggered 
PD-L1 signaling, forming a physical and functional 
barrier between CD8+ T cells and malignant cells, 
thereby effectively dampening immune responses. 
Therfore, targeting the APOE+ macrophage 
population and their associated signaling pathways 
could represent a promising therapeutic strategy to 
overcome immunotherapy resistance in ccRCC, 
potentially improving clinical outcomes for patients. 
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